Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10435

To cite this version:
Gérald FRANZ, Farid ABED-MERAIM, Tarak BEN ZINEB, Xavier LEMOINE, Marcel BERVEILLER - Strain localization analysis using a large strain self-consistent approach - 2007

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Context of the study

Mechanisms of ductility loss

- Plastic mechanisms of ductility loss
 - Structural origin: wrinkling, buckling
 - Material origin: localization, necking

Damage mechanisms of ductility loss

- Cavities
- Failure

Strain path dependence

- Forming limit diagram
- Plastic anisotropy evolution

Aims of the study

- Ductility loss prediction for mild steel and sequential strain paths
- Optimization of microstructural properties for sheet forming steels
- Steel behaviour during sheet forming
- Hardening, complex loads, instabilities, anisotropy
- Three main steps:
 - Single crystal modeling
 - Scale transition
 - Ductility loss criterion

Scale transition

- **N** × **L** × **G
 - Field equations:
 \(\text{div}(\mathbf{N}) = 0 \)
 - \(G = \text{grad}(V) \)
 - \(N = L \times G \)

Ductility loss criterion

- Assumption: the onset of localization is along a band (Rice, 1976)

Single crystal modeling

Mesoscopic scale – basic slip process

- **Plasticity**
 - \(\tau = \sigma \cdot R \)
- **Elastic-plastic tangent modulus**
 - \(\tilde{E} = \frac{1}{3} \left(m_{ijkl} \right) k_R^2 \)

Microscopic scale – intragranular microstructure

- **Microscopic validation**
 - TEM micrograph

Microscopic validation

- Intensity of dislocations walls
- Polarity of dislocations walls

Forming Limit Diagrams

- Direct FLD
- Complex FLD: Equibiaxial Expansion prestrain (10%)
- Complex FLD: Uniaxial Tension prestrain (10%)

Conclusions

- Multiscale model with intragranular modeling
 - Reproduces correctly the intragranular microstructure during monotonic and sequential loading paths
 - Gives better results concerning macroscopic behavior during changing loading paths than model without intragranular modeling

- Multiscale model without intragranular modeling
 - Reproduces correctly the shape and the level of direct FLD for mild steel and dual phase
 - Reproduces the strain-path dependence of complex FLD

Plastic anisotropy evolution

- **TEM** (Parkes, 2002)
- **Structural anisotropy** (intragranular microstructure)

- **Textures anisotropy** (crystallographic network + morphology)

Strain localization analysis using a large strain self-consistent approach

G.Franz, F.Abed-Meraïm, T.Ben Zineb, X.Lemoine, M.Berveiller

1: LPMNN CNRS UMR 7554 ENSAM CER de Metz, 4 rue Augustin Fresnel 57078 Metz Cedex 3
2: LEMTA CNRS UMR 7563 ESSTIN - UHP, 2 Rue Jean Lamour 54519 Vandoeuvre-Lès-Nancy
3: Centre Automobile Produit ARCELOR Research, S.A.V. Voie Romaine BP 100 57283 Maizières-les-Metz