Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10435

To cite this version:
Gérald FRANZ, Farid ABED-MERAIM, Tarak BEN ZINEB, Xavier LEMOINE, Marcel BERVEILLER - Strain localization analysis using a large strain self-consistent approach - 2007

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
CONSISTENT APPROACH

Context

Mechanisms of ductility loss

Plastic mechanisms of ductility loss

Structural origin: wrinkling, buckling
Material origin: localization, necking
Damage mechanisms of ductility loss

Cavities
Failure

Strain path dependence

Forming Limit Diagram (FLD)

Plastic anisotropy evolution

Textured anisotropy (crystallographic network + morphology)
Structural anisotropy (intragranular microstructure)

Single crystal modeling

Mesoscopic scale - basic slip process

Assumptions

• Elastic-plastic behavior
• Large strain formulation
• Body-Centered Cubic (BCC)
• Plastic strains only due to slip processes (<110) slip direction family and (110), (112) slip plane families

Elasticity

\[\sigma_i = C_{ijkl} \varepsilon_{kl} \]

Plasticity

\[\tau^p = \sum_{i,j} k_{ijkl} \varepsilon_{ij} \]

Elastic-plastic tangent modulus

\[M = (\varepsilon_{ij} + \varepsilon_0 C_{ijkl} C_{ijkl}) \]

Single crystal modeling

Microscopic scale - intragranular microstructure

• The statistically stored dislocations in the cell interior, as well as the cell boundary dislocations, are represented by a single local dislocation density \(\rho \)
• The local density of immobile dislocations stored in the wall \(\rho^{\text{wall}} \) associated with the (110) plane
• The polarity dislocations density \(\rho^{\text{path}} \) associated with the (110) plane

Scale transition

What is the link between local and global strain?

\[\Sigma, G \]

Volume average

\[\sigma, G \]

Fourth order localization tensors

\[a_{ij} = B_{ij}, S_{ij}, \Phi_{ijkl}, \gamma_{ijkl} \]

Relation between A and B

\[A_{ijkl} = B_{ij}, S_{ij}, \Phi_{ijkl}, \gamma_{ijkl} \]

Ductility loss criterion

Assumption: the onset of localization is along a band (Rice, 1976)

\[\text{Field equations} \]

\[\text{Boundary conditions} \]

Ellipticity loss

\[\text{Multiscale model with intragranular modeling} \]

• Reproduces correctly the intragranular microstructure during monotonic and sequential loading paths
• Gives better results concerning macroscopic behavior during changing loading paths than model without intragranular modeling

Conclusions

• Reproduces correctly the shape and the level of direct FLD for mild steel and dual phase
• Reproduces the strain-path dependence of complex FLD