Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10435

To cite this version:

Gérald FRANZ, Farid ABED-MERAIM, Tarak BEN ZINEB, Xavier LEMOINE, Marcel BERVEILLER - Strain localization analysis using a large strain self-consistent approach - 2007

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Context of the study

- **Mechanisms of ductility loss**
 - Plastic mechanisms of ductility loss
 - Structural origin: wrinkling, buckling
 - Material origin: localization, necking

- **Damage mechanisms of ductility loss**
 - Cavitation
 - Failure

- **Single crystal modeling**
 - **Mesoscopic scale – basic slip process**
 - Assumptions
 - Elastic-plastic behavior
 - Large strains formulation
 - Body-Centered Cubic (BCC)
 - Plastic strains only due to slip processes \(<110>\) slip direction family and \([110], (111)\) slip plane families
 - Elasticity \(\sigma = C\{d - d^e\} = \sigma_{true}(d)\)
 - Elastic-plastic tangent modulus
 \[\tau = \sigma \cdot R = R \cdot \tau' = \sigma \cdot K = K \cdot \tau'\]
 - With \(M = (\tau' + k/\beta C \cdot K)\)

- **Microscopic scale – intragranular microstructure**
 - **Assumptions**
 - The statistically stored dislocations in the cell interior, as well as the cell boundary dislocations, are represented by a single local dislocation density \(\rho\)
 - The local density of immobile dislocations stored in the wall \(\rho_{IM}\) associated with the \([110]\) plane
 - The polarity dislocations density \(\rho_{PM}\) associated with the \([110]\) plane

Plastic anisotropy evolution

- **Textural anisotropy**
 - (crystallographic network + morphology)
- **Structural anisotropy**
 - (intragranular microstructure)

Scale transition

- What is the link between local and global strain?
 - Volumetric average
 \[\sigma_V = \frac{1}{V} \int_{V} \sigma dV\]
 - Fourth order localization tensors
 \[\alpha_i = B_{ij} N_{ij}\]
 - Relation between A and B
 \[A_{ijkl} = B_{ij} B_{kl} - \delta_{ij} \delta_{kl}\]

Ductility loss criterion

- Assumption: the onset of localization is along a band
 (Rice, 1976)

- Field equations
 \[\nabla \cdot \varepsilon = 0\]
 \[G = \text{grad}(N)\]
 \[N = L \cdot G\]

Microscopic validation

- TEM micrograph

- **Polarity of dislocations walls**

Macroscopic validation

- Complex FLD: Uniaxial Tension prestrain (10%)
- Complex FLD: Equibiaxial Expansion prestrain (10%)
- The level of FLD after expansion prestrain seems to be realistic. The curve is shifted down and at the right in agreement with tendencies observed in literature.
- The positive side of the FLD is overestimated. This effect can be corrected by damage introduction in the model.

Conclusions

- Multiscale model with intragranular modeling
 - Reproduces correctly the intragranular microstructure during monotonic and sequential loading paths
 - Gives better results concerning macroscopic behavior during changing loading paths than model without intragranular modeling

- Multiscale model without intragranular modeling
 - Reproduces correctly the shape and the level of direct FLD for mild steel and dual phase
 - Reproduces the strain-path dependence of complex FLD