Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/10369

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Exponential sine sweeps for the autonomous estimation of nonlinearities and errors assessment by bootstrap
Application to thin vibrating structures

Marc Rébillat¹, Kerem Ege², Maxime Gallo², Jérôme Antoni²
A linear behavior in vibroacoustics?

- Geometrically nonlinear vibrations of plates, shells:

 when the amplitude of the transverse displacement w exceeds the plate/shell thickness h

 \rightarrow jump phenomenon, hysteresis, internal resonance

- Boundary conditions, joints, contacts...

Example: Gong

Cyril Touzé, Olivier Thomas
A linear vibroacoustic measurement?

How to extract the linear/nonlinear parts of a typical vibroacoustic measurement?

How to estimate the effects of experimental noise?
Outline

- Estimation of Parallel Hammerstein models
 - Theory
 - Application to a vibrating plate
 - Separation of the intrinsic nonlinear contributions

- Improvements of the method (sweep repetition)
 - Theory
 - Noise estimation by synchronous averaging
 - Uncertainty estimation by bootstrap
 - Autonomous kernel order estimation

- Conclusion and perspectives
Parallel Hammerstein models estimation

⇒ Slightly nonlinear system modeled as parallel Hammerstein models

⇒ Kernels easily estimated using exponential sine sweeps
(see [Farina, AES, 2000], [Rébillat, JSV, 2011] or [Novak, IEEE Instrumentation, 2011] for example)

⇒ Separation of the linear/nonlinear orders
Parallel Hammerstein models estimation

Rébillat et al., JSV, 330, 2011

Separation of the linear/nonlinear orders in time domain
Application to a vibrating plate

- Clamped Steel plate (1mm)
- Shaker + Accelerometer

One sweep of **20 seconds**
[20Hz-1kHz]

After deconvolution:

Importance of the **length of the sweep** for time domain separation

Identified Kernels of the system

- **Kernel h_1 (linear part)**
- **Kernel h_2**
- **Kernel h_3**
- **Kernel h_4**
Improvement of the method: Sweep repetition & Noise estimation

- Measured signal = system response + experimental noise \[x(t) = s(t) + n(t) \]

- Repetition of the same sweep \(K \) times

- Estimation of the noise \(\bar{n}(t) = x(t) - \bar{s}(t) \)

using the time synchronous averaging of the system response \(\bar{s}(t) \)

\[
\bar{s}(t) = \frac{1}{K} \sum_{k=0}^{K-1} [x(t - kT)]
\]
Application to a vibrating plate – Noise estimation

- Free-free damped steel plate (1mm)
- Shaker + Accelerometer

Influence of sweep repetitions (number of periods K)

Increase of K

\[\tilde{s}(t) = \frac{1}{K} \sum_{k=0}^{K-1} [x(t - kT)] \]

Synchronous averaging on more periods

\[\rightarrow \] Better extraction of the noise

\[\rightarrow \] More precise estimations of the kernels of high orders
Uncertainty of measurement using Bootstrap

How to study the variability of the measurements? → Bootstrap method

B random sample with replacement (of K sweeps each time)
Synchronous averaging on K repetitions → B different kernel estimations

Identified Kernels of the system for B=10 and K=19

Way to identify and quantify variability (uncertainty) of plate nonlinearities estimations

Kernel h_1 (linear part)

Kernel h_2

Kernel h_3

Kernel h_4
Uncertainty of quantification

- **K repetitions** of exponential sine sweeps (ESS)
- **B estimations** of the response
- **Estimation of parallel Hammertstein model** (performed B times)
- **Mean over the B estimations**
- **1 mean estimation of the N Kernels**
- **B estimations of the « estimation noise » on the N kernels**
No averaging (K=1, B=150)
Averaging (K=19, B=150)

Order 1 (SNR=51 dB)

Order 2 (SNR=33 dB)

Order 3 (SNR=33 dB)

Order 4 (SNR=26 dB)

Order 5 (SNR=29 dB)

Order 6 (SNR=24 dB)
Uncertainty of quantification

B estimations of the N kernels

Mean over the B estimations

1 mean estimation of the N Kernels

SNR(K)

B estimations of the «estimation noise» on the N kernels

1 mean estimation of the uncertainty on the N Kernels

INSA

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON
No averaging (K=1, B=150)
Averaging (K=19, B=150)

Order 1 (SNR=51 dB)

Order 2 (SNR=33 dB)

Order 3 (SNR=33 dB)

Order 4 (SNR=26 dB)

Order 5 (SNR=29 dB)

Order 6 (SNR=24 dB)
Effect of repetition number K on SNRs

$$\text{SNR}_{th}(K) = \text{SNR}(1) + 3 \log_2(K)$$
Autonomous kernel order estimation

Example on the suspended damped plate (5 different gains)

Estimation of the proper kernel order N to identify

Threshold defined following a statistical F-test (Fisher)
Example of autonomous Kernel estimation
Conclusion & Perspectives

- Original method to **estimate the nonlinearities** of a vibro-acoustical structure
 - Slightly nonlinear systems modelled as **parallel Hammerstein models**
 - Kernels easily estimated using **exponential sine sweeps**

- **Improvements** of the sine sweep method
 - Repetition of the excitation signal – K sweeps
 - Extraction of the noise through time synchronous averaging
 - Uncertainty estimation by bootstrap
 - Autonomous kernel order estimation

- **Perspectives**
 - Comparisons with other methods (spectral domains): **periodic multisines**...