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a b s t r a c t

In the context of the assembly of large aeronautical structures, the flexibility of the parts often leads to
the nonconformity of the assembly or, at least, requires additional time-consuming operations. In order
to deal with this problem, one must take this flexibility into account during the tolerancing process.
Investigations of a non-rigid-body tolerancing process have shown that a robust model is necessary in
order to achieve satisfactory predictability. It was also found that the finite element model used, based on
a simplified geometry, was not accurate enough. The approach proposed in this paper to obtain an
accurate tolerancing process consists in updating the stiffness and mass properties of the FE model based
on measurements taken on the assembly line during the assembly process. The objective is to take these
measurements using only tools which are available on the chain (such as manipulation or control tools).
This implies that only static strength and displacement information can be used. This is achieved through
a clever measurement methodology and a model updating method based on the constitutive
relation error.

1. Introduction

Tolerancing methods for flexible parts have been the subject
of research for more than ten years. These investigations have
been motivated by the need to reduce the manufacturing con-
straints which affect flexible and often statically indeterminate
structures. Indeed, the tolerancing techniques used in industry
today are based on the rigid body assumption. However, light-
weight and rigid structures, especially in the aeronautic industry,
are usually obtained by assembling many “simple” elements,
such as metal plates or composite shells stiffened with beams.
These simple elements are highly flexible in at least one spatial
direction and they tend to deform under their own weight due to
their slenderness. The hyperstatic nature of these assemblies also
leads to deformation during the manufacturing process, which is
in contradiction with the rigid body assumption. Improvements
in tolerancing methods for flexible parts [1,2] can be sought in
three key areas: the quality of the mechanical and geometrical
models, the types of simulation tools used, and the quality of the
statistical information and probabilistic models. A recent work
[3] pinpointed the impact of the types of mechanical models used

and of their quality on the reliability of the results of flexible
tolerancing studies using sensitivity methods. Unfortunately, this
work also showed that it is difficult to obtain a consistent cal-
culation model from a CAD model of the parts or of the assembly.
The models thus created present weaknesses in the mass and
stiffness distributions. Indeed, the many simplifying assumptions
inherent in the finite element modeling of a structure preclude
the development of a model which is consistent with only a
knowledge of the materials being used. While the final geometry
of the structure can be described accurately using CAD, its con-
version into a finite element model requires one to simplify some
details, or to use a refined mesh (and, consequently, a large
number of degrees of freedom), or even to idealize the geometry
of the part in order to use structural elements (beams or shells).
Moreover, due again to the need to limit the size of the compu-
tational model, the boundary conditions and the connections
between the elements (through bolts, clamps, welding spots)
may be taken into account incorrectly or modeled too crudely
(backlash-free connections and friction). These simplifications all
lead to the same result: a model whose predictions are not
accurate enough (and which sometimes are even far from rea-
lity). Therefore, it is necessary to introduce a model updating
procedure in order to improve the quality of these models.

Classical model updating methods have been proposed for
dynamics problems. Indeed, experimental modal analysis pro-
duces a wealth of information concerning the distribution of
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damping, mass and stiffness in the structure. These methods are
based on the minimization of a cost function which represents
the “distance” between the experimental data and the response
of the numerical model. This approach presents two difficulties:
first, the choice of the most relevant cost function, and, second,
the minimization itself, which often requires regularization. A
review of model updating methods including many different
types of cost functions and input, which is still up-to-date, can
be found in [4]. A more recent approach can be found in [5].
Minimization and regularization techniques are covered in [6]
and [7]. Altogether, the most common parametric methods are
the input residuals method [8], the output residuals method [9],
and the constitutive relation error method [10].

While many updating methods use dynamic data, only a few
are based on static data, and these do not address the updating of
the mass properties. In this paper, we undertake to update a
model's stiffness and mass properties using static measurements
carried out on the assembly line. These measurements are
expected to be taken using the tools which are normally found on
the assembly line, such as handling tools, control tools, and
assembly tools. One may be required to equip these tools with new
sensors (especially stress sensors), but this does not necessarily
present a problem. Our objective is to propose a new method in
order to use these simple measurements to update the model's
mass parameters.

The model updating procedure must be carried out rapidly
during the assembly process to avoid slowing down the assembly
line. Therefore, it is necessary to keep the global computation cost
at a minimum. This can be done using either of two possible
approaches. The first approach consists in reducing the computa-
tion cost associated with the evaluation of the cost function for a
given set of structural parameters. In order to do that, one can
build a surrogate model prior to the updating process, as pro-
posed, e.g., in [11,12]. In [13], a PGD-reduced model is used for a
rapid evaluation of the constitutive relation error. The second
approach, which was recently proposed in [14] and [15], under-
takes to reduce the computation cost associated with the evalua-
tion of the gradient and/or the Hessian. In [16] both approaches
were used simultaneously: the response of the structure was
approximated using a PGD-reduced model and, thus, the cost
function based on a simple least-squares norm and its gradient
could be evaluated very inexpensively.

This paper takes the second approach. We will discuss an
updating method based on the error in constitutive relation and
attempt to reduce the computation time by optimizing the cal-
culation of both the Hessian and the gradient of the cost function.

The paper is structured as follows. First, in Section 2.1, we
present the measurement technology we used to acquire the
experimental data in the absence of any information on the actual
weightless and load-free structure. Then, in Section 2.2, we pro-
pose a cost function based on the constitutive relation error in
order to update the mass and stiffness structural parameters. In
Section 2.5, in order to minimize that function, we propose to use
a gradient method or a Newton method. In both cases, we show
that both the gradient and the Hessian of the cost function can be
evaluated analytically. Section 3 presents examples of applications.
The first example consists in a simple three-plate structure in
which each plate is associated with a set of stiffness and density
parameters. The performance of our model updating method is
assessed by comparison with simulated experimental data. The
second example is a more complex assembly which is repre-
sentative of the aeronautical structures the method is intended for.
It is composed of a cylindrical skin and a floor reinforced by sev-
eral stiffeners. The main objective of this example is to pinpoint
the drastic reduction in computation time brought about by our

proposed minimization strategy compared to a more classical
numerical gradient estimation.

2. The model updating method

The model updating method we developed is a two-step pro-
cedure. The first step consists in updating the stiffness properties
of the structure. Once the stiffness is known, the second step
proceeds with updating the mass properties. Throughout these
two steps, the displacements and/or the forces at certain points of
the structure are assumed to be known thanks to measurements
taken on the assembly line. Both updating steps involve the
minimization of a cost function according to the constitutive
relation error concept. Table 1 presents the notations which will
be used in the paper.

2.1. The measurement methodology

The measurement of the displacements presents two difficul-
ties: the measurement systems which are available on the
assembly lines often measure positions rather than displacements,
and the weightless “free” shape of the actual parts is unknown.
Therefore, the displacements due to gravity cannot be measured in
only one step. We propose a method for obtaining displacements
based on three series of measurements. A first set of two series of
measurements with two different loading cases is used to readjust
the stiffness parameters, as shown in Eq. (3). Then a second set of
two series of measurements with two different orientations rela-
tive to gravity is used to readjust the mass parameters. A series of
measurements can be common to the two pairs, as can be easily
shown using Eq. (6).

Let p0
� �

denote the (unknown) position vector of the points of
the actual weightless, unloaded structure. All data will be
expressed in the coordinate system of the structure.

If one considers a first set of measured positions p1
� �

under
loads b1

� �
and gravity G1f g, and a second set of measured posi-

tions p2
� �

under loads b2
� �

and the same gravity G1f g, one can

Table 1
Nomenclature.

K½ � The stiffness matrix of the whole structure
M½ � The mass matrix of the whole structure
C½ � The matrix of the kinematic constraints
fpig The vector of the measured positions in Step i
fGig The vector of the gravity forces applied to the structure in Step i
fUig The displacements obtained from two sets of measured positions
fUg A kinematically admissible displacement field
fVg A statically admissible displacement field

f ~U g The measured displacements

e2CRE The constitutive relation error
em

2 The error in the measurements
η2 The modified constitutive relation error
Gu½ � The matrix used to transform local measurement errors into an energy

term
R½ � The projection operator
fFg The external forces applied to the structure
A½ �U The matrix of the linear system leading to fUg
A½ �V The matrix of the linear system leading to fVg
b
� �

U
The force vector of the linear system leading to fUg

b
� �

V
The force vector of the linear system leading to fVg

λcuf g The Lagrange multipliers used to prescribe kinematic boundary condi-
tions on fUg

λcvf g The Lagrange multipliers used to prescribe kinematic boundary condi-
tions on fVg

fUdg Non-zero displacements prescribed on the structure
Hij The current term of the Hessian matrix associated with η2



express the displacements U1f g and U2f g as:
U1f g ¼ p1�p0

� �) K½ � U1f g ¼ b1
� �þ M½ � G1f g

U2f g ¼ p2�p0
� �) K½ � U2f g ¼ b2

� �þ M½ � G1f g

(
ð1Þ

Since the structure is assumed to behave linearly, the dis-
placement field UKf g in the absence of gravity is:

UKf g ¼ U1f g� U2f g ¼ p1�p2
� � ð2Þ

which can be calculated by solving the linear system:

K½ � UKf g ¼ b1
� �� b2

� � ð3Þ
Similarly, the displacement field obtained under loads b1

� �
identical to p1

� �
, but with a different orientation with respect to

gravity G3f g is:
U3f g ¼ p3�p0

� �) K½ � U3f g ¼ b1
� �þ M½ � G3f g ð4Þ

where p3
� �

denotes the third set of measured positions.
The displacement field UMf g due to the weight alone is:

UMf g ¼ U1f g� U3f g ¼ p1�p3
� � ð5Þ

which can be calculated by solving the linear system:

K½ � UMf g ¼ M½ � G1�G3f g ð6Þ
Eqs. (3) and (6) show that the stiffness and mass properties can

be updated using the three sets of measurements p1
� �

, p2
� �

and
p3
� �

in the absence of any information concerning the actual
weightless and load-free structure. However, the orientation of the
structure with respect to gravity must be known.

2.2. The constitutive relation error for model updating

As indicated in [14], the solution of the finite element static
problem is also the solution of the minimization problem:

Find the kinematically admissible field fUg and the statically
admissible field fVg which minimize the Constitutive Relation Error
(CRE):

e2CRE ¼ U�Vf gT K½ � U�Vf g ð7Þ
In order to update the finite element model taking into account

the experimental data, we introduce an error in the measure-
ments:

e2m ¼ R½ �fUg�f ~Ug
� �T

Gu½ � R½ �fUg�f ~U g
� �

ð8Þ

In this expression,

� f ~Ug is the vector of the measured displacements;
� R½ � is a matrix used to extract the degrees of freedom corre-

sponding to the measured quantities from the full finite ele-
ment displacement vector.

Then, by adding this error (8) to the CRE (7), we obtain the
modified constitutive relation error:

η2 ¼ ð1�rÞe2CREþr:C0e2m ð9Þ
where C0 is used to balance the equation and r is a parameter
which can be used to adjust the relative influence of the terms.

2.3. The choice of Gu½ �

In previous studies using the concept of error in the con-
stitutive relation, different choices have been made to define a
matrix Gu½ � which gives an energetic sense to the second term of
the modified error . In [17], Gu½ � is the identity matrix multiplied
by a stiffness constant. This solution can be easily implemented
but the stiffness constant has to be tuned in order to ensure that
both terms of the error have an equivalent weight. It also possible

to use the reduction of matrix K½ � at the measured degrees of
freedom, which is equivalent to calculating R½ � K½ � R½ �T . In this case,
the magnitude of the terms on the matrix diagonal is auto-
matically correct but, as for the first solution, interactions among
the nodes are lost. To take into account this valuable information,
Ref. [18] proposes to define Gu½ � by condensing the stiffness matrix
K½ � at the measured nodes. We will use this technique in the
examples presented in Section 3.

2.4. Calculation of the CRE

For a given set of structural parameters (mass and stiffness), the
objective is to find the kinematically admissible Uf g and the sta-
tically admissible Vf g which minimize η2. The kinematic constraint
C½ � Uf g ¼ Ud

� �
and the static equilibrium equation K½ � Vf g ¼ Ff g are

taken into account by introducing Lagrange multipliers. The sta-
tionarity of the Lagrangian

L0 ¼ η2þ λs
� �T ð K½ � Vf g� Ff gÞþ λc

� �T
C½ � Uf g� Ud

� �� � ð10Þ
leads to the following set of equations:

∂L0

∂U
¼ 2ð1�rÞ K½ � U�Vf gþ2:r:C0 R½ �T Gu½ � R½ �U� ~U

n o
þ C½ �T λc

� �¼ 0f g
ð11Þ

∂L0

∂V
¼ �2nð1�rÞ K½ � U�Vf gþ K½ � λs

� �¼ 0f g ð12Þ

∂L0

∂λc
¼ C½ � Uf g� Ud

� �¼ 0f g ð13Þ

∂L0

∂λs
¼ K½ � Vf g� Ff g ¼ 0f g ð14Þ

The linear system can be partially solved by substituting Ff g for
K½ � Vf g in Eq. (11):

2ð1�rÞ K½ �þ2:r:C0 R½ �T Gu½ � R½ �
� �

Uf gþ C½ �T λc
� �

¼ Ff gþ2:r:C0 R½ �T Gu½ � ~U
n o

ð15Þ

C½ � Uf g ¼ Ud
� � ð16Þ

K½ � Vf g ¼ Ff g ð17Þ
The use of a standard finite element code requires the elimination
of rigid body movements, which boils down to imposing kine-
matic boundary conditions on fields Vf g. Therefore, in order to
simplify the model, we choose to apply the same kinematic con-
straints to both fields Uf g and Vf g. Thus, the Lagrangian becomes:

L¼ η2þ λs
� �T ð K½ � Vf g� Ff gÞþ λcv

� �T
C½ � Vf g� Ud

� �� �
þ λcu
� �T ð C½ � Uf g� Ud

� �Þ ð18Þ

The minimization of this new Lagrangian leads to the linear
systems:

A½ �U
U

λcu

( )
¼ b
� �

U ð19Þ

A½ �V
V

λcv

( )
¼ b
� �

V ð20Þ

with:

A½ �U ¼ 2ð1�rÞ K½ �þ2:r:C0 R½ �T Gu½ � R½ � C½ �T
C½ � 0

" #
A½ �V ¼ K½ � C½ �T

C½ � 0

" #

ð21Þ



b
� �

U ¼
2ð1�rÞF

Ud

( )
þ2:r:C0

R½ �T Gu½ �f ~U g
0

( )
b
� �

V ¼
F

Ud

( )
ð22Þ

2.5. Calculation of the first and second derivatives of the constitutive
relation error

The updating process consists in finding a set of structural
parameters which minimizes the cost function η2. We set out to
perform this minimization using a gradient or Newton algorithm.
This involves the calculation of the first, and possibly the second,
derivatives of η2 with respect to the parameters being updated.
These derivatives could be calculated numerically, but that would
lead to high computation costs. We prefer to estimate the deri-
vatives analytically. This analytical estimation of derivatives of the
constitutive relation error has been first introduced for dynamic
problems in [19] and then for static problems in [14]. The
expression of analytical derivatives depends on the formulation of
the error in the constitutive relation but this expression is general
and does not depend on the finite element model (element type
and number of elements).

2.5.1. Analytical expression of the gradient
In the context of our study, one can observe that, with Uf g and

Vf g satisfying the kinematic and static constraints, η2ð Uf g; Vf gÞ
¼ Lð Uf g; Vf gÞ. Therefore, the first derivative of η2 with respect to
structural parameter ci is:

dη2

dci
¼ dL
dci

¼ ∂L
∂ Uf g

d Uf g
dci

þ ∂L
∂ Vf g

d Vf g
dci

þ ∂L
∂ci

ð23Þ

Since the set of the displacement fields ð Uf g; Vf gÞ is a solution of
the minimization problem, the Lagrangian is stationary:

∂L
∂ Uf g ¼

∂L
∂ Vf g ¼ 0f g ð24Þ

Therefore, instead of calculating the derivatives of η2, one
needs to calculate only the partial derivatives of the Lagrangian:

dη2

dci
¼ ∂L
∂ci

ð25Þ

Assuming that matrix Gu½ � is chosen at the beginning of the
updating process and is independent of the updated parameters,
the first derivative of the cost function η2 with respect to a stiff-
ness parameter ci ¼ cKi is:

dη2

dcKi
¼ ð1�rÞ U�Vf gT∂ K½ �

∂cKi
UþVf g ð26Þ

Under the same assumption, the expression of the first derivative
of the cost function η2 with respect to a mass parameter ci ¼ cMi is:

dη2

dcMi
¼ �2ð1�rÞ U�Vf gT∂ M½ �

∂cMi
Gf g ð27Þ

2.5.2. Analytical expression of the Hessian
Similarly, the Hessian H½ � of the cost function η2 can be

expressed as:

Hij ¼
d2η2

dcjdci
¼ d
dcj

dη2

dci

� 	
¼ d
dcj

∂L
∂ci

� 	
ð28Þ

Expanding that expression leads to:

Hij ¼
d
dcj

∂L
∂ci

� 	
¼ ∂
∂ Uf g

∂L
∂ci

� 	
� d Uf g
dcj

þ ∂
∂ Vf g

∂L
∂ci

� 	

� d Vf g
dcj

þ ∂
∂cj

∂L
∂ci

� 	
ð29Þ

In order to calculate the derivatives of Uf g and Vf g with respect to
parameter ci, one uses linear system (19):

A½ �U
U

λcu

( )
¼ b
� �

U ð30Þ

The derivation of this expression with respect to ci leads to a new
linear system:

A½ �U � d
dcj

U

λc

( )
¼ d b
� �

U

dcj
�d A½ �U

dcj
�

U

λcu

( )
ð31Þ

This system can be solved easily because matrix A½ �U has already
been factorized to solve (19). Similarly, the derivative of Vf g with
respect to ci is calculated using (20).

If the stiffness matrix and the mass matrix are linearly
dependent on structural parameter ci, the second derivatives of
the Lagrangian with respect to ci are zero. This is the case if ci
represents a Young's modulus or a density:

∂
∂cKj

∂L
∂cKi

 !
¼ ∂
∂cMj

∂L
∂cMi

 !
¼ 0 … 8 i; j ð32Þ

With this assumption, if ci represents a stiffness parameter, the
expression of a term of the Hessian matrix is:

HK
ij ¼

d

dcKj

∂L
∂cKi

 !
¼ �2ð1�rÞ∂ K½ �

∂cKi
Uf g � A½ ��1

U
d A½ �U
dcKj

�
U

λcu

( ) !

þ2ð1�rÞ∂ K½ �
∂cKi

Vf g � A½ ��1
V

d A½ �V
dcKj

�
V

λcv

( ) !
ð33Þ

If ci represents a mass parameter, one has:

HM
ij ¼ d

dcMj

∂L
∂cMi

 !
¼ �2ð1�rÞ∂ M½ �

∂cMi
Gf g � A½ ��1

U
d b
� �

U

dcMj

!

þ2ð1�rÞ∂ M½ �
∂cMi

Gf g � A½ ��1
V

d b
� �

V

dcMj

!
ð34Þ

The full expressions of the derivatives involved in Expressions (33)
and (34) are given below:

d A½ �U
dcKj

¼
2ð1�rÞ ∂K∂cK

i
0

0 0

" #
;

d b
� �

U

dcKj
¼ 0f g; d A½ �V

dcKj
¼

∂K
∂cK

i
0

0 0

" #
;
d b
� �

V

dcKj
¼ 0f g

ð35Þ

d b
� �

U

dcMj
¼

2ð1�rÞ∂M∂cM
j
G

0

( )
;

d A½ �U
dcMj

¼ 0½ �; d b
� �

V

dcMj
¼

∂M
∂cM

j
G

0

( )
;

d A½ �V
dcMj

¼ 0½ �

ð36Þ

2.6. Specificities of the updating process of the mass parameters

Let us now highlight some properties of the mass updating
method when the chosen updated mass parameters are densities.

Table 2
Description of the first example shown in Fig. 1.

Substructure Young's modulus
(GPa)

Density
ðkg m�3Þ

Poisson's
coefficient

Thickness
(mm)

Main plate 1 E1 ¼ 1:5 ρ1 ¼ 1500 ν1 ¼ 0:3 t1 ¼ 100
Stiffener 2 E2 ¼ 0:5 ρ2 ¼ 500 ν2 ¼ 0:3 t2 ¼ 100
Stiffener 3 E3 ¼ 0:8 ρ3 ¼ 800 ν3 ¼ 0:3 t3 ¼ 100



2.6.1. A noniterative method
Eqs. (34) and (36) show that the Hessian of the cost function is

independent of the mass parameters. Therefore, the cost function
is a quadratic expression of the mass parameters.

The solution of Eq. (37) is the exact solution of the minimiza-
tion problem. Therefore, the resolution of the minimization pro-
blem does not require an iterative strategy:

H 0cM
� �
 � � 0cM �cM

� �¼ �∇η2 0cM
� � ð37Þ

2.6.2. Noise sensitivity
The independence of the Hessian with respect to the updated

parameters leads to another noteworthy property. Let f ~Uþδ ~Ug
denote the measured noisy displacement (fδ ~Ug being the noise)
and let us look at fδUg, the difference between the noisy ðfUngÞ
and noiseless ð Uf gÞ kinematically admissible solutions. Accord-
ing to Eq. (19),

A½ �U
Un

λcu

( )
¼

2ð1�rÞF
Ud

( )
þ2:r:C0

R½ �T Gu½ �f ~Uþδ ~Ug
0

( )
ð38Þ

Fig. 1. First example: a stiffened plate. (a) The structure and boundary conditions. (b) The set of measured points.

Fig. 2. Second example: a simplified fuselage section composed of a cylindrical skin and a floor reinforced by stiffeners. (a) The whole structure. (b) The stiffeners and
boundary conditions. (c) The set of measured points.



This can be written as fUþδUg, with:

A½ �U
δU
λcu

( )
¼ 2:r:C0

R½ �T Gu½ �fδ ~Ug
0

( )
ð39Þ

Thus, the difference fδUg between kinematically admissible solu-
tions depends linearly on the noise. Then, thanks to Eqs. (27) and
(34), one can see that with noisy measurements the gradient ∇η2

alone depends on Uf g and, thus, on fδUg. Therefore, 37 can be

rewritten as:

H 0cM
� �
 � � 0cM �cM

� �¼ �∇η2 0cM ; fUþδUg� � ð40Þ

H 0cM
� �
 � � δcM ¼∇η2 0cM ; fδUg� � ð41Þ
The errors in the mass parameters due to noise δcM depend

linearly on the measurement noise.

3. Applications

3.1. Presentation of the examples

Our proposed method was applied to two examples. The first
example is quite simple: the structure consists of a plate which is
reinforced by two stiffeners modeled by two plates. We used the
Mindlin–Reissner theory (which takes transverse shear into
account) and quadrilateral shell elements. The main plate was
fixed by restraining the displacement DOFs at its four corners, and
a normal force was applied at the center.

The material properties and thickness of each plate are
described in Table 2. We will use this example simply to validate
the various algorithms and minimization methods used (Fig. 1).

The second example is a simplified model of an aircraft fuselage
section (Fig. 2), which is a common aeronautical structure. The
section consists of a cylindrical skin reinforced by three circular
stiffeners, and a floor reinforced by three longitudinal stiffeners
plus three transverse stiffeners.

The skin and the floor were also meshed with quadrilateral
shell elements using Mindlin–Reissner's theory again. In this case,
however, the stiffeners were represented by Euler–Bernoulli beam
elements. The material and geometrical properties of each com-
ponent are described in Table 3. We will use this example to
compare the efficiency of several minimization methods.

For each example, experimental data were simulated using a
finite element model. A highly refined model was used for the
second example. We assumed that the loading was perfectly

Table 3
The parameters of the second example shown in Fig. 2.

Substructure Young's modulus (GPa) Density ðkg m�3Þ Poisson's coefficient Thickness Section

Skin 1 E1 ¼ 70 GPa ρ1 ¼ 2700 kg m�3 ν1 ¼ 0:3 t1 ¼ 2 mm
Skin stiffeners 2 E2 ¼ 210 GPa ρ2 ¼ 7800 kg m�3 ν2 ¼ 0:3 – S2 ¼ 4000 mm2

Floor 3 E3 ¼ 90 MPa ρ3 ¼ 2600 kg m�3 ν3 ¼ 0:3 t3 ¼ 5 mm
Floor stiffeners 4 E4 ¼ 150 GPa ρ4 ¼ 1500 kg m�3 ν4 ¼ 0:3 – S4 ¼ 8000 mm2

Fig. 3. First example: evolution of the Young's moduli and densities throughout the updating process.

Fig. 4. Evolution of the Young's moduli throughout the Newton updating process.

Table 4
Updated densities using the Newton updating process.

Substructure Initial (kg m�3) Updated (kg m�3)

Density 1 3000 2700
Density 2 8500 7800
Density 3 3000 2600
Density 4 2000 1500



known. In addition, the three displacement components were
measured at each measured point.

3.2. Results of the first example

Fig. 3 shows the evolution of the three Young's moduli and the
three densities throughout the stiffness and mass optimization.
The updating was carried out using a gradient method based on a
numerical estimation of the gradient with updating of matrix Gu½ �.
The measurements were assumed to be noiseless. The results
show that all the updated parameters tended toward the corre-
sponding values used to simulate the measured quantities.

3.3. Comparison of the minimization methods

Fig. 4 shows the evolution of the four Young's moduli E1, E2, E3
and E4 throughout the updating process using a Newton mini-
mization method with optimum steps. The results of the calcula-
tions for densities ρ1, ρ2, ρ3 and ρ4 are given in Table 4. The
measurements were assumed to be noiseless.

Fig. 5 shows the evolutions of the Young's modulus of the skin
throughout the model updating process using different mini-
mization algorithms:

� a gradient method based on an analytical estimation of the
gradient of η2;

� a gradient method based on a numerical estimation of the
gradient of η2;

� a gradient method based on a numerical estimation of the
gradient with updating of matrix Gu½ �;

� a Newton method.

All these methods used variable steps and took into account noisy
measurements.

As shown in Fig. 5 and Table 5, the Newton algorithm was the
most efficient of the algorithms tested. Despite an iteration time
which was twice that of the analytical gradient method due to the
calculation of the Hessian matrix, the convergence time was cut in
half thanks to a number of iterations to convergence which was
four times smaller.

3.4. Influence of the measurement noise using the Newton mini-
mization method

In order to analyze the robustness of our updating method, we
studied the sensitivity of the updated parameters to measurement
noise. Then we multiplied the simulated measurements by a
Gaussian white noise to create virtual noisy measurements. For
each noisy measurement thus created, the mean of the Gaussian
white noise was set to 1 and the standard deviation to one quarter
of the noise level. In other words, a 10% noise level corresponded
to 0.025 standard deviation, and approximately 95% of the mea-
surements at each point were within 75% of the noiseless
measurements.

Fig. 6 shows the evolution of the errors in the parameters as a
function of the noise level. The parameter errors ξi are defined as
relative errors, such as ξi ¼ j cið Uf gÞ�ciðfUngÞj=cið Uf gÞ. As could be
expected thanks to Eq. (41), the evolutions of the errors in the mass
parameters were linear. However, the mass parameters are noise
sensitive: in this example, a 1% noise level leads to more than 10%
error in the skin's density. This means that if the measurement
accuracy is of the order of one hundredth of a millimeter, the
measured displacements must be of the order of one millimeter to
achieve 10% accuracy for the parameters. This may be possible for
the structures studied. Finally, contrary to the mass parameters, the
stiffness parameters (i.e. the Young's moduli) are not sensitive
to noise.

4. Conclusion and prospects

In this paper, we first showed how the mass and stiffness
properties of a lightweight and flexible structure can be updated
using three sets of position measurements despite the absence of
any information on the actual weightless and load-free structure.
We also proposed a cost function to be minimized based on the
concept of constitutive relation error developed for static pro-
blems. The minimization algorithm we used is based on a descent
method, and we showed that the gradient and the Hessian of the

Fig. 5. Evolution of the skin's Young's modulus E1. (a) Evolution as a function of the iteration number. (b) Evolution as a function of the CPU time.

Table 5
The key elements of comparison of the minimization algorithm.

Substructure Num. grad.
( Gu½ � act.)

Num.
grad.

Ana.
grad.

Newton

Number of iterations to
convergence

37 48 48 12

Total time to convergence 372.5 s 396 s 197 s 104 s
Average time per iteration 10 s 8 s 4 s 9 s



cost function can be computed very quickly. Finally, we proposed
two sample applications. The first application showed that the
proposed method leads to a good estimate of the structural
parameters. The second application showed that the analytical
estimation of the gradient and Hessian is efficient compared to
classical numerical estimation.

As a continuation of this work, we can now try to estimate the
quality of the updated models. This can be done quickly at the end
of the updating process by means of a Newton method. Indeed, the
calculation of the Hessian also enables one to calculate second-
order Taylor expansions, which can lead to approximate infor-
mation such as confidence intervals of the updated parameters,
and parameter correlations or influence.

Another means of expanding on this work would be to try to
reduce the computation time of the cost function as well. One
could think of using a reduced model such as a PGD model.
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