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ABSTRACT 

The heating of a silicon wafer in a rapid thermal process is studied by numerical simulation.  

In the model, the equations of conservation of mass and energy are solved with the finite 

volume method and the determination of the solutions of the radiative transfer equation is 

based on the Monte-Carlo method. The results of numerical simulations, without optimization 

and in steady-state, show a close relationship between the thermal profiles of the silicon 

wafer and the ones of the quartz window. By introducing a high thermal diffusivity value for  

the window, the homogeneity of the wafer temperature is improved by 54%. The effect of heat 

storage by the quartz window on the temperature profile of the silicon substrate is hence well 

appreciated. Finally, a selection of materials is proposed for the implementation of the high 

diffusivity infrared window. 
 

 

 

 

 

 

 

Address correspondence to Dr. Pierre-Olivier Logerais, Université Paris-Est Créteil (UPEC),  

IUT de Sénart – Fontainebleau, Département Génie Industriel et Maintenance (GIM),  

Rue Georges Charpak, 77567 Lieusaint Cedex, France 
Email : pierre-olivier.logerais@u-pec.fr 

 

Phone number: 00 (33) 1 64 13 46 86, Fax number: 00 (33) 1 64 13 45 01 



Logerais et al. in Heat Transfer Engineering, 36(13) (2015) 1111-1121 

2 

INTRODUCTION 

Rapid thermal processes (RTP) are widely used in the manufacturing of microelectronic 

components. They are implemented in key stages as annealing for ion diffusion, silicidation, 

oxidation, nitridation and more recently for thin film deposition [1]. Since the introduction of 

the first integrated circuits, the silicon technology is constantly striving to miniaturize 

semiconductor components to improve circuit performance. In the 1980s, the use of 

conventional furnaces started becoming an impediment to the miniaturization of 

microelectronic components because of their high inertia. To ensure thermal treatments of 

small durations, rapid thermal processes have emerged with heating provided by infrared 

lamps and with a reactor wall often maintained at low temperature. Nevertheless, the main 

challenge is to obtain a uniform temperature over the entire surface of the silicon wafer [2,3]. 

Although a significant improvement has been achieved since the inception of the process,  

this condition is indeed a major issue. It is indeed necessary to provide an identical treatment 

over the entire surface of the wafer so that the components satisfy the required quality criteria. 

The study of the heating of the silicon wafer by numerical simulation enables to understand 

better the phenomena responsible for the observed temperature gradients [4-6]. Intuition and 

experience had been the only tools for many years. The present study utilizes the simulation 

approach to grasp better the relationship between the heating of infrared lamps and the 

thermal profile of the silicon substrate. In order to do it, a validated rapid thermal system 

model is considered [7]. The results of the first simulations have demonstrated that the 

differences in temperature of the quartz window have an influence on the temperature 

homogeneity of the silicon wafer [8,9]. We attempt in this study to explain the influence of 

the quartz window by reflecting on its thermal properties and their influence on the 

temperature distribution of the silicon wafer. 

 

 

MODELING 

The simulated rapid thermal system (figure 1) is of type AS-One 150 marketed by the 

company AnnealSys (Montpellier, France) [10]. It consists of a bank of eighteen infrared 

halogen lamps. The radiation they emit is mainly in the infrared wavelengths ranging from 0.3 

to 4 µm centered around 1 µm. A quartz window seals the reactor at its top while transmitting 

the infrared radiation emitted by the lamps. The reactor is of cylindrical shape with a stainless 

steel wall in which a silicon substrate of 150 mm diameter (6 inches) reposes on three quartz 

pins. A water flow maintains the wall at a relatively low temperature of  

300 K. A pumping system is operated to ensure low pressure in the reactor and a panel to 

control the gas inlet and outlet. 
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Figure 1  Model of the rapid thermal equipement AS-One 150. 

 

The rapid thermal system is modeled (figure 1) in the case of annealing without flow of 

reactive gases. The reactor contains nitrogen at 300 Pa. Conservation equations are integrated 

over each control volume cell of the domain [11]. They enable to simulate numerically  

the flow (nitrogen in the reactor and lamps, air in the furnace) and the heat transfer, especially  

the radiative one. Flows are governed by the mass conservation of fluid: 

   0Vρdiv
t

ρ





 (1) 

and by the Navier-Stokes equation which can be written by projection onto the x-axis: 
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The conservation equation of total enthalpy is solved: 
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where h0 designates the mass enthalpy: 
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0 vu
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The radiative transfer equation is in steady-state [12]: 
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π4

σ
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 (5) 

where Φ  is the phase function of the energy transfer from the incoming direction Ω’ to the 

outgoing one Ω and, the radiative intensity I(r, Ω) at the surface is: 
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For a medium that emits, absorbs and diffuses, the solving of equation (5) is realized by 

knowing the optical properties of surfaces [13,14] and by using the Monte-Carlo method 

[12,15]. To simulate a solution of equation (5), the fate of rays emitted by each surface within 

the system is followed. These emitted rays are traced until they are absorbed by the same or 

by some other surface. Each piece of surface is called "patch" and hence the radiative energy 

is exchanged by emission or absorption of radiations between patches. Radiative heat flux for 

a patch i is the result of the incident radiation from all the other patches j and of the one of its 

own emission. The discrete solution is then expressed as: 

   j
4
j

N

1j

jijijiii ATσεδMAqQ
S




  (7) 

The radiative heat flux Qi is determined for each internal surface and its value is injected in 

the source term Sh of heat conservation equation (3). Hence, the absorbed and emitted 

radiative heat is taken into account when solving with the finite volume method, equation (3) 

for adjacent control volumes. 

A bundle of photons emitted from a patch i undergoes several events before being absorbed 

by a surface: absorption, reflection (diffuse, specular or partially specular) and transmission. 

Each of these events depends on the wavelength of the beam, its direction of propagation, the 

orientation of patches encountered and their optical characteristics. The determination of 

radiative properties is carried out from the complex refractive index. The wavelength, the ray 

direction and its tracing are performed with the Monte-Carlo method. The randomness of  

the diffuse emission is reproduced by this method. In reality, we must restrict the number of 

photons sufficiently high enough to achieve acceptable statistics. These photons are 

representative of a group and their trajectories must be perfectly randomized, which justify 

the choice of this statistical method. 

 

NUMERICAL SIMULATIONS 

Both a 2D and a 3D model of the RTP equipment have been realized. Their validity has 

been acquired by confronting in the steady-state the numerical simulation results to 

measurements of the wafer temperature for five electric power values supplied to the infrared 

lamps ranging from 10 to 30% [7,13]. The experimental wafer temperature profiles have been 

found in good agreement with the numerically calculated ones with a relative temperature 

difference inferior to 1% in most cases. An example of confrontation of temperature profiles 

is shown in figure 2. Similar results are obtained for the other lamp powers (see [7,13]). The 

experimental temperatures of the infrared lamp filaments evaluated from the Ohm law and the 

ones used in the numerical calculations match with a difference inferior to 5% for the 3D 

model and less than 9% for the 2D one. Equivalence between the 2D and 3D is then 

demonstrated. 

Therefore, 2D modeling is considered in this study. We arbitrarily chose to treat the most 

unfavorable case where the wafer heating by infrared lamps is not optimized in steady-state in 

order to have the highest differences. Thus, the sensitivity is maximal to appreciate the 

influence of the modified parameter. The calculations were made for the different lamp 

heating powers ranging from 10 to 30%. The numerical simulations were performed with the 

CFD'Ace code [16]. 
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The temperature profiles of the silicon wafer and the quartz window obtained by numerical 

calculations with the validated model are superposed in figure 3. The curves for 15% power 

are given as an example. The cut is realized at the mid height of the quartz window and at the 

surface of the silicon wafer. Both the profiles are superposed in order to display the shape 

similarity. The length scale of the x-axis is the same for both the quartz window and the 

silicon wafer. Results with the same form are obtained for the other powers. We note that the 

temperature profiles of the wafer and of the quartz window are of similar shape with a strong 

decrease of the temperature towards the edge. 

The temperatures of the quartz window and the silicon wafer match because they exchange 

radiative heat by absorption and by emission between the lower surface of the quartz window 

and the upper one of the silicon wafer as shown in studies [8] and [9]. The temperature of the 

quartz window diminishes towards its edge because of conductive heat loss. Hence, its 

emission towards the silicon wafer is more important at the center which increases the center-

to-edge temperature difference of the latter. For the silicon wafer, the temperature distribution 

is preliminarily due to the absorption of radiation emitted by infrared lamp around 1 µm all at 

the same power in cones and reflection on the reactor stainless steel wall and also by 

convection loss in the low pressure reactor. 

To compare the temperature differences between the center and the edge of the wafer and 

the quartz window, the temperature was monitored for four points which are shown in  

Figure 1: at the center of the substrate Ts(x=0), at 5 mm from its edge Ts(x=-0,070m), at the 

center of the quartz window Tqw(x=0) and close from its internal edge Tqw(x=-0,0875m). 

The temperature differences between the center and the edge of the substrate and of  

the quartz window, denoted ΔTs and ΔTqw have then the following expressions: 

 




-0,0875m)=(xT - 0)=(xT = T

-0,070m)=(xT - 0)=(xT =T

qwqwqw

sss

Δ

Δ
 (8) 

 

 

Figure 2  Example of agreement between the experimental wafer temperature profiles  

and the calculated ones for 20% lamp electrical power (Tfil is the lamp filament temperature, see [7,13]). 
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a) 

b) 

Figure 3  Temperature profiles for a lamp electrical power of 15%  

a) of the silicon substrate  

b) of both the quartz window and the silicon substrate. 

 

RESULTS AND DISCUSSION 

Center-to-edge temperature difference 

Figure 4 shows the temperature differences between the center and the edge of the wafer 

and of the quartz window versus the lamp heating power. Both the differences increase 

linearly according to the lamp heating power. The observation of this concomitance therefore 

emphasizes a close relationship between the distribution of the wafer temperature and the one 

of the quartz window. The question is to know whether by reducing the temperature 

difference of the quartz window, the substrate temperature will be uniformed. We therefore 

sought this situation. 
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Figure 4  Center-to-edge temperature difference versus lamp electical power. 

 

 

Modification of the thermal diffusivity 

It has been observed when comparing the thermal profiles in previous section that there is  

a strong temperature gradient between the center and the edge of the quartz window.  

The same applies for the substrate. To reduce this gradient for the window, it is necessary to 

dissipate the heat. So we thought of implementing a dissipative window. A reflection is 

carried out for the thermal diffusivity of the window to be introduced in the model in order to 

get this feature: 

 
pc.ρ

k
a   (9) 

The constitutive and thermal properties of the quartz window are summarized in table 1. 

Orders of magnitude are given for these properties which vary with temperature [7]. The 

thermal conductivity of quartz is weak and its specific heat is elevated. So, its thermal 

diffusivity is low which means that the quartz window stores the heat. To dissipate the heat 

and minimize the overall temperature of the window and the strong gradient temperature, the 

thermal diffusivity must be increased. This way, the heat received by the window will be 

transferred instantaneously towards the cold wall. 

To obtain a high value of diffusivity, great thermal conductivity of copper and very low 

specific heat of gold were considered in the simulations for the thermal properties of the 

window. The magnitudes of these values are displayed in table 1 [17]. The density and the 

radiative properties (transmissivity of 95% around 1 µm) of the quartz are unchanged. 

Diffusivity is then multiplied by a factor of 1500. 

 

 Quartz Dissipation 

Density ρ [kg.m
-3

] 2649 2649 

Specific heat cp [J.kg
-1

.K
-1

] 1000 130 (gold) 

Thermal conductivity k [W.m
-1

.K
-1

] 2 400 (copper) 

Diffusivity a [m
2
.s

-1
] 7.6.10

-7
 1.16.10

-3
 

Table 1  Thermal properties of the window 
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Effect on temperature 

Figure 5 shows an example of comparison of the temperature profiles of the substrate and 

of the window for 20% power. Similar results are obtained for the other powers. As desired,  

the overall temperature of the quartz window is in the magnitude of its initial temperature of 

300 K. For the substrate, there is a lag down of its temperatures. The decrease of the overall 

temperature of the window causes a lessening of the wafer one. Indeed, the absorption-

emission exchange of radiations in the infrared domain (beyond 4 µm) between the quartz 

window and the wafer [9] is limited because the temperature of the window is reduced.  

The high temperature quartz window behaves like an additional heat source due to  

the absorption and storage of infrared radiative heat beyond 4 µm. Since the temperature of 

the dissipative window is low, its emission is negligible. 

 

a) 

 

b) 

 

Figure 5  Temperature profile for 20% lamp electrical power of the window (a) and of the silicon 

wafer (b) with a high thermal diffusivity (modification) and for a low one (quartz) of the window. 
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As there is a shift of the temperature of the silicon wafer, it is interesting to compare  

the center-to-edge temperature difference ΔTs versus the center temperature of the substrate  

Ts(x = 0) obtained with the modified window and with the quartz one (figure 6). 

To appreciate the effect of the high diffusivity window, the center-to-edge temperature of 

the window with high diffusivity is divided by the one of the quartz window to calculate the 

temperature homogeneity improvement: 

 
 

 windowquartzT

windowydiffusivithighT
1reduction

s

s

Δ

Δ
  (10) 

The reduction is calculated by taking into consideration the quartz affine equations obtained 

with the fittings in figure 6. For wafer temperature ranging 900–1300 K, the effect is 

calculated in table 2. The temperature difference is diminished by 54% with the high thermal 

diffusivity window. The temperature difference between the center and the edge of the 

window therefore affects the one of the substrate. However, as in the case of the absence of 

window [8], the temperature difference between the center and the edge of the wafer is not 

zero. The reduction of the nonuniformity of temperature is significant but not total with a heat 

dissipating window. The low thermal diffusivity therefore is not the only cause for 

nonuniformity, but we now know that it contributes to 54% of the difference in temperature of 

the substrate. The effect of the lamps which supply radiative heat in cones, all with the same 

electrical power, and the one of the reflective walls of the furnace and reactor which direct 

radiation onto the wafer have both a contribution of around 46%. 

In addition, these results indicate the limit of different solutions implemented to cool  

the quartz window during heating processes. As examples, a double window with oil or water 

flow [18], or a cooling by compressed air or other gases [19,20] have been used. Arrangement 

in the window to select the absorbed radiation to avoid the overheating of  

the window was also proposed by Timans et al. [21] in the context of a patent.  

The maintaining of low temperature for the window, either by cooling or by ensuring that it 

does not absorb radiations, must be accompanied by a complementary way to obtain a 

uniform temperature at the surface of the silicon substrate. Different ideas may be suggested 

to raise the incident radiative heat flux at the edge of the silicon wafer to compensate the one 

received at its center. This outcome can be obtained for example by leveraging the control of 

the infrared lamps, by modifying the shape of the reactor wall or by changing the surface 

properties of the quartz window. 

 

 

Ts [K] 
Quartz window 

∆Ts [K] 
High diffusivity window 

∆Ts [K] 
∆Ts (high diffusivity window) / ∆Ts (quartz window) 

[%] 
Reduction 

[%] 

900 35.19 16.94 48% 52% 

1000 44.1 20.5 46% 54% 

1100 53.01 24.06 45% 55% 

1200 61.92 27.62 45% 55% 

1300 70.83 31.18 44% 56% 

  
Average 46% 54% 

 

Table 2  Effect of the high diffusivity window on the temperature homogeneity. 
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Figure 6  Center-to-edge temperature difference of the substrate according to the temperature at its 

center with the high thermal diffusivity (modification) and with a low one (quartz) for the window. 

 

 

Effect on gas flow 

The gas flow concerns the air in the furnace which is at a pressure in the order of the 

atmospheric one and also the nitrogen in the reactor which is at low pressure (300 Pa). The 

temperature differences induce  natural convection which can be well viewed with velocity 

vector field with the computational fluid dynamics analyzer. 

 In the furnace, the infrared halogen lamps are at high temperature in the range 1600–2100 

K and the furnace reflector wall is at 573 K. Two convection cells are generated with a 

maximum velocity around 0.117 m.s
-1

 (see figure 7 and table 3.a). The velocity is higher 

when there is the hot quartz window at the bottom because the density of hot air is lower. 

With the high diffusivity window, the air velocity is lower, maximum 0.062 m.s
-1

 (see figure 

8 and table 3.b), because in the lower part of the furnace the air is at a temperature around the 

ambient one (figure 9).  Hence the convection occurs in the upper part of the furnace (figure 

8). 

In the reactor, the velocity is lower because the pressure inside the reactor is nether (300 

Pa) contrary to the air pressure of the furnace which is in the magnitude of the atmospheric 

pressure. In the reactor, the nitrogen flows from the inlet (injection) to the outlet (extraction). 

Besides, the reactor wall is kept cool (300 K) but the silicon wafer and the quartz window are 

at high temperature (1000 K). So the temperature difference generates two convection cells 

but, contrary to the air in the furnace, the velocity is in the range 0–1.8 mm.s
-1

 when there is 

the hot quartz window (see figure 7 and table 3.a). When the window dissipates the heat, the 

temperature at the top is low (figure 9), the strong temperature differences makes the velocity 

increase in the interval 0–2.7 mm.s
-1

 (see figure 8 and table 3.b). 
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Table 3  Effect of the gas flow on 

a) the quartz window  

Halogen lamps Quartz window 

Power [%] 
Filament 

temperature 
[K] 

Wafer 
temperature 

[K] 

Window 
temperature 

[K] 

Furnace air 
velocity [m.s

-1
] 

Reactor nitrogen 
velocity [mm.s

-1
] 

10 1653 [1047;1123] [300;1339] [0;0.1149] [0;1.851] 

15 1778 [1147;1237] [300;1417] [0;0.1161] [0;1.819] 

20 1923 [1274;1375] [300;1561] [0;0.1179] [0;1.768] 

25 2013 [1334;1423] [300;1639] [0;0.1177] [0;1.735] 

30 2043 [1308;1391] [300;1657] [0;0.1183] [0;1.724] 

 

b) the high diffusivity window  

Halogen lamps High diffusivity window 

Power [%] 
Filament 

temperature 
[K] 

Wafer 
temperature 

[K] 

Window 
temperature 

[K] 

Furnace air 
velocity [m.s

-1
] 

Reactor nitrogen 
velocity [mm.s

-1
] 

10 1653 [729.1;739.5] [300;329] [0;0.06154] [0;2.635] 

15 1778 [800.6;815.8] [300;337.6] [0;0.06226] [0;2.635] 

20 1923 [929.1;960.8] [300;355.2] [0;0.06233] [0;2.772] 

25 2013 [1015;1046] [300;365.7] [0;0.06218] [0;2.852] 

30 2043 [1041;1072] [300;369.2] [0;0.06219] [0;2.876] 

 

 

As can be seen in figure 9, the air in the lower part of the furnace and the nitrogen in the 

upper part of the reactor dissipate one part of the absorbed heat above 4 µm by the quartz 

window.  The air in the lower part of the furnace and the nitrogen in the upper part of the 

reactor are cooled by conduction with the high diffusivity window. The silicon wafer is 

slightly cooled by convection with the nitrogen in the reactor. 
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Figure 7  Gas flow and window temperature with quartz window (20% lamp power). 
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Figure 8  Gas flow and window temperature with high diffusivity window (20% lamp power). 
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Figure 9  Temperature field for the case of 10% lamp power a) with quartz window  

b) with high diffusivity window. 

Implementation of the infrared window 

The assumptions were made for the high diffusivity window to have reasoning on thermal 

properties. Nevertheless, the implementation of such a window can be achieved by various 

materials. To provide examples, one can refer to handbooks and manufacturers of infrared 

windows who propose hard materials with multifarious thermal and radiative properties [22-

25]. We have selected in table 4 some hard materials to support the used pressures with high 

transmissivity around the peak of emission of infrared lamps close to 1 µm. Sufficient 

thickness has to be considered. We indicate the relative diffusivity regarding the quartz one, 

a/aquartz. Gallium arsenide (GaAs), gallium lanthanum sulphide (GLS) and diamond cubic 

carbon windows permit much higher diffusivity in the same order of the hypothetic material 

considered but their transmissivities are less than 75%. The group of windows composed of 

sapphire window, spinel, magnesium fluoride (MgF2) and magnesium oxide (MgO) have 

diffusivities between 12 and 17 times higher than the one of the quartz and transmissivities 

above 75%. Calcium fluoride (CaF2), rubidium chloride (RbCl), magnesium fluoride (MgF2) 

have transmissivities above 90% like the quartz. Magnesium fluoride (MgF2) shows an 

interesting compromise with a diffusivity 14 times higher than the one of the quartz and a 

similar transmissivity of 90% at 1 µm. 

a) 

b) 

High diffusivity window 

Wafer 

Wafer 

quartz window 

Lamp filament Tfil = 1653 K  

Lamp filament Tfil = 1653 K  

air (Patm) 

nitrogen (300 Pa ) 

air (Patm) 

nitrogen (300 Pa ) 
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Window 

Thermal 

conductivity k 

[W.m-1.K-1] 

Specific heat 

cp 

[J.kg-1.K-1] 

Density ρ 

[kg.m-3] 

 

Diffusivity a 

[m.s-2] 

 

Relative 

diffusivity 

a/aquartz 

Transmissivity

around 1 µm 

[%] 

Melting 

temperature 

[°C] 

Quartz 2 1000 2649 7.6 10-7 1.0 90 1710 

Mica 0.7 210 3000 1.1 10-6 1.5 80 600 

Lanthanum 

Fluoride 

(LaF3) 

5.1 506 5940 1.7 10-6 2.2 90 1493 

Calcite 5.526 852 2710 2.4 10-6 3.2 90 825 

Calcium 

Fluoride 

(CaF2) 

9.71 854 3180 3.6 10-6 4.7 95 1360 

Potassium 

Bromide (KBr) 
4.816 435 2753 4.0 10-6 5.3 90 730 

Rutile (TiO2) 12.5 711 4252 4.1 10-6 5.5 70 1840 

Aluminium 

nitride (AlON) 
12.3 781 3690 4.3 10-6 5.7 > 80 2150 

Potassium 

Chloride (KCl) 
6.53 690 1990 4.8 10-6 6.3 87.5 776 

Cadmium 

Telluride 

(CdTe) 

6.2 210 6200 4.8 10-6 6.3 65 1092 

Yttrium 

Aluminium 

Garnet (YAG) 

12.9 590 4560 4.8 10-6 6.4 85 1940 

Rubidium 

Chloride 

(RbCl) 

7.6 418 2800 6.5 10-6 8.6 92.5 715 

Spinel 25 819,1 3580 8.5 10-6 11,3 87,5 2135 

Sapphire 

window 
27.21 763 3970 9.0 10-6 11.9 85 2040 

Zinc Selenide 

(ZnSe) 
18 339 5270 1.0 10-5 13.3 70 1525 

Magnesium 

Fluoride 

(MgF2) 

33.6 1003 3176.6 1.1 10-5 14.0 90 1255 

Rubidium 

Iodide  (RbI) 
9.9 242 3550 1.2 10-5 15.3 87.5 642 

Zinc Sulphide 

Multispectral 

(ZnS) 

27.2 515 4090 1.3 10-5 17.1 75 1827 

Magnesium 

Oxide (MgO) 
42 877 3580 1.3 10-5 17.7 85 2800 

Gallium 

Arsenide 

(GaAs) 

48 360 5135 2.6 10-5 34.4 55 1511 

Gallium 

Lanthanum 

Sulphide 

(GLS) 

0.43 0.54 4040 2.0 10-4 261.1 75 830 

Model case 400 130 2649 1.2 10-3 1538.5 90 1710 

Diamond 

Cubic Carbon 

(C) 

2600 500 3510 1.5 10-3 1962.2 70 3497 

 

Table 4  Potential materials for the window.  
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CONCLUSIONS 

Numerical simulations of a rapid thermal system without optimization in steady-state led to 

a better understanding of the effect of the thermal properties of the window on the 

homogeneity of the temperature of a silicon wafer for constant heating power. A close 

relationship between the temperature distribution of the silicon substrate and the one of the 

quartz window is established when superposing their profiles. Temperature differences 

between the center and the edge of the substrate and the window augment linearly and 

parallely according to the lamp heating power. 

We therefore found a way to reduce the temperature of the quartz window in the model.  

As the thermal diffusivity of the quartz is low, calculations were performed with a much 

higher diffusivity so as to have a heat dissipative window. The center-to-edge temperature 

difference of the window is lessened. This effect is appreciated on the wafer temperature.  

In this case where the window is an excellent heat sink, the temperature difference between 

the center and the edge of the silicon substrate is reduced by 54%. The latter result 

corresponds to the best that can be obtained with a quartz window maintained at low 

temperature. This significant but not total decrease thus shows that the thermal behavior of 

the window is not the only cause for uneven temperature of the wafer. The obtention of a 

uniform temperature at the surface of the wafer requires associating a method to reduce  

the temperature of the window during the heating process and another one to balance  

the radiative heat flux received on the surface of the silicon substrate. To implement the high 

diffusivity window, materials having this thermal feature have been selected like magnesium 

oxide window having a diffusivity 14 times higher than the one of the quartz and a similar 

transmissivity of 90% at 1 µm. 
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NOMENCLATURE 

a thermal diffusivity, m².s
-1

 

A area of patch, m
2
 

cp specific heat, J.kg
-1

.K
-1

 

h0 total mass enthalpy, J.kg
-1

  

i mass internal energy, J.kg
-1

 

I  radiative energy intensity, W.m
-2

.sr
-1

 

k thermal conductivity, W.m
-1

.K
-1

 

M  exchange matrix 

n unit vector normal to surface 

p static pressure, Pa 

P lamp electrical power, % 

q radiative heat flux density, W.m
-2

 

Q radiative heat flux, W 

r  position 

S source term 

t time, s 

T temperature, K 

u,v velocity components relative to x, y, m.s
-1

 

V velocity, m.s
-1

 

x, y cartesian coordinates 

 

Greek symbols 

δ Kronecker symbol 

ε emissivity 

κ absorption coefficient 

µ dynamic viscosity, Pa.s
-1

 

Ω beam propagation direction, sr 

ρ density, kg.m
-3

 or reflectivity 

σ diffusion coefficient or Stephan-Boltzmann constant, 5.669 10
-8

 W.m
-2

.K
-4 

τ viscous stress tensor, Pa 

Φ  phase function 

 

Subscripts 

b blackbody 

fil lamp filament 

h heat 

Mx x-momentum 

qw quartz window 

w window 

i,j patch 

s silicon substrate (wafer) 
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