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Abstract     Cutting forces measurement is an important component of the ma-
chining processes development and control. The use of conventional direct meas-
urement systems is often impossible as they interfere in the process’s dynamics. 
This work proposes a method of cutting force indirect estimation during turning 
thin-walled cylindrical shells. Calculation of the flexibility matrix has enabled us 
to relate measured displacements of certain workpiece’s points to the cutting 
force. An optimization approach for choosing the measurement points location has 
been proposed, based on the best conditioning of the flexibility matrix. 

 
Key words Cutting forces measurement, Thin-walled workpiece, Technological 
system, Optimization, Ill-conditioned systems. 

1.0 Introduction 

In modern manufacturing, cutting forces measurement is a key element in under-
standing the operational conditions during machining workpieces. Usually, cutting 
forces are measured directly using different kinds of dynamometers. For instance, 
in [1], an experimental set-up is described where cutting forces are measured di-
rectly, with a Kistler 9257B three-component piezo-dynamometer. The direct 
measurement approach is also incorporated in [2]. Another approach, based on the 
use of currents drawn by a.c. feed-drive servo motors, is presented in [3], where 
the pulsating milling forces are measured indirectly within the bandwidth of the 
current feedback control loop of the feed-drive system. 

 
Nevertheless, in some cases, the use of dynamometers can be problematic, for in-
stance in case of thin-walled workpieces in presence of instabilities: due to the 
presence of resonances in the frequency response of the dynamometer can induce 
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significant perturbations in the measured signals. This was the case for [4]: the ad-
dition of the dynamic system of the dynamometer has modified the conditions of 
the chatter onset. 
 
In the present paper, we address the problem of quasi-static evaluation of the cut-
ting force during turning cylindrical shells. The cutting force components are es-
timated indirectly, from the displacement measurements, with the help of the flex-
ibility matrix, based on the elastic behavior of the structure. 

 
Fig. 1 The components of the cutting force (on the left). The free end of the shell (on the right) 
with angular location of the displacement sensors shown. 

Two arbitrary points belonging to the free end of the shell are chosen: point ܣ and 
-The points represent the location of two displacement sensors. The angular lo .ܤ
cation of these points is determined by parameters Φଵ and Φଶ, which is shown in 
Fig. 1. The radial displacements of these points are actually measured using non-
contact displacement sensors. The relation between the two components ܨ஼  ோ ofܨ ,
the cutting force and the radial displacements ݓ஺ and ݓ஻  of points ܣ and ܤ at first 
approximation is linear and injective: 

܎ۯ =  (1)    ܍

where 

ۯ = ቂ
ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶቃ ܎					, = ൤ܨ஼ܨோ

൨ ܍					, = ቂ
஺ݓ
 ஻ቃ .  (2)ݓ

Matrix ۯ is called the flexibility matrix. Parameter Λ determines the axial position 
of the cutting force. In order for the solution ܎ =  to be reliable, system (1) ܍ଵିۯ
has to be numerically stable. The system stays numerically stable as long as its 
condition number is sufficiently close to 1.The question of the optimality of the 
sensors position is sought in terms of the condition number of the flexibility ma-
trix.  
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Section 2 addresses the algorithm of calculation of the flexibility matrix, and Sec-
tion 3 describes a particular way of avoiding numerical instabilities calculating 
this matrix. 

2.0 Calculation of the Flexibility Matrix 

In this section, we develop a quasi-static analysis of the force-displacement rela-
tion applied to the case of turning a thin-walled cylindrical shell. The cutting force 
is taken as concentrated.  

 
The shell is shown in Fig. 2. The left-hand edge of the shell is rigidly fixed, and 
the right-hand edge is free. In other words, the shell is supported like a cantilever 
with “clamped-free” boundary conditions. Thickness of the shell is regarded as be-
ing much smaller than its diameter: ℎ ≪ ܦ = 2ܴ. We will be using cylindrical 
coordinates: axial ݏ and angular ߮. An arbitrary point ܯ belonging to the middle 
surface of the shell is said to have coordinates (ݏ, ߮), as shown in Fig. 2. 

 
Fig. 2 The shell’s dimensions and system of coordinates. 

The shell is subjected to pin-load, which is represented by the two components of 
the cutting force: radial ܨோ and circumferential ܨ஼ , as shown in Fig. 1. We neglect 
the axial component of the cutting force because it is always much smaller than 
the other two components [4], and because the stiffness in the ݖ-direction is much 
higher than in the other two directions. Forces ܨ஼  and ܨோ act on the point with co-
ordinates (ݏி , 0). We introduce Λ as a changeable dimensionless parameter so 
that ݏி = Λ ⋅  see (Fig. 1). We can now write down the expression for the shell's ,ܮ
thickness: 

ℎ(ݏ) = ൜ℎ୤୧୬ if	ݏ < ிݏ
ℎ୧୬୧ if	ݏ ≥ ிݏ

   (3) 
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where ℎ୧୬୧ is the shell's thickness before cutting and ℎ୤୧୬ is the shell's thickness af-
ter cutting. 
 
According to [6], the general system of equations for a Kirchhoff-Love thin-
walled cylindrical shell shown in Fig. 2 may be written [10] in matrix form 

ܡۺ =  (4)   ܏

where ۺ is a linear partial differential operator represented by (8 × 8) matrix and 

ܡ = ,ݑ} ,ݒ ,ݓ 		 ,ଵߴ ܴ ଵܶ, ܴ ଵܵ
∗, ܴܳଵ∗,  ଵ}  (5)ܯܴ

is the state vector and 

܏ = −ܴ ⋅ {0, 0, 0, ,ଷݍ			,ଶݍ			,ଵݍ			,0 0}.  (6) 

is the load vector. Here ܴ is the shell's radius, ݑ is the axial direction displace-
ment, ݒ is the circumferential direction displacement, ݓ is the radial direction dis-
placement, ߴଵ is the surface normal's angular displacement, ଵܶ , ଵܵ

∗, ܳଵ∗, ܯଵ are the 
internal forces, and ݍଵ, ݍଶ,  represent distributed external loading. Equation (4)	ଷݍ
represents a linear system of partial differential equations. It is possible to separate 
 :and ߮ with the aid of the Fourier method using complex Fourier series ݏ

ܡ = ∑ exp(݅݇߮).ାஶ(௞)ܡ
௞ୀିஶ    (7) 

After separation of variables, system (4) is decomposed into the infinite amount of 
linear 8-th order systems of ordinary differential equations (ODE). Each of these 
ODE systems can be written in matrix notation as follows 

ௗ
ௗ௦
(௞)ܡ = ۴(௞)ܡ(௞) +  (8)   (௞)܏

where ۴(௞) is (8 × 8) constant square matrix: 
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۴(௞) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 − ௜ఔ௞

ோ
− ఔ

ோ
0 ଵିఔమ

ா௛ோ
0 0 0

− ௜௞
ோ

0 0 0 0 ଶ(ଵାఔ)
ா௛ோ

0 0
0 0 0 −1 0 0 0 0
0 − ௜ఔ௞

ோమ
− ఔ௞మ

ோమ
0 0 0 0 ଵଶ൫ଵିఔమ൯

ா௛యோ
஺
ோమ

0 0 − ஺
ோ

0 − ௜௞
ோ

0 0

0 ா௛௞మ

ோ
ܤ− 0 − ௜ఔ௞

ோ
0 0 − ௜ఔ௞

ோమ

0 ܤ ܥ 0 ఔ
ோ

0 0 ఔ௞మ

ோమ

− ஺
ோ

0 0 ܣ 0 0 1 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (9) 

where ܧ is the Young modulus, ߥ is the Poisson's ratio, ℎ is the shell's wall-
thickness and 

ܣ = ா௛య௞మ

଺ோ(ଵାఔ)
ܤ			, = ௜ா௛௞

ோ
ቀ1 + ௛మ௞మ

ଵଶோమ
ቁ ܥ			, = ா௛

ோ
ቀ1 + ௛మ௞ర

ଵଶோమ
ቁ.  (10) 

Keeping in mind that dim(ݔ)ߜ = 1/dim(ݔ), it is quite obvious that 

,ଵݍ} ,ଶݍ {ଷݍ = {0, ஼ܨ , {ோܨ−
ఋ(ఝ)ఋ(௦ି௦ಷ)

ோ
 .  (11) 

Using the Fourier series of the Dirac delta function 

(߮)ߜ = ଵି(ߨ2) ∑ exp(݅݇߮)ାஶ
௞ୀିஶ  ,  (12) 

the load vector can be rewritten as 

(௞)܏ =
ଵ
ଶగ
{0, 0, 0, 0, 0, ஼ܨ− , ோܨ , ݏ)ߜ	{0 −  ி).  (13)ݏ

The left end of the shell (ݏ = 0) is rigidly fixed, and the right end (ݏ =  .is free (ܮ
The followings are the boundary conditions: 

,ݑ} ,ݒ ,ݓ ଵ}(௞)ߴ = 0 at	ݏ = 0
{ܴ ଵܶ , ܴ ଵܵ

∗, ܴܳଵ∗, ଵ}(௞)ܯܴ = 0 at	ݏ =  (14)  	ܮ

Here are the continuity conditions at point (ݏ =  :(ிݏ

ிݏ)(௞)ܡ + (ߝ = ிݏ)(௞)ܡ − (ߝ + ଵ
ଶగ
{0, 0, 0, 0, 0, ஼ܨ− , ோܨ , 0}  (15) 

where ߝ is an infinitesimally small parameter. System (8) along with boundary 
conditions (14) represent a boundary value problem. We have used the initial pa-
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rameters method [6] in order to solve this problem by means of numerical integra-
tion. The Godunov orthogonalization method [7] was incorporated to ensure nu-
merical stability of the solution. Moreover, the method was further modified in or-
der to eliminate the well-known Gram-Schmidt process's weakness [8]. The 
Gram-Schmidt process was replaced by the Householder transformation [9], 
which effectively performs the same thing—orthonormalizes a set of vectors in 
the Euclidean space ℝ௡. Harmonic ݓ(௞)(ܮ) that corresponds to the radial dis-
placements of points located on the free end of the shell, can be represented as a 
linear combination of the cutting force components: 

(ܮ)(௞)ݓ = ஼ܨ ⋅ (௞)ߙ + ோܨ ⋅  (16)   (௞)ߚ

where coefficients ߙ(௞) and ߚ(௞) depend only on parameter Λ and have been ob-
tained after numerical integration of the boundary value problem for different 
harmonics. According to expression (7), 

,ܮ)(௞)ݓ ߮) = ∑ ൫ܨ஼ߙ(௞) + ൯ାஶ(௞)ߚோܨ
௞ୀିஶ exp(݅݇߮)  (17) 

According to the definition (see Fig. 1), we can write that ݓ஺ =  and (Φଵ,ܮ)ݓ
஻ݓ = ,ܮ)ݓ Φଶ). Finally, according to formulas (1) and (2), matrix ۯ can be repre-
sented as an infinite series 

ۯ = ∑ ቈ
exp(݅݇Φଵ)(௞)ߙ exp(݅݇Φଵ)(௞)ߚ
exp(−݅݇Φଶ)(௞)ߙ exp(−݅݇Φଶ)(௞)ߚ

቉ାஶ
௞ୀିஶ  . (18) 

It can be shown that the components of matrix ۯ are always real numbers, which 
they must be, of course, since ۯ is the flexibility matrix. The criteria of meeting 
the required accuracy has been 

ேାହۯ‖ − ‖ேۯ ⋅ ே‖ିଵۯ‖ ≤  (19)   .ߝ

If the above inequality is satisfied, then we consider approximation ۯே to be accu-
rate enough. In our work, we have set the relative accuracy to ߝ = 0.01 = 1%.  

The magnitude of the cutting force is approximately 10ଶ–10ଷ N, according to [4]. 
Using this data and our model, we have calculated that magnitudes of the dis-
placements are within 10ିହ m. 

The components of matrix	ۯ are dependent on the three variable parameters that 
we have introduced earlier: ۯ = ,Φଵ,Φଶ)ۯ Λ). 
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3.0 Optimization of the Displacement Sensors Location 

We need to determine the best set of parameters Φଵ and Φଶ (the displacement sen-
sors angular location) that would make the system (1) as well-conditioned as pos-
sible. Measure of a square matrix's numerical stability is called its condition num-
ber ߤ. By definition [8], 

(ۯ)ߤ = ‖ۯ‖ ⋅  ଵ‖ .  (20)ିۯ‖

Condition number ߤ is always positive and cannot be less than one. The closer the 
condition number ߤ of the flexibility matrix ۯ is to one, the better conditioned this 
matrix is. Therefore, to ensure the best numerical stability of the linear transfor-
mation (1) we must minimize the condition number ߤ of matrix ۯ. Let us con-
struct the target function 

݂(Φଵ, Φଶ) = maxஃൣߤ൫ۯ(Φଵ, Φଶ, Λ)൯൧ .  (21) 

To accomplish our optimization goal we have had to minimize ݂: 

݂ → min,								൛Φଵ
୭୮୲, Φଶ

୭୮୲ൟ = argൣmin஍భ∈[଴,ଶగ]&஍మ∈[଴,గ] ݂(Φଵ, Φଶ)൧.  (22) 

We have implemented the brute force approach minimizing function ݂. Angular 
increment has been set to 0.1°, and the increment for parameter Λ has been set to 
0.05. Color plot of function ିߤଵ൫ۯ(Φଵ, Φଶ, 1)൯ is shown in Fig. 4. We have cho-
sen to analyze function inverse to the condition number because this function is 
normalized: its range of values lies inside interval (0, 1). The diagram reveals 20 
local maxima of ݂ (see Fig. 4 and Table 1). The best choice of parameters (i.e. the 
global maxima) turned out to be Φଵ

୭୮୲ = Φଶ
୭୮୲ = 20.4°, which corresponds to the 

target function value of 1.2. This displacement sensors’ configuration is shown in 
Fig. 3. 

 
Fig. 3 Optimal displacement sensors location. 

 
Strictly speaking, this value is the global minimum of function ݂(Φଵ, Φଶ). How-
ever, in practical terms, any of the displacement sensors configurations from Table 
1 can be chosen because magnitude of ݂ for any of those configurations does not 
even exceed the value of 10. It means that at the worst case scenario we could lose 
1–2 significant digits [8] calculating the components of the cutting force using 
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equation (1), which corresponds to relative accuracy ߝ = 10ିଵ଴. Such loss is not 
significant in comparison with other sources of error in our model. 

 
Fig. 4 Optimal displacement sensors’ angular location configurations. 

Table. 1 Optimal displacement sensors angular location configurations. 
# Φଵ Φଶ ݂ ‖ۯ‖ ⋅ 10଺ # Φଵ Φଶ ݂ ‖ۯ‖ ⋅ 10଺  

AS 20.4 20.4 1.2 8.2 I1 208.3 137.5 1.8 0.59 

BS 30.6 30.6 1.5 7.2 I2 222.5 151.7 1.8 0.59 

C1 66.6 24.3 1.5 9.7 J1 241.1 83.5 2.0 2.1 

C2 24.3 66.6 1.5 9.7 J2 276.5 119.9 2.0 2.1 

DS 77.7 77.7 2.8 3.8 K1 268.5 78.6 2.0 2.7 

ES 89.3 89.3 1.9 1.6 K2 281.5 91.5 2.0 2.7 

F1 119.4 83.5 1.4 2.2 L1 293.5 25.3 1.4 7.1 

F2 83.5 119.4 1.4 2.2 L2 334.7 66.5 1.4 7.1 

GS 136.2 136.2 1.4 0.87 M1 329.3 20.5 1.2 7.6 

HS 149.5 149.5 1.7 0.37 M2 339.5 30.7 1.2 7.6 

Index ‘S’ in Table 1 represents ݕ-symmetrical configurations, and indexes ‘1’ and 
‘2’ represent identical configurations. Table 1 also features minimum value of 
norm of matrix ۯ, which represents magnitude of displacements of measured 
points. Note that 

dimۯ = dim‖ۯ‖ = mm N⁄ .   (23) 

We can see that configurations GS, HS, I1 and I2 are probably not preferable be-
cause the displacements would be significantly smaller than in the other configu-
rations. From this point of view, configurations AS, BS, C1, C2, L1, L2, M1, M2 
are optimal, and each of them can be readily picked by an experimenter. 
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4.0 Conclusion 

In this work we have developed a mathematical model in order to be able to 
calculate the flexibility matrix that makes it possible to estimate the cutting force 
components based on displacement measurement in turning cylindrical shells. 
Analysis of the behavior of the flexibility matrix condition number has been 
performed. Based on this analysis, optimal configurations of the displacement 
sensors location have been suggested. These configurations make the flexibility 
matrix well-conditioned and the process of calculating the components of the 
cutting force numerically stable. Any of these configurations can be picked as they 
do not cause numerical instabilities when calculating the flexibility matrix. 
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