Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10435

To cite this version:
Gérald FRANZ, Farid ABED-MERAIM, Tarak BEN ZINEB, Xavier LEMOINE, Marcel BERVEILLER - Strain localization analysis using a large strain self-consistent approach - 2007

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Strain Localization Analysis

Title: Using a Large Strain Self-Consistent Approach

Authors: G. Franz, F. A. Meraim, T. Ben Zineb, X. Lemoine, M. Berveiller

Institutions: 1. LPM CNRS UMR 7554 ENSAM CER de Metz, 4 rue Augustin Fresnel 57078 Metz Cedex 3
2. LEMTA CNRS UMR 7563 ESSTIN - UHP, 2 Rue Jean Lamour 54519 Vandoeuvre-Lès-Nancy
3. Centre Automobile Produit Arcelor Research, S.A. Voie Romaine BP 30320 57283 Maizières-les-Metz

Context of the Study

Plastic Anisotropy Evolution

- Textural anisotropy (crystallographic network + morphology)
- Structural anisotropy (intragranular microstructure)

Forming Limit Diagram (FLD)

- Plasticity
- Elastic-plastic modulus
- Elastic-plastic tangent modulus
- Plasticity
- Elastic-plastic modulus
- Elastic-plastic tangent modulus

Mechanisms of Ductility Loss

- Plastic mechanisms of ductility loss
- Damage mechanisms of ductility loss

Aims of the Study

- Ductility loss prediction for forming limits and sequential strain paths
- Optimization of microstructural properties for the sheet forming steels

- Scales transitions tools, micromechanics of plasticity, localisation and damage criteria, coupling with finite elements

- Three main steps:
 - Single crystal modeling,
 - Scale transition,
 - Ductility loss criterion

- Take metallurgy, microstructures, and textures into account

Single Crystal Modeling

- **Mesoscopic scale - basic slip process**
- **Microscopic scale - intragranular microstructure**

Scale Transition

- Stress-strain relation
- Volume average
- Fourth order localization tensors
- Relation between A and B

- Field equations
- Boundary conditions
- Ellipticity loss

Ductility Loss Criterion

- Assumption: the onset of localization is along a band

- Reproduces correctly the intragranular microstructure during monotonic and sequential loading paths

- Gives better results concerning macroscopic behavior during changing loading paths than model without intragranular modeling

Conclusions

- Reproduces correctly the shape and the level of direct FLD for mild steel and dual phase

- Reproduces the strain-path dependence of complex FLD