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Abstract. Journal fluid bearings are widely used in industry due to their static and dynamic behavior 

and their very low coefficient of friction. The technical requirements to improve the new technologies 

design are increasingly focused on the indicators of dependability of systems and machines. Then, it 

is necessary to develop a methodology to study the reliability of bearings in order to improve and to 

evaluate their design quality. Few works are referenced in literature concerning the estimation of the 

reliability of fluid journal bearings. This paper deals with a methodology to study the failure 

probability of a hydrodynamic journal bearing. An analytical approach is proposed to calculate static 

characteristics in using the Reynolds equation. The commonly methods used in structural reliability 

such as FORM (First Order Reliability Method), SORM (Second Order Reliability Method) and 

Monte Carlo are developed to estimate the failure probability. The function of performance bounding 

two domains (domain of safety and domain of failure) is estimated for several geometrical 

configurations of a hydrodynamic journal bearing (long journal bearings with the hypotheses of 

Sommerfeld, Gümbel and Reynolds, and a short journal bearing with the hypothesis of Gümbel). 

Introduction 

Fluid bearings are sensitive components for machines and systems. The design of a fluid bearing is 

usually based on deterministic static characteristics. However, it is subjected to load and pressure 

fluctuations or to fluid film gap perturbations induced for instance by defects of the slide ways 

surfaces geometry [1, 2, 3]. The prediction of the reliability of a fluid bearing under operating 

conditions is then necessary for applications requiring high accuracy movements or positioning [1]. 

Charki and al. [1, 2,4] developed a methodology to estimate the failure probability of a thrust fluid 

bearing and a hemispherical fluid bearing. 

The literature is sparse regarding research that investigates the reliability estimation of such 

mechanical component. Charki and al. [1, 2,4] published the first works in this field concerning 

especially a thrust air bearing [2] and a hemispherical air bearing [4]. 

Frêne and al. [5] developed an analytical approach with the assumptions of Sommerfeld, Gümbel and 

Reynolds. Nathi Ram and al. [6] analyzed the behavior of a hybrid journal bearing. An experimental 

assessment of hydrostatic thrust bearing performance was done by Osman and al. [7]. 

In reliability analysis, the principle consists in the approximation of a limit-state function bounding 

two domains (domain of safety and domain of failure). Lemaire and al. [8], detailed the various 

evaluation methods of the probability of failure. Madsen [9] and Melchers [10] proposed several 

examples of the estimation of the failure probability. Austin [11] studied the cause of the bearings 

failures in engines. This paper presents an adapted method to evaluate the failure probability of a 

journal fluid bearing (see Fig. 1). The methodology is applied to various geometrical configurations 

of a hydrodynamic journal bearing. 
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Fig.1 Journal bearing 

Nomenclature 

	 Velocity vector of the fluid (m/s). t	Time (s). ρ	Lubricant density (kg.m
-3

) . 

P Hydrodynamic pressure (Pa).  μ	Lubricant viscosity (Pa.s). u, v, w	Components of the lubricant velocity in the x, y, and z directions respectively (m/s). x, y, zCoordinates. u v w Components of the lubricant velocity on the bearing. u v w Components of the lubricant velocity on the shaft. 

h Film thickness (m). 

R Journal radius (m) 

D Journal diameter (m). 

L length of long journal bearing with conditions Sommerfeld, Gümbel and Reynolds (m). 

Lc Length of short journal bearing (m). ωAngular velocity of the journal (rad/s). δAngle between the direction of the coordinate of the component of the following speed x and the 

direction of the linear speed (°). R , R Radius respectively of shaft and bearing (m). O , O  Center respectively of shaft and the bearing. 

e Distance of the centers or eccentricity (m). C	Radial clearance (m). X  Variables of design corresponding to	μ,ω, L, L , R, C P  Lubricant inlet pressure (Pa). ε	Eccentricity ratio. β	Index of reliability. U∗ Design point. P 	Pressure of Sommerfeld (Pa). P Pressure of Gϋmbel (Pa). P 	Pressure of Reynolds (Pa). θ 	Angular coordinate at the break of fluid (°). W ,W , W , W  Nominal load capacity (N). W ,W ,W ,W Critical load capacity respectively of long journal bearing with Sommerfeld, 

Gümbel, Reynolds conditions, and of Short bearing. 

G Performance Function. 
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Journal Bearing Modeling 

The Reynolds equation [5] is obtained as follows: 

Equation of conservation of mass: 

 ∇. V = 0																																																																																																																																																															(1) 
 

Equation of momentum conservation: 

 ∂V∂t + V. ∇ . V = −1ρ ∇P + μρ∇ V																																																																																																																			(2) 
 

Where V	the velocity vector of the fluid with componentsu, v, w	; 	t represents the time; P is the 

pressure of the fluid. The boundary conditions are [5]: 

 y = 0									u = u 	; 					v = 0	; 				w = w 	and for  y = h						u = u 	; 					v = v 	; 				 ; 					w = w  

 

The equation of Reynolds is expressed as: 

 ℎ + ℎ 	
= 6( −	 ) ℎ + 	6( −	 ) ℎ + 6ℎ ( +	 ) + 	6ℎ ( + )
+ 12 +	12ℎ ℎ (3) 

 

The hypotheses relative to the stationary equation of Reynolds which allows to write the laminar flow 

of a fluid between two walls very close and being able to be in movement are given by [5]. 

 

 
Fig. 2 Movement between shaft and bearing 

 

By geometrical considerations (see Fig. 2), we have: 
 u = ωRcosδ																																																																																																																																																						(4) 
 v = ωRsinδ																																																																																																																																																							(5) 

 

For an angle δ very small, the velocity components become: 

 u = ωR																																																																																																																																																															(6) 
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v = ωR∂h∂x 																																																																																																																																																									(7) 
 

The Reynolds equation becomes: 

 

∂∂x hμ ∂P∂x + ∂∂z hμ ∂P∂z = 6ωR∂h∂x 																																																																																																															(8) 
 

Expression of the film thickness  

We consider a point M belonging to the surface of the bearing and located by the angle (MO ,MO ) 
with O et	O  respectively the centers of the pivot shaft and the bearing (see Fig. 3). The point M’ is 

the orthogonal projection of O  on the line (	O M). 
 

 
Fig. 3 Film thickness between shaft and bearing 

 

Taking into account the relative eccentricity ε =  varying from 0 to 1, the expression the film 

thickness h(θ) becomes then: 

 h(θ) = C(1 + ε	cosθ	)																																																																																																																																						(9) 
 

Long bearing with Sommerfeld conditions  

The boundary conditions of Sommerfeld [5] are defined as: 

 P	(	θ = 0,			z	) = 	PP	(θ = 2π, z	) = 	P  

 

The Reynolds equation for a long cylindrical bearing with Sommerfeld conditions becomes: 

 ∂∂x hμ ∂P∂x = 6ωR∂h∂x 																																																																																																																																					(10) 
 

With x = Rθ, replacing h(θ) = C(1 + ε	cosθ	) in the (Eq. 10) and according to an integration of 2π 

we obtain: 
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P = 6μω(1 − ε ) RC ψ − ε	sinψ − ψ(2 + ε ) − 4εsinψ + ε sinψcosψ2 + ε + P 																									(11) 
 

The load capacity with Sommerfeld conditions is expressed as: 

 

W = 12πμωR LεC (2 + ε )(1 − ε ) 																																																																																																																							(12) 
 

Long bearing with Gümbel conditions 

Boundary conditions of Gümbel [5] are defined as: 

 P	(θ = 0, z	) = 0P	(θ = π, z	) = 	0P	(θ, z	) = 	0						si		π < < 2  

 

 

P = 6μω(1 − ε ) RC ψ − ε	sinψ − ψ(2 + ε ) − 4εsinψ + ε sinψcosψ(1 − ε ) + P 																									(13) 
 

The integration of the pressure on the surface of the journal bearing gives the following expression of 

load capacity with Gümbel conditions: 

 

W = 6μωL		 RC ε	(4ε + π (	1 − ε ))(2 + ε )	(1 − ε ) 																																																																																																(14) 
 

Long bearing with Reynolds conditions 

Boundary conditions of Reynolds [5] are defined as: 

 P(θ = 0,			z) = PP(θ = 0,			z) = 0∂P∂θ (	θ = θ , z) = 	∂P∂z (	θ = θ , z) = 0P	(θ, z	) = 	0						si		θ < < 2
 

 

P = 6μω(1 − ε ) RC ψ − εsinψ − ψ(2 + ε ) − 4εsinψ + ε sinψcosψ2(1 − εcosψ ) 																																				(15) 
 

The equation of the fluid break is given: 

 ε(sinψ cosψ − ψ ) + 2(sinψ − ψ cosψ ) = 0																																																																														(16) 
 

The load capacity with Reynolds conditions is expressed as: 
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W = 3μωRL(1 − εcosψ )(1 − ε ) RC ε (1 − cosψ )1 − ε + 4(sinψ − ψ cosψ ) 															(17) 
Short journal bearing 

The two main hypotheses allowing the justification of a short journal bearing are: 

The ratio of the length on the diameter of the bearing is low ≤ . The gradient of pressure at the 

circumference is negligible compared to the axial pressure [5]. 

Taking into account these hypotheses, the equation of Reynolds for a short journal bearing becomes: 

 ∂∂z ρhμ ∂P∂z = 6ωdhdθ																																																																																																																																					(18) 
 P θ, Z = ±L 2 = 0																																																																																																																																							(19) 

 

We obtain finally for short bearing conditions, the expression of the pressure and the load capacity: 

 

P(θ, z) = −3μωC z − L4 εsinθ(1 + εcosθ) 																																																																																																(20) 
 

W = μRωL4C ε(1 − ε ) (π (1 − ε ) + 16ε ) 																																																																																					(21) 
 

Principle of reliability 

Causes and failure modes of journal bearings 

Failure modes are generally a combination of constraints which act on the bearing until causing a 

damage or a failure modes are noticed the incapacity of the component bearing to perform a required 

function. We distinguish essentially failure modes due to corrosion or fatigue, or misalignment of the 

shaft in the bearing [11]. 

The evaluation of failure probability bearing [1, 2, 4] can be made by the determination of a limit 

function separating two zones (domain of safety, domain of failure). In the case of a fluid bearing, the 

function G is the difference between a nominal load capacity and a critical load capacity.  

 

Limit state function G 

The reliability of a journal bearing is defined by the knowledge of a function state limit	G(X ), 
variables of design X  chosen as random variables. The considered design variables of design are the 

viscosity, the angular velocity, the radial clearance, the length and the diameter of bearing. The 

domains of the performance function [8, 9] are defined as: G(Xi) > 0	is the domain of safety; G(Xi) < 0	is the domain of failure; G(Xi) = 0	is the limit state; 

The function performanceG(L, R, C, ω, μ) depends on 5random variables .It is the difference between 

the maximal load capacity corresponding a critical eccentricity and the nominal load capacity. 

Hasofer and Lind [12] show that the index of reliability is the minimum of the distance between the 

origin and the space of variables normalized with the constraint H(U ) where H the function of 

performance in the reduced centered standardized space (see Fig. 4).  
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Fig. 4 Transformation into standard normal space 

 m and	m  are respectively the average of variables X  and X  in the physical space. This is the 

transformation of the passage of the physical space in the standardized space. 

 X 									 										 U = x −mσ 																																																																																																																													(22) 
 U : Random variable in the gaussian standardized space σ : Standard deviation of the random variable X . 

 

Algorithm of Rackwitz-Fiessler 

The algorithm developed by Rackwitz and Fiessler is based on the calculation of the gradients of 

every variable. Knowing the gradients, we can then estimate linearly the design point, and take the 

same strategy around this new point P* until convergence by taking place in the point U  

corresponding to the design point of the iteration k, we can write the development of Taylor around 

this point of the function H(U) [8]: 

 H(U) = H U∗ + ∇H(U) ∗ U − U∗ 																																																																																																					(23) 
 

By this formula, we can estimate the design of the following iteration: 

 H U∗ = H U∗ + ∇H(U) ∗ U∗ − U∗ = 0																																																																												(24) 
 

We introduce the vector of the cosine director α: 

 α = ∇H(U)‖∇H(U)‖																																																																																																																																																		(25) 
 

The limit state takes the following shape: 

 ∇H(U∗ )‖∇H(U)‖ ∗ + U∗ − U∗ α = 0																																																																																																						(26) 
 

or 
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U∗ α = U∗ α − ∇H U∗‖∇H(U)‖ ∗ 																																																																																																		(27) 
 

By introducing the index of reliability into the last equation, it is transformed by: 

 

β = U∗ α − ∇H U∗‖∇H(U)‖ ∗ 																																																																																																															(28) 
 

We can then estimate the new design point: 

 U∗ = −β α 																																																																																																																																											(29) 
 

The algorithm stops when: 

 β − β < ε 																																																																																																																																												(30) 
 

The gradient H(U∗ )	is then given as: 

 

∇H U∗ = H U∗ − H U∗
U∗ − U∗ 																																																																																																																			(31) 

 

FORM  

FORM (First Order Reliability Method) approximates the domain of failure by a half-space bounded 

by a hyper tangent plan on the surface in the design point.  

 P = φ(−β)																																																																																																																																																							(32) 
 φ: standard normal distribution 

The design point is the solution of the problem of optimization: 

 β = min U UH(U) = 0 																																																																																																																																										(33) 
 

The result of this problem of minimization under constraint will be solved by the algorithm of 

Rackwitz-Fiessler and the design point estimated as: 

 U∗ = −α β																																																																																																																																																								(34) 
 

The equation of the tangent hyperplan in the design point U∗ is: 

 

H(U) = β + α U 																																																																																																																																						(35) 
 

 

 

Applied Mechanics and Materials Vols. 789-790 349



 

SORM  

The SORM (Second Order Reliability Method) consists in approaching the surface of state-limit by a 

quadratic surface. This method consists in determining an approximation of the function 

performance	H(U), noted Ĥ(U) by a development of Taylor around a given point	U . 

 H(U) = H(U ) + a (U − U ) + 12 (U − U ) ℍ(U )(U − U ) + O(‖U − U ‖ )																														(36) 
 

The Hessian matrix	ℍ owes to be determined then diagonalized so that the main curvatures	k can be 

calculated.  

H(U) = U − β − 12 k U 																																																																																																																						(37) 
 

The probability of failure can be estimated by the following relation: 

 

P = φ(−β) (1 + k β) 																																																																																																																									(38) 
 

Monte Carlo method 

Methods of simulation allow estimating the probability of failure in the case of complex laws of 

probability, correlations between variables or function of non linear limit states 

 

P ≈ 1N I G(X ) ≤ 0 																																																																																																																																	(39) 
 

Where X is the vector of random variables and I is the indicator function which is equal to 1 if the 

condition G(X ) ≤ 0 is true and equal to	0 if not.  

Applications  

Table.1 presents all random variables taken into account for the evaluation of failure probability. For 

each condition (Sommerfeld, Gümbel, Reynolds, Short Bearing), the failure probability is estimated 

using the function of performance which is the difference between a critical load capacity and an 

operating load capacity.  

 

Table 1. Random variables 

Variables Xi Meanm  

 

Standard 

deviation	σ  
Distribution 

μ(Pa.s) 12E-4 12E-5 Normal ω(radian.s
-1

) 157 15.7 Normal 

L(m) L (m) 

0.5 

0.0125 

1E-5 

1E-5 

Normal 

Normal R(m) C(m) 

5E-2 

40E-6 

1E-4 

40E-7 

Normal 

Normal 
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Fig. 5 Failure probability versus relative 

eccentricity for Sommerfeld conditions 

 
Fig. 6 Failure probability versus relative 

eccentricity for Gümbel conditions 

 

 
Fig. 7 Failure probability versus relative 

eccentricity for Reynolds conditions 

 
Fig. 8 Failure probability versus relative 

eccentricity for short bearing 

 

For the approximation of Sommerfeld, the probability of failure is estimated according to a critical 

load capacity corresponding to a relative eccentricity	ε = 0.95. Figures 5, 6, 7, 8 show the failure 

probability versus the relative eccentricity. The probability of failure is lower than 10   for lower 

relative eccentricities than 0.6 according to the results given by FORM and SORM. The results of 

Monte Carlo for the relative eccentricities higher than 0.6 give values of the probability of failure in 

agreement with FORM results. The probability of failure increases for a decrease in index of 

reliability which represents the distance of the origin to the point design.  

For the approximation of Gümbel, the probability of failure remains acceptable for values of 

eccentricities higher than 0.7. The probability of failure decreases exponentially with the increase in 

the values of the index of reliability in the case of the three methods (FORM, SORM and Monte 

Carlo). In the case of short journal bearings, the best adapted conditions are the ones of Gümbel 

according to Dubois and al. [13]. 

Conclusion 

In this paper, we propose a suitable methodology to estimate the reliability of a journal bearing. An 

analytical approach is developed for the calculation of load capacity of a journal bearing using a 

combination of the principle of reliability. FORM, SORM and Monte Carlo simulation are used to 

estimate failure probability of a journal bearing. The methodology can be used for different 

configurations (different geometry and type of fluid) of fluid bearings in order to improve its design. 
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