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Abstract 
This paper presents the development of a six-node solid-shell finite element called (SHB6) and based on the 
assumed strain method adopted by Belytschko et al. [2]. It is integrated with a set of five Gauss points along a 
special direction, denoted “thickness”, and with only one point in the other in-plane directions. Its discrete 
gradient is modified in order to attenuate shear and membrane locking. A series of popular linear benchmark 
problems has been carried out with comparisons to geometrically similar, low-order three-dimensional elements. 

1. Introduction
Accuracy and efficiency are the main features expected in finite element methods. In three-dimensional analysis 
of structural problems, the development of effective eight-node solid-shell finite elements has been a major 
objective over the last decade as testified by many recently published contributions [1-5]. However, to be able to 
mesh complex geometries and with the advent of free mesh generation tools not generating only hexahedrons, 
the development of prismatic elements is made necessary. This paper presents the formulation of a six-node 
solid-shell finite element called SHB6. It represents a thick shell obtained from a purely three-dimensional 
approach. The assumed strain method is adopted together with an in-plane reduced integration scheme with five 
Gauss points along the thickness direction. The three-dimensional elastic constitutive law is also modified so 
that a shell-like behavior is intended for the element and in order to alleviate shear and membrane locking. 

Because the reduced integration is known to introduce spurious modes associated with zero energy, an adequate 
hourglass control is generally needed as proposed by Belytschko et al. [2] with a physical stabilization 
procedure to correct the rank deficiency of eight-node hexahedral elements. As the SHB6 is also under-
integrated, a detailed eigenvalue analysis of the element stiffness matrix is carried out. We demonstrate that the 
kernel of this stiffness matrix only reduces to rigid body movements and hence, in contrast to the eight-node 
solid-shell element (SHB8PS), the SHB6 element does not require stabilization. 

Numerical evaluations of the SHB6 element showed that its initial version, without modification of its discrete 
gradient operator, suffered from shear and membrane locking. To attenuate these locking phenomena, several 
modifications have been introduced into the formulation of the SHB6 element following the assumed strain 
method adopted by Belytschko et al. [2]. Finally, a variety of popular benchmark problems has been performed 
and good results have been obtained when compared to other well-established elements in the literature. 

2. Formulation of the SHB6 finite element
The SHB6 finite element is a solid-shell with only three displacement degrees of freedom per node, and it has a 
special direction called “thickness”. It is integrated with a set of five Gauss points along this direction and only 
one point in the in-plane directions. Figure 1 shows the SHB6 reference geometry as well as its Gauss points. 
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2.1  Kinematics and interpolation 
The SHB6 is a linear, isoparametric element. Its spatial coordinates ix  and displacements  are respectively 
related to the nodal coordinates 

iu
iIx  and displacements  through the linear shape functions iIu IN  as follows: 
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Hereafter, unless specified otherwise, the implied summation convention for repeated indices will be adopted. 
Lowercase indices  vary from one to three and represent spatial coordinate directions. Uppercase indices 
vary from one to six and correspond to element nodes. The tri-linear isoparametric shape functions 
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Figure 1: Reference geometry of the SHB6 element and its Gauss points 
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2.2  Discrete gradient operator 
Using some mathematical derivations, similarly to the procedure of the SHB8PS development reported in [1], 
we can explicitly express the relationship between the strain field and the nodal displacements as: 
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where the hα  functions are: 1 2,  h hηζ ξζ= = ; the ib  vectors are: , 0
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( )1 0, 0, 1, 0, 0, 1 ;Th = −  ( )2 0, 1, 0, 0, 1, 0Th = −  and the ix  vectors denote the nodal 
coordinates. We can also demonstrate the following orthogonality conditions: 
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2.3  Variational principle 
Applying the simplified form of the Hu-Washizu non linear mixed variational principle, in which the assumed 
stress field is chosen to be orthogonal to the difference between the symmetric part of the displacement gradient 
and the assumed strain field, we obtain: 
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Replacing the assumed strain field, with its expression ( ) ( ) ( ),x t B x d tε = ⋅ , in equation (5) leads to the 
following expression for the internal forces: 
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This also leads to the following expression for the element elastic stiffness matrix: 
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Note that for a standard displacement approach, B  is simply replaced with B  leading to the classical stiffness: 
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2.3  Hourglass mode analysis for the SHB6 element 
Hourglass modes are spurious zero-energy modes that are generated by the reduced integration. In static 
problems, they may lead to singularity of the assembled stiffness matrix for certain boundary conditions; in 
most cases this results in spurious mechanisms also known as rank deficiencies. Therefore, the analysis of 
hourglass modes is equivalent to that of the stiffness matrix kernel, namely zero-strain modes d  that satisfy: 

( ) 0Gj GjB dζ ζ⋅ = ∀ (9)

To this end, we can build a basis for the discretized displacements by demonstrating that the eighteen column 
vectors below are linearly independent. Making use of orthogonality conditions (4), we show that only the first 
six column vectors verify equation (9) and correspond to rigid body modes. This means that there are no 
hourglass modes for the SHB6 element. In other words, the SHB6 element does not require hourglass control. 
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2.4  Assumed strain formulation for the SHB6 discrete gradient operator 
Among several treatments for alleviating shear and membrane locking, the discrete gradient is appropriately 
modified. This consists first of decomposing the matrix B  into two parts: 

21
BBB += , then of projecting the 

second part onto an assumed strain operator such that 
1

B B B= +
2
. As a result, the stiffness matrix becomes:
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The subsequent steps consist of choosing an adequate assumed strain field. This is a key point in the formulation 
and special care has been exercised in this regard. Finally, the above additive decomposition of the stiffness 
matrix is calculated using a reduced integration scheme with five Gauss points. Note that the choice of an 
assumed strain field is mainly guided by the elimination of strain components that are responsible for shear as 
well as membrane locking. The advantages of this enhanced strain will be shown through benchmark problems. 
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3. Numerical results and comparison
Several popular benchmark problems were performed to illustrate the element performance; one of these test 
problems is given here. This example is frequently used in the literature to test warping effects on shell elements. 

Figure 2: Twisted beam. Length =12; width = 1.1; depth = 0.32, twist = 90° (root to tip); E = 29x106; 

ν = 0.22. Loading: unit force at tip. The reference vertical displacement of point A at tip is 5.424x10-3

Number of elements SHB6 initial PRI6 (3D solid element) SHB6 with modification 
96 0,470 0,202 0,784 
192 0,779 0,485 0,935 
384 0,810 0,612 0,968 

Table 1: Normalized vertical displacement at point A of the twisted cantilever beam problem 

4. Conclusions
This newly developed SHB6 element was implemented into the finite element codes INCA and ASTER. It 
represents some improvement since it converges relatively well and it performs better than the PRI6 six-node 
three-dimensional element in all of the benchmark problems tested. Furthermore, it shows very good 
performances in problems using mixed meshes composed of SHB6 and SHB8PS elements. Thus, we can couple 
the SHB6 with other finite elements to mesh complex geometries. For the remaining locking modes, exhibited 
in some test problems, a detailed study revealed that the transverse shear was behind these locking phenomena. 

References 
[1] Abed-Meraim F and Combescure A. SHB8PS a new adaptive, assumed-strain continuum mechanics shell 

element for impact analysis. Computers & Structures 2002; 80:791-803. 
[2] Belytschko T and Bindeman LP. Assumed strain stabilization of the eight node hexahedral element. 

Computer Methods in Applied Mechanics and Engineering 1993; 105:225-260. 
[3] Hauptmann R and Schweizerhof K. A systematic development of solid-shell element formulations for 

linear and non-linear analyses employing only displacement degrees of freedom. International Journal for 
Numerical Methods and Engineering 1998; 42:49-69. 

[4] Legay A and Combescure A. Elastoplastic stability analysis of shells using the physically stabilized finite 
element SHB8PS. International Journal for Numerical Methods and Engineering 2003; 57:1299-1322. 

[5] Wall WA, Bischoff M and Ramm E. A deformation dependent stabilization technique, exemplified by 
EAS elements at large strains. Computer Methods in Applied Mechanics and Engng. 2000; 188:859-871. 

4


	1.  Introduction
	2.  Formulation of the SHB6 finite element
	2.1  Kinematics and interpolation
	2.2  Discrete gradient operator
	2.3  Variational principle
	2.3  Hourglass mode analysis for the SHB6 element
	2.4  Assumed strain formulation for the SHB6 discrete gradie

	3.  Numerical results and comparison
	4.  Conclusions
	References

