Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10554

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Reduction of a Finite Element Parametric Model using Adaptive POD Methods – Application to uncertainty quantification

S. Clénet¹, T. Henneron², N. Ida³

¹L2EP, Arts et Métiers ParisTech, 59046 Lille cedex, France
²L2EP, University of Lille 1, 59655 Villeneuve d’Ascq cedex, France
³University of Akron, Akron, OH 44325-3904, USA

Model Order Reduction (MOR) methods enable reduction of the computation time when dealing with parametrized numerical models. Among these methods, the Proper Orthogonal Decomposition (POD) method seems to be a good candidate because of its simplicity and its accuracy. In the literature, the offline/online approach is generally applied but is not always required especially if the study focuses on the device without any coupling with others. In this paper, we propose a method to construct adaptively the reduced model while its utilization which limits the evaluations of the full model when appropriate. A stochastic magnetostatic example with 14 uncertain parameters is studied by applying the Monte Carlo simulation method to illustrate the proposed procedure. In that case, it appears that the complexity of this method does not depend on the number of input parameters and so is not affected by the curse of dimensionality.

Index Terms—Error estimation, Finite Element Method (FEM), Model Order Reduction (MOR), Proper Orthogonal Decomposition (POD), Uncertainty Quantification

I. INTRODUCTION

In simulation based design or in uncertainty quantification, parameterized models are needed. In order to obtain a good accuracy, numerical models based on the Finite Element (FE) method are often used. The issue is then the computation time which can be very long especially if the number of parameters is high, more than about a dozen. Recently, Model Order Reduction (MOR) methods, like the Proper Orthogonal Decomposition (POD) method or the Reduced Basis (RB) method, have been applied in computational electromagnetics for uncertainty quantification or design [1-2]. An approximation of the full parametrized model (the original FE model) is then sought in a space spanned by a reduced basis, which enables one to reduce the number of degrees of freedom and consequently the computation time by reducing the size of the equation system [3-5]. However, the accuracy of the reduced model is strongly related to the choice of the reduced basis, which is obtained from the solutions, so-called snapshots, of the full problem for particular input parameter sets. The offline/online approach is generally used to construct an accurate reduced model [6,7]. During the offline stage, the whole parameter space is spanned in order to select the best snapshots using a greedy algorithm based on an error estimator which evaluates the error of reduction [8,12]. During the online stage, the reduced model is evaluated intensively. This approach is interesting to develop a generic model incorporated as a building block within a bigger system. However, if the study holds only on the device by itself without any coupling with other models like, for example, during a design process or a robustness analysis based on a Monte Carlo Simulation, this decoupling between the two stages is not always justified.

In this paper, we propose a procedure to construct adaptively the reduced model while its utilization which limits the evaluations of the full model when appropriate. First, the POD technique is briefly presented. Then, the proposed procedure is described. We introduce a simple error estimator based on [9] which bounds the error due to reduction. Finally, the proposed procedure is applied in the case of a stochastic magnetostatic problem, whose geometry is defined by 14 parameters.

II. REDUCTION OF A PARAMETRIC MODEL USING POD METHOD

The discretization of a parameterized linear magnetostatic problem using the FE method on a domain \(D(\mathbf{p}) \) leads to the following linear system of equations:

\[
\mathbf{S}(\mathbf{p}) \mathbf{X}(\mathbf{p}) = \mathbf{F}(\mathbf{p})
\]

where \(\mathbf{p}=(p_1,\ldots,p_M) \) is the set of \(M \) input parameters, \(\mathbf{S}(\mathbf{p}) \) is the \(N \times N \) stiffness matrix, \(\mathbf{F}(\mathbf{p}) \) is the \(N \times 1 \) source vector, \(\mathbf{X}(\mathbf{p}) \) is the \(N \times 1 \) vector of unknowns and \(N \) is the number of degrees of freedom. The parameters can be related to the source terms like the current, the material characteristics like the reluctivity or the physical dimensions as long as the connectivity between nodes and elements does not change. To account for the variation of the geometry of \(D(\mathbf{p}) \), the nodes are moved. To reduce the numerical errors and to avoid any overlapping of elements, an appropriate mapping \(T(\mathbf{x},\mathbf{p}) \) (\(\mathbf{x} \) is the position) is introduced, which transforms a mesh constructed on a reference domain \(D_{ref} \) (defined by the nominal parameter set values) into a mesh of the desired parameterized domain \(D(\mathbf{p}) \). The solution \(\mathbf{X}(\mathbf{p}) \) enables one to determine the field distribution and also the quantities of interest which are usually either linear functions of \(\mathbf{X}(\mathbf{p}) \) (flux) or quadratic functions of \(\mathbf{X}(\mathbf{p}) \) (energy or force). If we denote \(G \) as the quantity of interest which is a quadratic function of \(\mathbf{X}(\mathbf{p}) \), it can be written under the form:
\[G = X(p)\Psi p X(p) \tag{2} \]

with \(G(p) \) a \(N\times N \) matrix. If the model (1-2) is used in a design process or for uncertainty quantification, the number of solutions of the FE model can be very high for a large parameter number \(M \) due to the “curse of dimensionality”. To decrease the computation time, one should either limit the number of calls leading to a loss of accuracy or reduce the size of the linear system of equations (1) using a MOR method. The POD method, detailed in the following, is one of the most popular MOR methods. Consider \(Z \) parameter set realisations \((p^1,\ldots,p^i)\) and the \(N\times Z \) matrix \(X \) of the associated solutions \((X(p^1),\ldots,X(p^i))\), so-called snapshots. We define the linear space \(K \) spanned by the vectors \((X(p^1),\ldots,X(p^i))\). We denote the \(N\times R \) matrix \(\Psi \) \((R\leq Z)\) of the vectors \((\Psi^1,\ldots,\Psi^i)\), an orthogonal basis of the space \(K \). The matrix \(\Psi \) can be obtained by a Singular Value Decomposition (SVD) of the matrix \(X \). The idea of the POD method is to seek an approximation of the solution of (1) in the space \(K \), which means that \(X(p) \) is approximated by the following linear combination:

\[X(p) \approx \Psi X_r(p) = \sum_{i=1}^{R} x_i(p)\Psi^i \tag{3} \]

Replacing \(X(p) \) by the approximation (3) in (1), the equation system to be solved becomes overdetermined. By applying the Galerkin method, the vector \(X_r(p) \) has to satisfy an \(R\times R \) linear system of equations:

\[\Psi^i S(p^i) \Psi X_r(p) = \Psi^i F(p) \tag{4} \]

The size of the system (4) is then equal to \(R \), which is much lower than \(N \), the size of the full system (1). The solution of the system is much faster, i.e., reducing significantly the computation time even if the matrix \(\Psi^i S(p^i) \Psi \) is dense. From, the solution \(X_r(p) \), an approximation of the FE solution can be derived \(X(p) = \Psi X_r(p) \). The accuracy of the method is closely related to the choice of the parameters \((p_1,\ldots,p_Z)\) used to determine the reduced basis. It should be noted that the POD method can also be seen as solver of an FE equation system. Indeed, it leads to an approximate solution \(\Psi X_r(p) \) with the same format as the FE solution of the full problem (1). This means that the solution \(\Psi X_r(p) \) is fully compatible with the FE postprocessor (Fig.1).

III. Adaptive Procedure

In the literature, the POD method is often combined with an offline/online approach. During the offline stage, an iterative algorithm, called greedy algorithm, is applied in order to determine the best snapshots. Suppose that, at the \(i \)th iteration of the offline stage, the snapshots have been determined for the parameter sets \((p^1,\ldots,p^i)\) and \(\Psi^i = (\Psi^1,\ldots,\Psi^i) \) the corresponding reduced basis. To determine the next snapshot \(X(p^{i+1}) \), we seek the parameter \(p^{i+1} \) which maximizes an error estimator \(\eta(p,\Psi^i) \). The term \(\eta(p,\Psi^i) \) estimates the error of the reduction process, i.e., the error between the solutions of the full model \(X(p) \) and of the reduced model \(X(p) \) without requiring the solution of the full problem. Such estimators are available in the literature [6-8]. These are generally derived from the residual \(R(p) \):

\[R(p) = F(p) - S(p) \Psi X_r(p) \tag{5} \]

Fig. 1. Flowchart of the implementation of the adaptive POD extension along a FE standard software for uncertainty quantification using the Monte Carlo Simulation Method \(U \) the size of the sample
The crude one consists in solving the reduced problem for a “sufficiently” dense set of points S in the parameter space and to select p^{0} equal to the point of S giving the maximum value of the estimator. Once p^{0} is determined, the full problem is solved and the solution $X(p^{0})$ is added to the snapshot set and a new orthogonal basis Φ is derived by applying a SVD. The process is repeated until the error reaches a prescribed threshold. Then, the online stage concerns the many-queries parameters analysis stage where the reduced model is used intensively. This approach can be very useful when the reduced parametric model is used during the online stage as a building block of a model of a large system because it can represent a device on a large parameter range with good accuracy while being very fast. However, if one wants just to evaluate once a quantity of interest for a sequence of parameter sets $\{p_{1},...,p_{m}\}$ like for uncertainty quantification or optimization, this dissociation in two stages is not necessarily required. Moreover, during the offline stage, the greedy algorithm requires the evaluation of the reduced models on the dense set S, which size is affected by the “curse of dimensionality”. The idea is then to evaluate the quantity of interest G with the reduced model for each p^{i} and to evaluate the error of reduction. If the error of reduction is too significant, the full problem is then solved for the parameter set p^{i} and the snapshot set is updated as well as the reduced basis Φ. This method enables to evaluate the full model only when it is necessary. The algorithm of the proposed method has been given in Fig. 1 in the case of the Monte Carlo Simulation Method (MCSM) when the parameter sets, for which the model is evaluated, are defined a-priori. We can notice that the number of input parameters does not influence the algorithm complexity and so is not affected by the curse of dimensionality, preserving this property of the MCSM. One can note that the adaptive POD can be easily extended to any procedure where the parameter sets are iteratively determined like in the case of a design procedure.

IV. ERROR ESTIMATION

The previous procedure requires the evaluation of the error of reduction. Several error estimators derived from the residual have been proposed in the literature. In the following, an estimator is derived from [10] which is not necessarily efficient for large FE problems but which provides error bounds. We suppose that the stiffness matrix $S(p)$ is symmetric positive definite which is the case with standard FE gauged potential formulations of static field problems. The error $e_{red}(p,\Phi)$ due to the reduction method is defined by:

$$e_{red}(p,\Phi) := \Delta X(p) \cdot S(p) \cdot \Delta X(p)$$

(6)

where $\Delta X(p)$ is a vector equal to $X(p)-\Phi \cdot X_{r}(p)$. The error is equal to zero when $\Delta X(p)$ is equal to zero, that is to say, when the FE solution is equal to the solution given by the reduced problem $\Phi \cdot X_{r}(p)$. This error cannot be calculated in practice because it requires the calculation of the solution $X(p)$ of the FE problem. However, the error can be expressed as a function of the residual (see (5)):

$$e_{red}(p,\Phi) := R(p) \cdot S^{-1}(p) \cdot R(p)$$

(7)

This expression can also not be used in practise because it requires the solution of $S^{-1}(p) \cdot R(p)$ which is of the size of the full problem. However, we can introduce the following error estimator:

$$\eta(p,\Phi) := R(p) \cdot S^{-1}(p_{0}) \cdot R(p)$$

(8)

The parameter p_{0} is a “well chosen” value of p. The inverse of $S(p_{0})$ has to be calculated only once and then stored before the adaptive process. If the parameters p are related only to the relucitivity $\nu(x,p)$ with x the position on D, we denote $v_{\text{min}}(x)$ and $v_{\text{max}}(x)$ such that:

$$v_{\text{min}}(x) \leq v(x,p) \leq v_{\text{max}}(x) \quad \forall x \in D$$

(9)

In the case of the vector potential formulation it can be shown that [10]:

$$k_{\text{min}} \eta_{\Phi}(p,\Phi) \leq e_{red}(p,\Phi) \leq k_{\text{max}} \eta_{\Phi}(p,\Phi)$$

(10)

with the coefficients $k_{\text{min}}=\min_{x \in D}[v(x,0)/v_{\text{min}}(x)]$ and $k_{\max}=\max_{x \in D}[v(x,p)/v_{\text{max}}(x)]$. We can see that an error bound can be expressed as a function of the estimator. In the scalar potential formulation, an error bound can be also extracted while considering the permeability instead of the relucitivity. It should be also noted that the previous error bound property can be retrieved when the parameters are related to the geometry. In fact, changing the geometry of the domain $D(p)$ is equivalent to changing the permeability on a reference domain D_{ref} (see [9]). The permeabilities on the reference domain D_{ref} are then functions of the dimensions and can be bounded as in (9).

V. APPLICATION

We consider a magnetic holder modelled by a 2D FE vector potential formulation. The geometry of the device is defined by 14 parameters, which are represented in Fig.2. 11 parameters are dimensions and 3 are material characteristics. The quantity of interest is the force experienced by the mobile plate when the coil is not energized (due only to the permanent magnet). The force has been calculated using the Maxwell Stress Tensor. We have fixed nominal values for the parameters p_{i}^{nom} and consider the parameter p_{i} as a uniform random variable in $[0.9p_{i}^{\text{nom}},1.1p_{i}^{\text{nom}}]$ except B_{r} which has an interval of variation of $[0.95B_{r}^{\text{nom}},1.05B_{r}^{\text{nom}}]$. The FE mesh consists of 2846 nodes and 2750 rectangular elements. The modifications of geometry are taken into account by moving the nodes proportionally to dimension variations (the transformation $T(x,p)$ is a dilatation/contraction). We want to estimate the mean and the standard deviation of the force and also to determine the parameters that contribute the most to the variability of the force. Then, the most efficient way to lower the variability of the force is to reduce the variability of these parameters. This global sensitivity has been undertaken by estimating the Sobol indices. The MCSM has been used to estimate the sample mean and standard deviation and the
have reported the number of solutions of the full problem. The number of snapshots is then equal to U. In Table 1, we extend it in the case of an affine decomposition of the full problem. This method is promising and in future works, we propose to apply it in the case of a stochastic collocation model. We have reported the number of solutions of the full problem (snapshots) as well as the estimation of the mean and the standard deviation for different values of the criterion ε for the estimator $\eta^2(p, \mathbf{Y})$ (see section IV). As expected, we can see that the number of snapshots increases as ε decreases. A good accuracy on the mean and the standard deviation is obtained with 6 snapshots. In that case, the full problem has been solved 6 times, the remaining 494 points have been obtained using the reduced model with a maximum size equal to 6. We have reported in Table II the Sobol indices calculated for different values of ε. We can see that the Sobol indices even with low percentage can be calculated accurately. The remanent magnetization B_r is the most influential parameter. A new MCSM has been launched with a smaller range for B_r of 2.5% instead of 5% while starting the procedure with the snapshots calculated during the first round and fixing an error of $\varepsilon=1.5 \times 10^{-6}$. The mean and the standard deviation of the force are equal to 78.07N and 8.09N respectively. This calculation does not require any additional call to the full model.

VI. CONCLUSION

In this paper, we have proposed an adaptive POD method to solve uncertainty quantification problems based on sampling techniques or optimization problems. The application shows that this method is promising and in future works, we propose to extend it in the case of an affine decomposition of the full parametric problem by using the Reduced Basis Method.

ACKNOWLEDGEMENT

This work was supported by the foundation Arts et Métiers.

REFERENCES

[10] T.T. Nguyen, H. Mac, S. Clénét, Non intrusive uncertainty quantification method for models with a high number of parameters, Compumag 2015, Montreal, Canada

Fig.2: Half of the geometry of the magnetic holder and the definition of the parameters ($r_{bob}, h_{bob}, r_{aim}, h_{aim}, \nu, \mu, B_r, B_t, B_{aim}, V_{aim}, V_t$)

TABLE I: ESTIMATION OF THE MEAN AND THE STANDARD DEVIATION FOR DIFFERENT VALUES OF THE ERROR CRITERION ε

<table>
<thead>
<tr>
<th>Relative error ε</th>
<th>Full problem solutions</th>
<th>Mean (N)</th>
<th>Standard deviation (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5×10^{-6}</td>
<td>1</td>
<td>77.87</td>
<td>8.743</td>
</tr>
<tr>
<td>1.5×10^{-4}</td>
<td>6</td>
<td>78.11</td>
<td>8.857</td>
</tr>
<tr>
<td>1.5×10^{-6}</td>
<td>16</td>
<td>78.11</td>
<td>8.857</td>
</tr>
<tr>
<td>0 (Full problem)</td>
<td>U</td>
<td>78.11</td>
<td>8.858</td>
</tr>
</tbody>
</table>

TABLE II: FIRST ORDER SOBOL INDICES (IN %) CALCULATED FROM THE FULL MODEL AND FROM THE ADAPTIVE PROCEDURE FOR DIFFERENT VALUES OF THE ERROR

<table>
<thead>
<tr>
<th>Relative error ε</th>
<th>1.5×10^0</th>
<th>1.5×10^{-4}</th>
<th>1.5×10^{-6}</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{aim}</td>
<td>0.00</td>
<td>1.49</td>
<td>2.21</td>
<td>2.30</td>
</tr>
<tr>
<td>h_{aim}</td>
<td>0.00</td>
<td>3.15</td>
<td>3.77</td>
<td>3.60</td>
</tr>
<tr>
<td>h_{bob}</td>
<td>6.14</td>
<td>0.22</td>
<td>0.3</td>
<td>0.31</td>
</tr>
<tr>
<td>r_{bob}</td>
<td>30.5</td>
<td>15.9</td>
<td>14.3</td>
<td>14.6</td>
</tr>
<tr>
<td>ν</td>
<td>0.29</td>
<td>1.49</td>
<td>1.58</td>
<td>1.60</td>
</tr>
<tr>
<td>μ</td>
<td>0.46</td>
<td>5.92</td>
<td>6.92</td>
<td>7.08</td>
</tr>
<tr>
<td>h_{t}</td>
<td>0.27</td>
<td>0.36</td>
<td>0.33</td>
<td>0.30</td>
</tr>
<tr>
<td>B_r</td>
<td>9.38</td>
<td>17.8</td>
<td>16.4</td>
<td>16.2</td>
</tr>
<tr>
<td>h_{bob}</td>
<td>0.14</td>
<td>3.04</td>
<td>2.84</td>
<td>2.70</td>
</tr>
<tr>
<td>B_t</td>
<td>0.06</td>
<td>0.92</td>
<td>0.85</td>
<td>0.91</td>
</tr>
<tr>
<td>V_{aim}</td>
<td>35.8</td>
<td>25.5</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>V_t</td>
<td>2.96</td>
<td>11.4</td>
<td>12.2</td>
<td>12.0</td>
</tr>
<tr>
<td>λ_1</td>
<td>13.3</td>
<td>9.31</td>
<td>9.14</td>
<td>9.10</td>
</tr>
</tbody>
</table>