Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10277

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
8 items in my patents list
Displaying selected publications

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO2009138675 (A1)</td>
<td>MACHINING METHOD AND DEVICE</td>
<td>2</td>
</tr>
</tbody>
</table>
(54) **Title :** MACHINING METHOD AND DEVICE

(54) **Titre :** PROCEDE ET DISPOSITIF D'USINAGE

(57) **Abstract :** To improve machining qualities by removing shavings, an improved method involves adjusting the form of a cutting tool 1 close to a cutting edge 12 during machining operations such that the shavings 21 of removed material break off. The form is preferably adjusted in a periodic or pseudo-periodic manner with amplitudes and frequencies suitable for machining conditions. A machining tool 1 for implementing the method comprises a movable chip breaker 13 such as an element fitted onto the machining tool and a front part 31 of which is moved relative to the cutting edge 12 by means of an actuator 33, which may be a piezoelectric actuator receiving signals from a controlling means.

(57) **Abrégé :** Pour améliorer les qualités d'usinage en enlevant de copeaux, un procédé amélioré consiste à modifier la forme d'un outil coupant (1) à proximité d'une arête de coupe (12) au cours des opérations d'usinage de sorte à provoquer la rupture des copeaux (21) de matière enlevée. La forme est modifiée de préférence de manière périodique ou pseudo-périodique avec des amplitudes et fréquences adaptées aux conditions d'usinage. Un outil d'usinage (1) pour mettre en œuvre le procédé comporte un brise copeaux mobile (13) tel qu'un élément rapporté sur l'outil d'usinage et dont une partie avant (31) est déplacée par rapport à l'arête de coupe (12) au moyen d'un actionneur (33) qui peut être un actionneur piézo-électrique recevant des signaux de moyens de commande.
Déclarations en vertu de la règle 4.17 :
— relative au droit du déposant de revendiquer la priorité de la demande antérieure (règle 4.17.iii))
Procédé et dispositif d'usinage

Le présente invention appartient au domaine de l'usinage des matériaux dit par enlèvement de matière au moyen d'outils coupants.

Plus particulièrement l'invention concerne l'usinage de matériaux dont la matière enlevée est détachée sous la forme de copeaux, en particulier dans les cas de réalisation d'alésages ou lors d'opérations d'usinage par tournage.

L'usinage par enlèvement de matière au moyen d'outils coupants est une technique ancienne et bien connue en matière d'usinage des matériaux tels que les matériaux métalliques ou certains matériaux plastiques.

Le plus souvent la matière enlevée forme des copeaux d'usinage, dont les dimensions dépendent de nombreux paramètres liés au matériau usiné et aux paramètres de coupe, copeaux qui sont en général de faibles épaisseurs, épaisseurs dépendant de la profondeur d'usinage, et de longueurs plus ou moins importantes suivant le moment dans l'opération d'usinage où le copeau se brise en raison de sa fragilité.

Dans les usinages de précision il est essentiel que les copeaux soient correctement évacués pour éviter que ceux-ci ne viennent se placer entre la pièce en cours d'usinage et l'outil coupant pour ne pas engendrer des effets néfastes sur l'outil, par exemple en détériorant les capacités de coupe ou en conduisant au bris de l'outil, et sur la pièce, par exemple en détériorant l'état de la surface usinée ou un usinage hors des tolérances recherchées.

Différentes techniques sont connues pour faciliter l'évacuation de copeaux de la zone en cours d'usinage.

L'aspiration et le soufflage sont des techniques de bien connues mais elles s'avèrent souvent insuffisantes à elles seules, en particulier lorsque les copeaux sont difficiles à évacuer de façon naturelle, par exemple en raison de leur longueur et ou de leur emplacement comme par exemple au fond d'un
alésage en cours de réalisation.

Pour faciliter l'évacuation des copeaux, il est aussi connu dans le domaine du perçage de faciliter la rupture des copeaux afin d'en limiter la longueur, un copeau court étant plus facile à évacuer qu'un copeau long.

Pour favoriser la rupture des copeaux, la géométrie de l'extrémité coupante de certains outils de coupe est adaptée de telle sorte que la trajectoire du copeau est modifiée.

Outre le fait que la rupture n'est pas garantie par ces géométries d'extrémité adaptées, chaque condition de coupe requiert une géométrie propre et un outil particulier ne peut donc être utilisé avec une certaine efficacité que pour les conditions de coupe (matériau, avance, vitesse...) pour lesquelles il a été conçu.

Une autre méthode pour générer des copeaux de longueurs réduites consiste dans le domaine du perçage à faire osciller suivant la direction de son axe de rotation l'outil coupant.

Dans certains dispositifs utilisant cette méthode, l'oscillation est réalisée par un mécanisme d' entraînement longitudinal de l'outil coupant suivant un mouvement alternatif forcé.

Dans d'autres dispositifs, tel que celui décrit dans la demande de brevet FR2901163, l'oscillation est réalisée par une vibration axiale auto-entretenuue par des moyens élastiques associés à l'outil et par le choix de paramètres de coupe qui déclenchent et entretiennent la vibration axiale avec des fréquences et amplitudes souhaitées.

Ces dispositifs ont cependant l'inconvénient de présenter une complexité certaines et ont le défaut de soumettre la pièce en cours de perçage, l'outil et la machine d' entraînement de l'outil à des sollicitations fortes qui peuvent induire des déformations et un résultat ne présentant pas toutes les qualités requises.

Afin de résoudre ces difficultés en provoquant la rupture des copeaux de matière sans solliciter significativement la pièce en cours d'usinage et les moyens d'usinage, l'invention propose un procédé d'usinage par enlèvement de matière dans lequel la matière est enlevée d'une pièce par un outil coupant formant des
copeaux au niveau d'une arête de coupe d'une extrémité de l'outil coupant, sous l'effet d'un déplacement relatif \(\mathbf{V}_u \) de l'extrémité de l'outil coupant par rapport à la pièce, et dans lequel la géométrie de l'extrémité de l'outil coupant est modifiée de manière contrôlée au cours de l'usinage dans une zone d'influence de la formation des copeaux.

Cette zone d'influence correspond à une zone située à proximité de l'arête de coupe sur une surface de coupe de l'extrémité de l'outil, zone dans laquelle les copeaux sont en contact avec l'outil coupant lors de leur formation.

Afin de contrôler le moment auquel les copeaux sont brisés, la géométrie de l'extrémité d'outil coupant est modifiée pour induire la rupture d'un copeau formé à un instant déterminé par un déplacement d'un élément mécanique dit brise copeaux.

La géométrie est par exemple modifiée en agissant sur une distance \(d \) entre une partie avant du brise copeaux mobile et l'arête de coupe, par exemple la distance \(d \) est modifiée en cours d'un usinage entre une valeur inférieure \(d_{\text{min}} \) et une valeur supérieure \(d_{\text{max}} \).

Dans un autre mode de mise en œuvre du procédé, la géométrie de l'extrémité de l'outil coupant est modifiée en agissant sur une hauteur \(h \) d'une partie avant d'un brise copeaux par rapport à la surface de coupe, par exemple la hauteur \(h \) est modifiée en cours d'usinage entre une valeur inférieure \(h_{\text{min}} \) et une valeur supérieure \(h_{\text{max}} \).

Pour adapter un même outil à différentes conditions d'usinage, la valeur inférieure \(d_{\text{min}}, h_{\text{min}} \), et la valeur supérieure \(d_{\text{max}}, h_{\text{max}} \), respectivement \(h_{\text{max}} \), sont modifiées en fonction du matériau usiné et ou de la vitesse du déplacement relatif \(\mathbf{V}_u \) et ou d'une profondeur \(p \) de passe d'usinage, données utilisées dans la détermination de conditions d'usinage.

Avantageusement la géométrie de l'extrémité de l'outil coupant est modifiée de manière périodique ou pseudo-périodique.

Lorsque des usinages complexes sont réalisés pour lesquels des paramètres d'usinages sont avantageusement optimisés au cours de l'usinage, la période ou pseudo-période et ou des amplitudes et ou des valeurs inférieures et ou supérieures sont modifiées pendant l'usinage compte tenu des matériaux
ayant des propriétés d'usinage différentes.

Pour mettre en oeuvre le procédé, l'invention propose un outil d'usinage comportant au moins une extrémité de coupe ayant une arête d'extrémité d'une surface de coupe et comportant un brise copeaux mobile agencé à proximité ou sur la surface de coupe de telle sorte qu'une zone avant dudit brise copeaux située proche de l'arête est mobile dans une zone d'influence avec laquelle un copeau de matière enlevée est en contact lors d'un usinage.

Pour contrôler les mouvements du brise copeaux, la zone avant est mobile au moyen d'un actionneur du brise copeaux mobile, par exemple un actionneur de type piézo-électrique, un actionneur de type électromagnétique, un actionneur de type magnéto-strictif, un actionneur de type mécanique, un actionneur de type hydraulique ou encore un actionneur de type pneumatique.

Dans une forme de réalisation pouvant être rapportée sur des outils d'usinage conventionnels, le brise copeaux mobile comporte un élément rapporté en forme de C comportant un corps, une première extrémité correspondant à la zone avant du brise copeaux mobile articulée sur le corps et une seconde extrémité opposée à la première extrémité sur le corps et fixe par rapport audit corps, de telle sorte que des faces terminales des première et seconde extrémités déterminent un volume dans lequel est agencé l'actionneur en appui sur les dites faces terminales.

Pour réaliser le contrôle des mouvements de l'extrémité mobile, l'outil d'usinage comporte également des moyens de commande de l'actionneur déterminant à tout instant pendant un usinage la position voulue de la zone avant par rapport à l'arête.

Les moyens de commande sont en tout ou partie solidaire de l'outil d'usinage, ou afin de pouvoir être plus facilement utiliser avec plusieurs outils coupants en tout ou partie solidaire d'une machine d'entraînement de l'outil d'usinage ou en tout ou partie déporté de l'outil coupant et de la machine d'entraînement.

Les moyens de commande de l'actionneur déterminent des positions successives de la zone avant entre deux positions extrèmes au cours d'une opération d'usinage et de préférence les deux positions extrèmes sont
modifiables par les moyens de commande de l'actionneur.

La zone avant du brise copeaux se déplace entre les deux positions extrêmes à une fréquence déterminée \textbf{Fbc} fonction de conditions d'usinage, avantageusement en fonction d'une vitesse de déplacement relatif \textbf{Vu} entre l'extrémité de coupe et une pièce en cours d'usinage.

Dans un mode de réalisation de l'outil d'usinage de l'invention, l'outil d'usinage est un foret \textfrac{3}{4} pour la réalisation d'un alésage.

La présente invention est décrite en référence aux figures qui représentent :

Figure 1 : une illustration d'un usinage par enlèvement de matière suivant un procédé conventionnel ;
Figure 2 : une illustration d'un usinage par enlèvement de matière suivant le procédé de l'invention ;
Figures 3a à 3d : une illustration étapes par étapes de la mise en œuvre du procédé pour briser un copeau ;
Figure 4 : une vue en perspective d'un exemple d'outil d'usinage suivant l'invention comportant un brise copeaux mobile ;
Figure 5 : une vue d'un exemple d'élément rapporté entrant dans la réalisation d'un brise copeaux.

La figure 1 représente une opération d'usinage par enlèvement de matière à proximité de l'extrémité d'un outil coupant 1 dans le cas d'un usinage conventionnel d'une pièce 2.

L'extrémité 11 de l'outil, par exemple une lèvre d'un alésoir, se déplace par rapport à la pièce 2 suivant le sens de la flèche \textbf{Vu}.

Une arête d'extrémité 12 dans le prolongement d'une surface de coupe 13, c'est à dire une surface de l'extrémité 11 de l'outil située du côté avançant du déplacement relatif, pénètre d'une profondeur \textbf{p} dans le matériau de la pièce 2 par rapport à une surface 22 à usiner ce qui, en combinaison avec le déplacement relatif, provoque l'enlèvement d'un copeau 21.

Le copeau 21, au moins sur une partie initiale de sa trajectoire suit la
surface de coupe 13 dont la géométrie peut être adaptée pour faciliter le soulèvement du copeau 21.

La figure 2 présente une opération d'usinage suivant l'invention par enlèvement de matière dans des conditions voisines du cas connu présenté sur la figure 1.

Sur la figure 2 de l'invention les éléments similaires à ceux connus de la figure 1 sont identifiés par des repères identiques à la figure 1.

Suivant l'invention l'extrémité 11 de l'outil coupant 1 se déplace par rapport à la pièce 2, dans le sens de la flèche \mathbf{V}, de telle sorte que l'arête de coupe 12 pénètre d'une profondeur d'usinage p dans la matière de la pièce 2 par rapport à la surface 22 de la pièce en cours d'usinage.

En outre un élément 3, dit brise copeau mobile, est agencé sur la surface de coupe 13 de telle sorte qu'une partie avant 31 dudit brise copeaux mobile, soumis à un déplacement périodique par rapport à la surface de coupe 13, se trouve près de l'arête 12.

Par « brise copeaux mobile », il faut comprendre que la position dudit élément formant le brise copeaux 3, au moins pour la partie avant 31 avec laquelle les copeaux 21 formés sont en contact lors de leurs soulèvements, est variable par rapport à la surface de coupe 13 au cours d'une opération d'usinage.

Par « près de l'arête de coupe », il faut comprendre que le brise copeaux 3 est agencé sur la surface de coupe 13 de sorte qu'au moins la partie avant 31 se trouve, au moins dans certaines positions que le brise copeaux mobile 3 est en mesure de prendre, dans une zone d'influence 14, en particulier à une distance d de l'arête de coupe 12, telle que le brise copeaux influence les conditions dans lesquelles un copeau 21 est détaché de la matière usinée lors du déplacement relatif de l'outil coupant 1 et de la pièce 2.

La zone d'influence 14 correspond sensiblement à une zone de l'extrémité 11 d'outil coupant avec laquelle les copeaux sont en contact lors de leur formation, c'est-à-dire une surface de l'outil coupant à proximité de l'arête de coupe 12 sur laquelle surface le copeau glisse et se trouve soulevé au fur et à mesure de sa formation.
Cette zone correspond sur les outils coupants conventionnels à la zone fixe dont la géométrie est généralement conçue pour faciliter le soulèvement du copeau et sa rupture naturelle pour des conditions de coupe (matériau usiné, vitesse d'usinage....) données.

De préférence une valeur minimale d_{\text{min}} de la distance d entre l'arête de coupe 12 et la partie avant 31 du brise copeaux est comprise entre une et deux fois la valeur de la profondeur d'usinage p, valeur minimale qui est avantageusement ajustée en fonction du comportement des copeaux compte tenu des conditions d'usinage considérées, en particulier des caractéristiques de la matière enlevée.

Suivant le procédé de l'invention la géométrie de l'extrémité 11 de l'outil coupant est modifiée périodiquement par un mouvement du brise copeaux 3 par rapport à la surface de coupe 13 dans la zone d'influence 14 avec laquelle les copeaux sont en contact lors de leur formation.

L'amplitude \text{Abc} du mouvement périodique du brise copeaux et sa fréquence \text{Fbc} sont déterminés pour provoquer la rupture des copeaux formés par l'usinage lorsqu'un copeau atteint ou dépasse une certaine longueur \text{Lbc} choisie.

En particulier la fréquence \text{Fbc} est déterminée en fonction de la vitesse \text{Vu} à laquelle l'arête 12 se déplace par rapport à la pièce 2, par exemple une fréquence \text{Fbc} au moins égale à \text{Vu} / \text{Lbc} lorsque chaque cycle de déplacement du brise copeaux 3 doit provoquer une rupture du copeau 21.

L'amplitude \text{Abc} est avantageusement déterminée expérimentalement ou par calcul et confirmation expérimentale. Elle dépend a priori de nombreux paramètres tels que le matériau usiné, dont la ductilité a une grande influence sur la fragilité des copeaux, la profondeur p de l'usinage, la vitesse \text{Vu} d'usinage, la température du copeau en cours d'usinage ...

L'amplitude \text{Abc} dépend également de la géométrie propre du brise copeaux 3 dont la géométrie et les dimensions sont avantageusement adaptées en fonction des conditions de coupe auxquelles est destiné l'outil et de son effet sur la géométrie de l'extrémité de coupe 11.

Par exemple suivant un premier mode de mise en œuvre du procédé, le
brise copeaux mobile 3 est déplacé périodiquement suivant un sens de déplacement sensiblement parallèle à la surface de coupe 13 en réduisant et en augmentant alternativement la distance \(d \), entre une distance \(d_{\text{min}} \), valeur inférieure de \(d \), et une distance \(d_{\text{max}} \), valeur supérieure de \(d \), de la zone avant 31 du brise copeaux par rapport à l'arête 12 pendant l'usinage.

Suivant un second mode de mise en oeuvre du procédé, le brise copeaux 3 est déplacé périodiquement suivant un sens de déplacement sensiblement perpendiculaire à la surface de coupe 13 en réduisant et en augmentant une hauteur \(h \) caractéristique d'une hauteur du brise copeaux 3 par rapport à la surface de coupe 13, la hauteur \(h \) variant entre une hauteur \(h_{\text{min}} \), valeur inférieure de \(h \), et une hauteur \(h_{\text{max}} \), valeur supérieure de \(h \), pendant l'usinage.

Il doit être compris que suivant le procédé de l'invention d'autres types de déplacements du brise copeaux 3 par rapport à la surface 13 sont possibles dès lors que la géométrie de l'extrémité de coupe 13 se trouve modifiée pendant l'usinage de manière périodique ou pseudo-périodique avec pour conséquence de briser le copeau en cours de soulèvement pendant l'opération d'usinage.

A titre d'illustration du procédé, les figures 3a à 3d montrent une séquence d'un cycle du déplacement du brise copeaux 3 dans le cas d'un brise copeaux dont le déplacement est commandé dans une direction parallèle à la surface de coupe 13 entre une distance \(d_{\text{min}} \) et une distance \(d_{\text{max}} \) de l'arête 12.

Figure 3a le brise copeaux 3 est à une distance \(d_{\text{max}} \) éloignée de l'arête 12 et le copeau 21 commence à être formé par un enlèvement de matière de la pièce 2. Au fur et à mesure que l'arête 12 de l'extrémité de coupe 11 se déplace par rapport à la pièce 2, le copeau 21 s'allonge et est soulevé et progressivement repoussé vers le brise copeaux 3, figure 3b, dont la géométrie de la zone avant 31 participe au soulèvement du copeau 21 et à son dégagement.

Lorsque le copeau 21 atteint une longueur prédéfinie, en pratique lorsque l'arête 12 s'est déplacée sur une distance prédéfinie depuis le début de la formation du copeau (figure 3a) équivalente à une durée \(\Delta t \) compte tenu de la vitesse \(V_u \) de déplacement de l'arête par rapport à la pièce, le brise copeaux 3 est déplacé (figure 3c) en direction de l'arête 12 pour réduire la distance à une
valeur minimale \(d_{\text{min}} \).

Sous l'effet de cette modification de la géométrie de l'extrémité de coupe 11, le copeau, fragilisé par l'usinage et éventuellement compte tenu d'une température augmentée par le dit usinage, se brise et se détache avant d'avoir atteint une longueur plus importante comme illustré sur la figure 3c.

Le brise copeaux 3 est alors ramené en position éloigné de l'arête à la distance \(d_{\text{max}} \) comme illustré sur la figure 3d.

On comprend que le déplacement du brise copeaux 3 peut être réalisé suivant différents modes.

Par exemple le déplacement du brise copeaux 3 entre les positions correspondant aux valeurs \(d_{\text{max}} \) et \(d_{\text{min}} \) est progressif en suivant des lois de variation de la distance \(d \) en forme de sinusoiode ou en forme de dents de scie.

Par exemple le déplacement du brise copeaux 3 est impulsionnel, une position « normale » correspondant à la distance \(d_{\text{max}} \) et le brise copeaux prenant la position correspondant à la distance \(d_{\text{min}} \) de manière quasi instantanée pour une durée courte devant la durée d'un cycle.

Il doit être noté que ces exemples de déplacement du brise copeaux ne sont pas limitatifs et que le procédé peut être mis en œuvre en inversant les rôles des distances \(d_{\text{min}} \) et \(d_{\text{max}} \), ou en remplaçant ces distances par des hauteurs \(h_{\text{min}} \) et \(h_{\text{max}} \), séquence non illustrée mais similaire à la séquence des figures 3a à 3d dans laquelle la hauteur \(h \) du brise copeaux 3 est modifiée.

Dans un mode particulier de mise en œuvre du procédé, les positions extrêmes prises par le brise copeaux 3 lors d'une opération d'usinage sont modifiées en fonction de paramètres d'usinage particuliers de l'usinage considéré.

Par exemple, dans l'exemple illustré sur les figures 3a à 3d décrit précédemment, chacune des valeurs \(d_{\text{min}} \) et/ou \(d_{\text{max}} \) est modifiée.

On comprend mieux l'intérêt d'une telle mise en œuvre car il est alors possible d'adapter un même outil 1, comportant un brise copeaux 3 mobile suivant l'invention, à différents paramètres d'usinage, c'est à dire par exemple lorsque le matériau usiné ou les vitesses de coupe ou la profondeur d'usinage ... sont modifiés.
Non seulement il est alors possible de limiter le nombre de modèles d'outils nécessaires dans un atelier tout en bénéficiant des avantages de l'invention, mais il est également possible de réaliser des usinages, en particulier des alésages, dans un empilement de pièces réalisées avec des matériaux différents en optimisant les positions et les mouvements du brise copeaux 3 lors de l'usinage de chaque matériau au cours de la réalisation de l'alésage.

L'invention concerne également l'outil 1 d'usinage par enlèvement de matière destiné à la mise en oeuvre du procédé.

Dans un tel outil comme il est décrit pour les besoins du procédé, un brise copeaux mobile 3 est agencé près d'une arête 12 d'une extrémité de coupe 11 dans une zone d'une surface de coupe 13 sur laquelle des copeaux 21 sont repoussés lors de la réalisation d'un usinage.

Lorsqu'un outil comporte plusieurs extrémités de coupe, comme par exemple dans le cas d'une fraise à plusieurs lèvres, de préférence chaque extrémité de coupe comporte un brise copeaux mobile.

Le brise copeaux mobile 3 consiste essentiellement en un élément rapporté sur ou à proximité de la surface de coupe 13 de l'outil 1 et dont la zone avant 31 du côté de l'arête 12 est située suffisamment proche de ladite arête pour agir sur le copeau pendant sa formation.

Le brise copeaux mobile 3 comporte également au moins un dispositif dit actionneur qui agit sur l'élément rapporté pour déplacer ledit élément, au moins pour une partie active de celui-ci, entre au moins deux positions extrèmes et comporte des moyens de pilotage de l'actionneur.

Le choix d'un actionneur est dicté par des contraintes de dimensions et d'intégration à l'outil coupant 1 qui peuvent être très variables suivant le type d'outil et le type d'usinage.

Les contraintes sont a priori plus fortes lorsqu'il s'agit d'un outil 1 mobile, par exemple une alésoir entraîné en rotation lors d'une opération de perçage, que lorsqu'il s'agit d'un outil 1 fixe ou peu mobile, par exemple un outil de tour.

Dans une forme de réalisation, l'actionneur est du type électrique, par exemple par l'utilisation de matériaux piézo-électriques ou de matériaux
magnétiques ou de matériaux magnéto-strictifs.

Dans d'autres formes de réalisation, l'actionneur est de type mécanique, pneumatique ou hydraulique.

Les figures 4 et 5 illustrent de manière non restrictive un exemple de réalisation d'un outil 1 suivant l'invention, en l'occurrence un foret ¾, mettant en oeuvre un actionneur piezo-électrique, technologie qui s'avère présenter des avantages tant pour la réalisation de l'outil que pour sa mise en oeuvre.

Dans la réalisation décrite du brise copeaux 3, l'élément rapporté 32, représentée seule sur la figure 5, présente une allure générale en C dont une des extrémités qui correspond à la zone avant 31 du brise copeaux est liée au corps 322 du C par une zone striction 321 formant une charnière élastique.

Le C est par exemple réalisé en acier ou dans un autre matériau à haut module élastique.

L'autre extrémité 323 du C est liée rigidement au corps 322.

Chaque extrémité 31, 323 du C présente une face terminale 324, respectivement 325, les dites faces terminales des dites extrémités étant sensiblement en vis à vis et séparées par un espace 326 matérialisé par un volume défini en trait discontinu sur la figure 5.

L'élément rapporté 32 est fixé sur une lèvre du foret ¾ qui correspond à la surface de coupe 13 de sorte que la zone avant 31 soit correctement positionnée près de l'arête 12.

L'élément rapporté 32 est fixé par le corps 322 et le cas échéant l'extrémité 323 du C en prenant soins de laisser l'extrémité 31 libre et mobile autour de la charnière 321. La fixation de l'élément rapporté 32 sur la lèvre du foret est réalisée par exemple par brasage ou par des fixations rapportées traversant des trous de fixation 327 du C ou encore par des brides, solution non représentée, suivant par exemple une des techniques connues utilisées pour fixer des plaquettes de coupe en carbure sur les outils coupants ce qui permet d'envisager un remplacement de l'élément rapporté ou sa récupération pour une réutilisation.

Un actionneur de type piezo-électrique 33 est placé à l'emplacement
disponible 326 entre les extrémités du C et prend appui entre les faces terminales 324, 325 du C de sorte que, lorsque l'actionneur est raccourci ou rallongé au moyen d'un signal électrique, la zone avant 31 subit un déplacement dans un sens longitudinal du corps 322 du C du fait d'une rotation autour de la charnière élastique 321 seule partie sensiblement déformable du C, ce qui conduit à la rupture du copeau 21 pendant l'usinage de la pièce 2.

Des fils d'alimentation électrique, non représentés, alimentent l'actionneur piézo-électrique avec un signal de commande issu d'un générateur associé au dispositif d'usinage.

Un tel générateur est avantageusement déporté par rapport à la zone d'usinage de l'outil ce qui le protège des conditions d'environnement sévères liées à l'usinage et permet de le dissocier aisément de l'outil coupant proprement dit qui doit être remplacé fréquemment en raison d'usures rapides.

Dans un mode de réalisation, le générateur est fixé à un dispositif d'entraînement de l'outil 1, par exemple une tête tournante, et dispose d'une génération d'énergie intégrée ou extérieure.

Dans un autre mode de réalisation, le générateur n'est pas entraîné avec l'outil et est solidaire de la machine entraînant l'outil ou d'une installation fixe.

Dans tous les cas, lorsque la solution nécessite de faire appel à des contacts tournants ou glissants entre le générateur ou une partie du générateur et l'actionneur, il est notoire que les puissances en jeu ainsi que les vitesses de glissement sont relativement modestes et ne présentent pas de contraintes particulières de réalisation.

Dans l'exemple pour une solution mettant en œuvre un actionneur piézo-électrique, la force développée par l'actionneur est déterminée par une section des éléments piézo-électriques entrant dans la réalisation de l'actionneur, et la course de l'actionneur, c'est à dire la différence entre la longueur minimale et la longueur maximale dudit actionneur, est déterminée par un nombre d'éléments piézo-électriques formant la partie active de l'actionneur. Le choix des dimensions de l'élément en forme en C rapporté 32, en particulier la distance entre les faces terminales 324, 325 et les dimensions des dites faces permettent donc de réaliser le brise copeaux 3 avec les capacités voulues.
Pour éviter que le brise copeaux et ses composants fragiles risquent d’être endommagés pendant l’usinage, des moyens de protection mécaniques, par exemple un capot non représenté, sont avantageusement prévus.

Pour mettre en œuvre un tel outil, une tension de commande, par exemple une tension alternative à la fréquence F_{bc} est générée pour alimenter l’actionneur piezo-électrique, dont la fréquence et l’amplitude sont déterminée pour les conditions de coupe prévues.

Une tension continue, dite tension d’offset, est le cas échéant superposée à la tension alternative afin de décaler simultanément les positions entre lesquelles la zone avant 31 se déplace pour adapter le point de fonctionnement du brise copeaux 3.

Le procédé et le dispositif d’usinage suivant l’invention permettent donc de réaliser des usinages de qualités améliorées en assurant, sans générer d’efforts parasites dans la pièce et dans le dispositif d’usinage, la rupture des copeaux de matière enlevée lors de l’usinage de manière contrôlée afin de permettre une évacuation aisée des dits copeaux.
REVENDICATIONS

1 – Procédé d'usinage par enlèvement de matière, dans lequel la matière enlevée d'une pièce (2) en cours d'usinage par un outil coupant (1) forme des copeaux (21) au niveau d'une arête de coupe (12) d'une extrémité (11) d'outil coupant par un déplacement relatif \(\mathbf{V}_u \) de ladite extrémité d'outil coupant par rapport à ladite pièce en cours d'usinage, caractérisé en ce que la géométrie d'une zone d'influence (14), située à proximité de l'arête de coupe (12), sur une surface de coupe (13) de l'extrémité (11) d'outil coupant, est modifiée de manière contrôlée au cours de l'usinage, ladite zone d'influence (14) correspondant la surface de coupe avec laquelle les copeaux (21) sont en contact lors de leur formation.

2 – Procédé d'usinage suivant la revendication 1 dans lequel la géométrie de l'extrémité (11) d'outil coupant est modifiée pour induire la rupture d'un copeau (21) formé à un instant déterminé.

3 – Procédé d'usinage suivant la revendication 2 dans lequel la géométrie de l'extrémité (11) d'outil coupant est modifiée en agissant sur une distance \(d \) entre une partie avant (31) d'un brise copeaux (3) mobile et l'arête de coupe 12.

4 – Procédé d'usinage suivant la revendication 3 dans lequel la distance \(d \) est modifiée en cours d'un usinage entre une valeur inférieure \(d_{\text{min}} \) et une valeur supérieure \(d_{\text{max}} \).

5 – Procédé d'usinage suivant la revendication 2 dans lequel la géométrie de l'extrémité (11) d'outil coupant est modifiée en agissant sur une hauteur \(h \) d'une partie avant (31) d'un brise copeaux (3) par rapport à la surface de coupe (13).

6 – Procédé d'usinage suivant la revendication 5 dans lequel la hauteur \(h \) est modifiée en cours d'usinage entre une valeur inférieure \(h_{\text{min}} \) et une valeur supérieure \(h_{\text{max}} \).

7 – Procédé d'usinage suivant la revendication 4 ou la revendication 6 dans lequel la valeur inférieure \(d_{\text{min}}, h_{\text{min}}, \) et la valeur supérieure \(d_{\text{max}}, h_{\text{max}} \),
respectivement **hmax**, sont modifiées en fonction du matériau usiné et ou de la vitesse du déplacement relatif Vu et ou d'une profondeur p de passe d'usinage, données utilisées dans la détermination de conditions d'usinage.

8 – Procédé d'usinage suivant l'une des revendications précédentes dans lequel la géométrie de l'extrémité (11) d'outil coupant est modifiée de manière périodique ou pseudo-périodique.

9 – Procédé d'usinage suivant la revendication 8 dans lequel la période ou pseudo-période et ou des amplitudes et ou des valeurs inférieures et ou supérieures sont modifiées pendant un usinage d'une pièce formée d'un assemblage d'éléments comportant des matériaux ayant des propriétés d'usinage différentes.

10 – Outil d'usinage (1) comportant au moins une extrémité de coupe (11) comportant une arête (12) d'extrémité d'une surface de coupe (13) caractérisé en ce qu'un brise copeaux mobile (3) est agencé à proximité ou sur la surface de coupe (13) de telle sorte qu'une zone avant (31) dudit brise copeaux située proche de l'arête (12) est mobile de sorte à modifier la géométrie d'une zone d'influence (14) de la surface de coupe (13) avec laquelle un copeau (21) de matière enlevée est en contact lors de son soulèvement au cours d'une opération d'usinage.

11 – Outil d'usinage suivant la revendication 10 dans lequel la zone avant (31) est mobile au moyen d'un actionneur (33) du brise copeaux mobile (3).

12 – Outil d'usinage suivant la revendication 11 dans lequel l'actionneur (33) est un actionneur de type piezo-électrique ou de type électromagnétique ou de type magnéto-strictif ou de type mécanique ou de type hydraulique ou de type pneumatique.

13 – Outil d'usinage suivant la revendication 12 dans lequel le brise copeaux mobile (3) comporte un élément rapporté (32) en forme de C comportant un corps (322), une première extrémité correspondant à la zone avant (31) du brise copeaux mobile (3) articulée sur le corps (322) et une seconde extrémité (323) opposée à la première extrémité sur le corps (322) et fixe par rapport audit corps, de telle sorte que des faces terminales (324, 325) des première (31) et seconde (323) extrémités déterminent un volume (326)
dans lequel est agencé l'actionneur (33) en appui sur les dites faces terminales.

14 – Outil d'usinage suivant l'une des revendications 11, 12 ou 13 comportant des moyens de commande de l'actionneur (33) déterminant à tout instant pendant un usinage la position voulue de la zone avant (31) par rapport à l'arête (12).

15 – Outil d'usinage suivant la revendication 14 dans lequel tout ou partie des moyens de commande de l'actionneur (33) est solidaire de l'outil d'usinage (1).

16 – Outil d'usinage suivant la revendication 14 dans lequel tout ou partie des moyens de commande de l'actionneur (33) est solidaire d'une machine d'entraînement de l'outil d'usinage (1).

17 – Outil d'usinage suivant l'une des revendications 14, 15 ou 16 dans lequel les moyens de commande de l'actionneur (33) déterminent des positions successives de la zone avant (31) entre deux positions extrêmes au cours d'une opération d'usinage.

18 – Outil d'usinage suivant la revendication 17 dans lequel les deux positions extrêmes sont modifiables par les moyens de commande de l'actionneur (33).

19 – Outil d'usinage suivant la revendication 17 ou la revendication 18 dans lequel la zone avant (31) se déplace entre les deux positions extrêmes à une fréquence déterminée \(F_{bc} \) fonction de conditions d'usinage.

20 – Outil d'usinage suivant la revendication 19 dans lequel la fréquence \(F_{bc} \) du déplacement de la zone avant (31) entre les deux positions extrêmes est déterminé en fonction d'une vitesse de déplacement relatif \(V_u \) entre l'extrémité de coupe (11) et une pièce (2) en cours d'usinage.

21 – Foret \(3/4 \) pour la réalisation d'un alésage conforme à l'une des revendications 10 à 20.
Fig. 1

Fig. 2
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION

PCT/FR2009/050764

A. CLASSIFICATION OF SUBJECT MATTER

INV. B23B29/12 B23B27/22 B23B25/02 B23Q1/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B23B B23Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO–Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 1 271 691 A (D OUTIL ET DE METALLURG SOC IN) 15 September 1961 (1961-09-15)</td>
<td>1-6, 10-11, 14-20, 7-9, 12-13, 21</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 352 816 C (ELFRIEDE FUCHS) 4 May 1922 (1922-05-04)</td>
<td>1-4, 8, 10-12</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>7, 9</td>
</tr>
<tr>
<td>A</td>
<td>FR 1 576 433 A (ÉTABLISSEMENTS RICHARD FRÈRES) 1 August 1969 (1969-08-01)</td>
<td>1, 10</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 2 901 163 A (AEDES CCR [FR]; EADS [FR]; CENTRE NAT RECH SCIENT [FR]; ECOLE NALE SUP) 23 November 2007 (2007-11-23) cited in the application</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 S document member of the same patent family

Date of the actual compilation of the international search

5 October 2009

Date of mailing of the international search report

12/10/2009

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel: (+31–70) 340–2040, Fax: (+31–70) 340–3016

Authorized officer

Rabolini, Marco
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 935 374 A (PREVOST) 17 June 1948 (1948-06-17) figure 5 the whole document</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>SU 1 349 882 A2 (DEVYATKIN SERGEJ P [SU]; DEVYATKINA NATALYA A [SU]) 7 November 1987 (1987-11-07)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>SU 1 296 306 A1 (VNI KT I TRUBNOJ PROMY [SU]) 15 March 1987 (1987-03-15)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 611 547 A1 (THOMSON GRAND PUBLIC [FR]) 9 September 1988 (1988-09-09) the whole document</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FR 1271691 A</td>
<td>15-09-1961</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 352816 C</td>
<td>04-05-1922</td>
<td>NONE</td>
</tr>
<tr>
<td>FR 1576433 A</td>
<td>01-08-1969</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2021143 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007131936 A1</td>
</tr>
<tr>
<td>FR 935374 A</td>
<td>17-06-1948</td>
<td>NONE</td>
</tr>
<tr>
<td>SU 1349882 A2</td>
<td>07-11-1987</td>
<td>NONE</td>
</tr>
<tr>
<td>SU 1296306 A1</td>
<td>15-03-1987</td>
<td>NONE</td>
</tr>
<tr>
<td>FR 2611547 A1</td>
<td>09-09-1988</td>
<td>NONE</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale n°

PCT/FR2009/050764

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

INV. B23B29/12 B23B27/22 B23B25/02 B23Q1/34

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

B23B B23Q

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultées au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Indication des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 1 271 691 A (D OUTIL ET DE METALLURG SOCIÉTÉ) 15 septembre 1961 (1961-09-15)</td>
<td>1-6, 10-11, 14-20</td>
</tr>
<tr>
<td></td>
<td>le document en entier</td>
<td>7-9, 12-13,21</td>
</tr>
<tr>
<td>X</td>
<td>DE 352 816 C (ELFRIEDE FUCHS) 4 mai 1922 (1922-05-04)</td>
<td>1-4,8, 10-12</td>
</tr>
<tr>
<td></td>
<td>le document en entier</td>
<td>7,9</td>
</tr>
<tr>
<td>A</td>
<td>FR 1 576 433 A (ÉTABLISSEMENTS RICHARD FRÈRES) 1 août 1969 (1969-08-01)</td>
<td>1,10</td>
</tr>
<tr>
<td></td>
<td>le document en entier</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 2 901 163 A (AEDS CCR [FR]; EADS [FR]; CENTRE NAT RECH SCIENT [FR]; ECOLE NALE SUP) 23 novembre 2007 (2007-11-23) cité dans la demande</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Voici la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:
 * "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
 * "E" document antérieur, mais publié à la date de dépôt international ou après cette date
 * "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
 * "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
 * "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

Date à laquelle la recherche internationale a été effectivement achevée

5 octobre 2009

Date d'expédition du présent rapport de recherche internationale

12/10/2009

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax (+31-70) 340-3016

Fonctionnaire autorisé

Rabolini, Marco

Formulaires PCT/ISA/210 (seconde feuille) (avril 2006)
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 935 374 A (PREVOST) 17 juin 1948 (1948-06-17) figure 5 le document en entier</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>SU 1 349 882 A2 (DEVYATKIN SERGEJ P [SU]; DEVYATKINA NATALYA A [SU]) 7 novembre 1987 (1987-11-07)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>SU 1 296 306 A1 (VNI KT I TRUBNOJ PROMY [SU]) 15 mars 1987 (1987-03-15)</td>
<td>1</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>FR 1271691</td>
<td>15-09-1961</td>
<td>AUCUN</td>
</tr>
<tr>
<td>DE 352816</td>
<td>04-05-1922</td>
<td>AUCUN</td>
</tr>
<tr>
<td>FR 1576433</td>
<td>01-08-1969</td>
<td>AUCUN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2021143 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007131936 A1</td>
</tr>
<tr>
<td>FR 935374</td>
<td>17-06-1948</td>
<td>AUCUN</td>
</tr>
<tr>
<td>SU 1349882</td>
<td>07-11-1987</td>
<td>AUCUN</td>
</tr>
<tr>
<td>SU 1296306</td>
<td>15-03-1987</td>
<td>AUCUN</td>
</tr>
<tr>
<td>FR 2611547</td>
<td>09-09-1988</td>
<td>AUCUN</td>
</tr>
</tbody>
</table>

Formulaire PCT/ISA/210 (annexe familles de brevets) (avril 2005)