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Abstract. Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome
when large parts and processes are considered. Recently Model Order Reduction techniques opened new perspectives for an
accurate and fast simulation of mechanical systems. In some processes, plastic deformations remain very localized, for example
in the immediate neighborhood of the surface. In that case, the in-plane characteristic dimension is several orders of magnitude
higher than the one related to the deepness in which plasticity localizes. In those situations the use of standard mesh-based 3D
discretization is challenging because the extremely different characteristic dimensions that to capture all the information requires
the use of millions of nodes.

INTRODUCTION

In elastoplascitity, the behavior at each position and time depends on all the previous mechanical history as well as on
the present loading. Obviously if the deformation history is given at each position, the elastoplastic behavior law can
be easily integrated in order to compute the stress evolution. However such an information is not generally available
when proceeding with standard discretization strategies where the solution is computed incrementally.

When using standard incremental discretization techniques we must proceed differently. We assume at time
tn (time in the sense of loading) that the state of the systems is perfectly defined, verifying the equilibrium and the
constitutive equations. The mechanical state is given by εn, σn, ε

p
n and αn, the last being the internal variable describing

the material hardening (accumulated plastic deformation, plastic work, ... ) assumed here isotropic without loss of
generality.

The equilibrium at time tn writes in discrete form:

Fint(σn) = Fext
n (1)

Now, an increment of load applies due to volume forces or surface tractions, and the problem consists in com-
puting the displacement change ∆un+1 and the associated final state defined by εn+1, σn+1, ε

p
n+1 and αn+1. The new state

must verify both the equilibrium equation
Fint(σn+1) = Fext

n+1 (2)

and the rate-independent elastoplastic constitutive equations. As the problem is nonlinear we must iterate.



General discretization techniques proceed by solving incrementally the balance and constitutive equations, within
the implicit or explicit framework. The so-called non-incremental techniques iterate between the stress and dis-
placement history-fields verifying the equilibrium and the constitutive equation. Space-time separated representations
within the Proper Generalized Decomposition [1, 3, 5, 7] allow performing such a decoupled integration [10, 11].

In the present work we focus in a very different issue, the one related to confined elastoplasticity, as the one
encountered when performing surface treatments by applying plastic deformations in a very thin layer at the im-
mediate surface neighborhood. Because the micro-metric characteristic deepness of the plastic layer, and its large
in-plane dimension a 3D simulation remains a challenging issue because the number of elements can become rapidly
unaffordable.

In these circumstances an in-plane-out-of-plane separated representation allows circumventing the just referred
issue, because the mesh in the thickness direction can be extremely fine without compromising the efficiency of the
resulting integration procedure. This kind of decomposition has been widely considered in our former works, for
solving a variety of physics in different degenerated domains, including plates, shells, rod-like geometries, and also
laminates constituted by tens of plies along the thickness direction. The interested reader can refer to [2, 4, 6, 8, 9]
and the references therein.

INCREMENTAL ELASTOPLASTIC MODEL

Elastoplastic model
The elastic behavior is given by

σ = C ε (3)

The main steps of the calculation are:

• Compute the deviatoric stress σ′ from

σ′ = σ − (1 + ν) Tr(σ) (4)

where ν is the Poisson coefficient.
• Determine the equivalent Von-Mises stress

σe =

√
3
2
σ′ : σ′ (5)

• Determine the yield function

f = σe − (r + σy) (6)

where r is the hardening and σy the yield stress.
• Determine if yielding occurs, that is, if f > 0. If f ≤ 0 then the plastic multiplayer dλ vanishes dλ = 0. On the

contrary, i.e. if f > 0 the plastic multiplayer persistency condition results in

dλ =
n ·Cdε

n ·Cn + h
(7)

where h is the plastic tangent modulus and n is given by

n =
∂ f
∂σ

=
3
2
σ′

σe
(8)

• Determine the stress and the isotropic hardening increments:

dσ = Cdεe = C(dε − dλn) (9)

and
dr = h dλ (10)



• Update all the quantities 
σ(x, t + ∆t) = σ(x, t) + dσ
ε p(x, t + ∆t) = ε p(x, t) + dλn
r(t + ∆t) = r(t) + dr

(11)

The equilibrium writes (using vector notation)∫
Ω

ε∗ · dσ dx =

∫
∂tΩ

u∗ · dt dx (12)

or ∫
Ω

ε∗ · Cdε dx =

∫
Ω

ε∗ · Cdλn dx +

∫
∂tΩ

u∗ · dt dx (13)

where dt represents the load increment.
Now, a standard finite element discretization results in∫

Ω

ε∗ · Cdε dx = U∗T KdU (14)

and ∫
Ω

ε∗ · Cdλn dx +

∫
∂tΩ

u∗ · dt dx = U∗T dF (15)

Space-time separated representation within an incremental integration scheme
If we consider n time steps (again time in the sense of loading) we can write

KdU1 = dF1
KdU2 = dF2

...
KdUn = dFn

(16)

Now, we can apply the singular value decomposition to the matrix F

F = [dF1 dF2 · · · dFn] (17)

that allows approximating it from

F ≈

NF∑
i=1

Ri ⊗ Si (18)

With the unknown field dU(t) expressed in the separated non-incremental form

dU =

NU∑
j=1

X j ⊗ T j (19)

and using tensor notation the problem becomes

(K ⊗ I)
NU∑
j=1

X j ⊗ T j =

NF∑
i=1

Ri ⊗ Si (20)

The main drawback of such a procedure is the necessity of reconstructing the plastic history and then applying
a SVD to the large resulting matrix to perform its space-time separation. To alleviate such a calculation in [12] we
proposed the use of a POD-based reduced basis for the plastic history representation.



IN-PLANE-OUT-OF-PLANE SEPARATED REPRESENTATION

The in-plane-out-of-plane separated representation allows for solution of full 3D models defined in plate geometries
with a computational complexity characteristic of 2D simulations. This separated representation allows for indepen-
dent representation of the in-plane and off-plane fields dependencies. The main idea lies in the separated representation
of the displacement field by using functions depending on the in-plane coordinates x = (x, y), P j

i (x, y), and others de-
pending on the thickness direction z, T j

i (z), j = 1, 2, 3 and i = 1, · · · ,N according to:

u(x, z) =

 u(x, z)
v(x, z)
w(x, z)

 ≈


N∑
i=1

P1
i (x) · T 1

i (z)
N∑

i=1
P2

i (x) · T 2
i (z)

N∑
i=1

P3
i (x) · T 3

i (z)


, (21)

which leads to a separated representation of the strain. By introducing the latter into the flow problem weak form, it
allows the calculation of functions Pi(x, y) by solving the corresponding 2D equations and functions Ti(z) by solving
the associated 1D equations, as described later.

Eq. (21) can be rewritten in the compact form

u(x, z) ≈
N∑

i=1

Pi(x) ◦ Ti(z), (22)

where ”◦” denotes the entry-wise or Hadamard’s product.
Using notation in (21), the displacement gradient ∇u(x, z) can be written as:

∇u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 ≈
N∑

i=1


∂P1

i
∂x

∂P1
i

∂y P1
i

∂P2
i

∂x
∂P2

i
∂y P2

i
∂P3

i
∂x

∂P3
i

∂y P3
i

 ◦


T 1
i T 1

i
∂T 1

i
∂z

T 2
i T 2

i
∂T 2

i
∂z

T 3
i T 3

i
∂T 3

i
∂z

 =

N∑
i=1

Pi(x) ◦ Ti(z). (23)

NUMERICAL RESULTS

For illustrating the potentialities of the incremental solution procedure making use of the in-plane-out-of-plane
separated representation we consider in the present work a simple 2D rectangular domain very elongated Ω =

[−L, L] × [0,H], with L = 1 and H = 0.4, by separating the horizontal and vertical coordinates within the frame-
work just described, that consists in solving a sequence of 1D problems instead the standard 2D ones. A moving load
is applied on the top boundary that moves to right and comes back to left during a given number of cycles. As the
elastoplasticity is time-independent, the time must be associated with the load evolution. Fig. 1 illustrates the loading
history. The material parameters are: ν = 0.3, h/E = 0.01 and σy/E = 0.005.

Fig. 2 depicts the in-plane modes (those concerning the x-coordinate) and the ones concerning the thickness
direction for one of the first locations of the moving load. Finally Fig. 3 reconstructs the 2D displacement field on a
mesh that consists of 200 × 100 nodes.
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FIGURE 1. Applied cyclic loading acting on the top boundary.
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FIGURE 2. Main modes involved in the in-plane-out-of-plane separated representation: in-plane (left); out-of-plane (right), when
load applies close to the left border.

FIGURE 3. Reconstructuted 2D solution (left) and solution zoom (right).


