Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10435

To cite this version:
Gérald FRANZ, Farid ABED-MERAIM, Tarak BEN ZINEB, Xavier LEMOINE, Marcel BERVEILLER - Strain localization analysis using a large strain self-consistent approach - 2007

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Context of the study

Plastic mechanisms of ductility loss
- Forming limit of sheet metal = state at which a localized strain initiates during forming.
- Ductility loss characterization using Forming Limit Diagram (FLD) developed first by Keeler (1963) and Goodwin (1968).
- Path-dependent representation.

Metallography impact (texture, grain size, …)

Strain path dependence

Plastic anisotropy evolution
- Textural anisotropy (crystallographic network + morphology)
- Structural anisotropy (intragranular microstructure)

Aims of the study
- Ductility loss prediction for sheet metals and sequential strain paths.
- Optimization of microstructural properties for the sheet forming steels.
- Take metallurgy, microstructures, and textures into account.
- Scales transitions tools, micomechanics of plasticity, localization and damage criteria coupling with finite elements.
- Three main steps:
 - Single crystal modeling.
 - Scale transition.
 - Ductility loss criterion.

Single crystal modeling

Mesoscopic scale – basic slip process
- Assumptions:
 - Elastic-plastic behavior.
 - Large strains formulation.
 - Body-Centered Cubic (BCC).
 - Plastic strains only due to slip processes (<110) slip direction family and (110), (112) slip plane families.

Elastic-plastic behavior
- Plasticity
 \[\tau = \sigma : \dot{\varepsilon} - \dot{\varepsilon}^p = \mathbf{C} d - \dot{\varepsilon}^p \]
- Elastic-plastic tangent modulus
 \[\dot{\varepsilon}^p = \frac{\tau}{E} \]

Microscopic scale – intragranular microstructure
- The statistically stored dislocations in the cell interior, as well as the cell boundary dislocations, are represented by a single local dislocation density \(\rho \).
- The local density of immobile dislocations stored in the wall \(\rho^{\text{wall}} \) associated with the \(\langle 110 \rangle \) plane.
- The polarity dislocations density \(\rho^{\text{pol}} \) associated with the \(\langle 110 \rangle \) plane.

Scale transition
- What is the link between local and global strain?
 \[\Sigma, \dot{\varepsilon} \]
- Volumetric average
 \[G = \frac{1}{V} \int \sigma \, dV \]
- Fourth order localization tensors
 \[\alpha_{ijkl} S_{ij} \]
- Relation between A and B
 \[\alpha_{ijkl} = B_{ijkl} + \alpha_{ijkl} \]

Ductility loss criterion
- Assumption: the onset of localization is along a band (Rice, 1976)
 \[\text{Field equations} \]
 \[\text{Boundary conditions} \]
 \[\text{Ellipticity loss} \]

Multiscale model with intragranular modeling
- Reproduces correctly the intragranular microstructure during monotonic and sequential loading paths.
- Gives better results concerning macroscopic behavior during changing loading paths than model without intragranular modeling.

Conclusions
- Multiscale model without intragranular modeling.
 - Reproduces correctly the shape and the level of direct FLD for mild steel and dual phase.
 - Reproduces the strain-path dependence of complex FLD.