Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10781

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Sensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force

E. Semail, X. Kestelyn and A. Bouscayrol
L2EP, Laboratoire d'Electrotechnique et d' Electronique de Puissance de Lille
ENSAM Lille 8 bd Louis XIV F-59046 LILLE, France
e-mail: eric.semail@lille.ensam.fr
http://www.univ-lille1.fr/l2ep/

Abstract—This paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29% percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.

Index Terms—brushless, multiphase, 5-phase, drive control.

I. INTRODUCTION

Multi-phase drive systems have several advantages over conventional 3-phase ones [1]-[2] such as higher reliability and reduction of torque ripples. Multi-phase machines have been initially supplied from Pulse Amplitude Modulation Current Stiff Inverter (PAM CSI) [3]-[5]. In this case, a machine with q 3-phase stars can be considered as the association of q 3-phase machines mechanically coupled on the same shaft. Each 3-phase fictitious machine is associated with one of the q stars. This decomposition is possible in spite of the magnetic couplings between the stars, because of one property of the PAM CSI drive: when there is commutation of a current in a star, the currents in the other stars have constant values. The mutual inductances between stars have no impact and the stars can be then considered as magnetically independent.

With Digital Signal Processor, it is now possible to use PWM VSI in multi-phase drives [6]-[8]. If vector controls of 3-phase BLDC machines are well known [9], it is not the case for multi-phase ones, particularly if the waveform of back-EMF is trapezoidal. PWM-VSI requires a much more precise modeling than PAM CSI: it is no more obvious to decompose the multi-phase machine into a set of 3-phase machines. For six-phase induction machines, [10] has proposed a multiple reference frame analysis based on an orthogonal transformation. The natural frame (a,b,c,d,e,f) of the 6-phase machine is transformed into a set of three independent frames (o1,o2), (d,q) and (z1,z2) where dynamic equations of the machine are totally decoupled. When currents are sinusoidal, the planes (o1,o2) and (z1,z2) do not participate to electromechanical conversion. Recently, using the same transformation, [11] shows the possibility to improve torque density with the injection of a third harmonic current, harmonic which is relative to the plane (o1,o2). For 5-phase induction machines, similar transformations have been used to achieve a DTC control [7] or to drive with only a 5-leg VSI supply two series connected motors [12]. Multi-phase BLDC machines have been less studied [13]-[15] than multi-phase induction machines. In [13], torque density has been increased with 3rd harmonic current injection in a 5-phase synchronous reluctance motor drive.

In this paper, a 5-phase BLCD supplied by a 5-leg PWM-VSI is studied. Using a Multi-machine Multi-converter description, this drive is broken down into two fictitious machines which can be controlled independently. This specific modeling shows that the 7th harmonic of the EMF leads to important parasitic currents. Controls strategies are deduced from this analysis and experimental results are provided.

II. MODELING OF THE DRIVE

A. Equivalent set of 2-phase fictitious drives

Under assumptions of no saturation and no reluctance effects, the vectorial approach developed in [16]-[19] allows to define the equivalence of a 5-phase wye-connected machine Fig. 1) to a set of two fictitious independent drives, each one being composed of one fictitious machine and one fictitious inverter.

Fig. 1. Symbolic representation of the 5-leg PWM-VSI and 2p pole 5-phase machine

The symmetry and the circularity of the stator inductance matrix are used to achieve the equivalence between the actual and the fictitious drives:

\[
[L_s] = \begin{bmatrix}
L & M_1 & M_2 & M_2 & M_1 \\
M_1 & L & M_1 & M_2 & M_2 \\
M_2 & M_1 & L & M_1 & M_2 \\
M_2 & M_2 & M_1 & L & M_1 \\
\end{bmatrix}
\]
The matrix has three eigenvalues, named cyclic inductances, whose associated eigenspaces \(G_L \) are orthogonal each others. The dimension of an eigenspace \(G_L \) is equal to the multiplicity of its corresponding eigenvalue \(L_L \). In the studied case, the multiplicity of two of them (noted \(L_m \) and \(L_s \)) is of order two.

The orthogonality of the three eigenspaces \(G_m, G_s \) and \(G_0 \) implies that three independent flux of energy can be found. To prove this assertion, a euclidian space with the usual canonic dot product is associated with the 5-phase machine. This space is provided with an orthonormal base \(\{x_1, x_2, x_3, x_4, x_5\} \). In this natural base, voltage and current vectors are defined:

\[
\begin{align*}
\bar{v} &= v_1 x_1 + v_2 x_2 + \ldots + v_5 x_5 \\
\bar{I} &= i_1 x_1 + i_2 x_2 + \ldots + i_5 x_5
\end{align*}
\]

The coordinates of a vector in this base are the measurable values relative to each phase. Using the dot product, the electric power is expressed by:

\[
p_s = \sum_{k=1}^{5} v_k i_k = \bar{v} \cdot \bar{I}
\]

Then, every vector is split into the sum of three vectors, each one belonging to an eigenspace, \(G_m, G_s \) and \(G_0 \):

\[
\bar{v} = \bar{v}_m + \bar{v}_s + \bar{v}_0
\]

As the eigenspaces are orthogonal, the electric power is also the sum of three powers, associated each one with an eigenspace:

\[
p_s = \bar{v} \cdot \bar{I} = v_m i_m + v_s i_s + v_0 i_0
\]

The wye-connection of the machine implies that \(i_0 = 0 \).

Continuing the same energetic approach, it is easy to express the torque of the 5-phase machine as the sum of two torques \(T_m \) and \(T_s \) associated respectively to the eigenspaces \(G_m \) and \(G_s \):

\[
T = T_m + T_s
\]

Each torque \(T_m \) and \(T_s \) is expressed as the following dot product:

\[
T_m = \frac{d \Phi_{rm}}{d \theta} i_m \quad \text{and} \quad T_s = \frac{d \Phi_{rs}}{d \theta} i_s
\]

with

- \(\theta \), the mechanical angular position;
- \(\Phi_{rk} \), the flux vector whose coordinate \(\Phi_{ak} \) is the flux through the phase \(k \) exclusively produced by the permanent magnets.

Moreover, as the control of the 5-leg VSI is achieved with a 2-level PWM, only average values of voltages are assumed to be imposed by the VSI. Using the same transformation as with the machine, the VSI is decomposed into two fictitious VSI. To get a characterization of each fictitious VSI it is sufficient to project the 2\(^{\text{nd}}\) characteristic vectors of the 5-leg VSI onto the two eigenspaces \(G_m \) and \(G_s \). Two polyhedrons are obtained (Fig. 2 and Fig. 3).

Consequently there are two 2-phase machines represented in Fig. 4 by MM, the Main Machine and by SM, the Secondary Machine. The MM (resp. SM) is characterized by its back-EMF \(\Phi_{rm} \) (resp. \(\Phi_{rs} \)), its cyclic inductance \(L_m \) (resp. \(L_s \)) and its torque \(T_m \) (resp. \(T_s \)). These two drives are mechanically coupled: they have the same mechanical angular velocity \(\Omega \). They are supplied each one by a VSI, these two VSI being electrically coupled by a mathematical transformation.

\[\text{Fig. 2 Space Vector Representation of } \Phi_{rm} \text{ to the VSI which supplies MM}\]

\[\text{Fig. 3: Space Vector Representation of } \Phi_{rs} \text{ to the VSI which supplies SM}\]

B. Harmonic analysis of fictitious drives

It is now interesting to characterize these fictitious machines to be able to control and supply them correctly. The expression (8) shows that the torque \(T_m \) and \(T_s \) are the dot product of the vectorial projections of two vectors. The first one is only depending on the design of the machine, the second one is imposed by the power supply.

As \(\frac{d \Phi_{rk}}{d \theta} \) is a \(2\pi/p \) periodic function, it can be expanded into a Fourier series and consequently expressed as a sum of vectors associated with space harmonic order number \(k \). Properties of symmetry, due to the regular manufacturing assumption, involve, as usual, the cancellation of cosine terms and of even sine terms.
Moreover, when a vector linked to a space harmonic number \(k \) is projected onto an eigenspace the result depends on \(k \). According to the considered eigenspace associated with the fictitious studied machine, the null terms of the Fourier series are not the same. There is a distribution of the different space harmonics between the eigenspaces. This particularity is verified for every vector which has the same mathematical properties as \(\theta \phi \). Thus, it is possible to associate to each fictitious machine a characteristic family of time or space harmonics:

- the Main Machine (MM) is associated with odd harmonics of \(15\pi \) order: 1, 9, 11, 19, ...
- the Secondary Machine (SM) is associated with odd harmonics of \(25\pi \) order: 3, 7, 13, 17, ...
- the \(G_0 \) eigenspace is associated with odd harmonics of \(5\pi \).

In TABLE I is given harmonic decomposition of experimental back EMF Fig. 5).

<table>
<thead>
<tr>
<th>Order of harmonic</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative RMS amplitude</td>
<td>(E_1=100%)</td>
<td>(E_3=29%)</td>
<td>(E_5=12,4%)</td>
<td>(E_7=5,1%)</td>
<td>(E_9=1,7%)</td>
</tr>
</tbody>
</table>

One can remark that the MM is almost a machine with a sinusoidal back-EMF since the 9\(^{th}\) represents only 1.7% of the first harmonic. For the SM the 7\(^{th}\) harmonic of back-EMF, which is only 5.1% of the fundamental, represents 18% of the 3\(^{rd}\) harmonic. Consequently, the back-EMF of SM can not be considered sinusoidal because it is composed of 3\(^{rd}\) and 7\(^{th}\) harmonics.

III. DEDUCED CONTROL OF EXPERIMENTAL SET UP

Using causal EMR formalism (see Appendix on EMR formalism), the control structure is easily deduced by systematic inversion (Fig. 7). Thanks to this structure it appears clearly that a choice must be done to define the two references \(T_{m-ref} \) and \(T_{s-ref} \) from a torque reference \(T_{em-ref} \). This is due to the mechanical coupling expressed by equation (7). This kind of choice is common in Multi-Machine Multi-Converter systems and has been formalized in [20]. The control laws are then easy to implement because algorithms, already developed for 3-phase drives, can be directly used for each fictitious machine. Nevertheless, both fictitious machines have not the same reference frame. The first space harmonic of MM is the fundamental and implies that the angular velocity of the frame is \(\pi \). The first harmonic of SM is the 3\(^{rd}\) space harmonic and implies that the angular velocity of the frame is \(3\pi \). A more usual synopsis of the control is presented in Fig. 8.
To exhibit easily at first the sensitivity of the 7th space harmonic of back-EMF, the adopted strategy consists in using only the MM: \(T_{m-ref} = T_{em-ref} \), \(T_{s-ref} = 0 \). As the most important harmonics in the SM are the 3rd and 7th ones, the choice of \(T_{s-ref} = 0 \) induces that the 3rd time harmonic current must be equal to zero. Then the 7th time harmonic is almost the only one in the SM as it appears in (Fig. 12, Fig. 14).

A. Analysis of 7th harmonic back-EMF effect

The 7th harmonic of back-EMF induces currents in the SM. \(i_{1-7} \), the RMS magnitude of these currents, is estimated by the following formula:

\[
E_7 \frac{R_1}{\sqrt{R_1^2 + (7\Omega L_s)^2}} = 1A
\]

As the inductance \(L_s \) of the SM is much more smaller than

Fig. 7: Control structure of the 5-phase BLCD deduced from EMR

Fig. 8: Synopsis of control
the inductance L_m of the MM, this explains that even if E_7 is equal to 5.1% of E_1 then $i_{1,7}$ represents 29% of $i_{1,1}$ (Fig. 12).

B. Compensation of 7th harmonic back-EMF effect

A compensation of this back-EMF in the SM has been implemented: Fig. 11, Fig. 13 and Fig. 15 show improvements of the control. Fig. 9 gives more global results of the control.

C. Increasing torque using both fictitious machines

As the back-EMF of SM is not equal to zero, it is possible to increase the torque with a same modulus of \vec{i}. Considering that T_{em} is the dot product of $d\phi/\theta$ by \vec{i}, the instantaneous value of T_{em} is maximum if $d\phi/\theta$ and \vec{i} are collinear vectors. Taking into account only the 1st and the 3rd harmonics, the repartition between T_{m-ref} and T_{s-ref} is then 29% (the same repartition as between E_1 and E_3, TABLE I).

IV. CONCLUSION

An original modeling of a 5-phase machine allows to exhibit particularity of this kind of machine compared with 3-phase one. The sensitivity of the 5-phase drive to the 7th space harmonic is easily explained. Moreover, the EMR modeling allows to find how to compensate the high magnitude parasitic currents induced by the 7th harmonic of back-EMF. Experimental results show then improvements. Finally, a control where the two fictitious drives are simultaneously supplied is presented. The algorithms are the same as those already used in 3-phase machines.
APPENDIX ON EMR FORMALISM

The Energetic Macroscopic Representation (EMR) [22] is a synthetic graphical tool based on the principle of action and reaction between elements [21]. It leads to a synthetic description of an overall conversion system between two sources (oval green pictogram). It uses elements which accumulate energy (rectangular orange pictogram with an oblique bar) and elements which convert energy without energy or storage (orange square for electrical conversion, circle for electromagnetic conversion and triangle for mechanical conversion). From the EMR of an electromechanical conversion, one can deduce a control structure, which is composed of the maximum of control operations and measurements [22]. This modeling has successfully been applied to electric vehicles, high-speed railway traction systems, wind energy conversion systems, ship propulsion with double-star induction machines.

EMR of an energy conversion — An energy conversion between two sources S_1 and S_2 is represented by an association of power components (Fig. 20): a conversion element and two accumulation elements. All of them are connected by exchange vectors. A source element produces a state variable (output). The source is either a generator or receptor. It is disturbed by the reaction of the connected element (input), for example, the absorbed current for a voltage grid.

A conversion element yields an energy conversion without energy loss nor storage. Its tuning is ensured by an input vector e_{ctun} which consumes less power than the transferred one. In some case, there is no tuning input and the conversion transfer is realized with a fixed rate. An accumulation element connects an energy source to a conversion element, thanks to an energy storage, which induces at least one state variable. Such element has no tuning input.

The exchange vectors yield the energy to be transferred between the connected components according to the principle of action and reaction. On Fig. 20, the source S_1 is chosen arbitrarily as the upstream source. It produces an action which is transmitted then to the downstream source S_2 which answers by a reaction. So, one defines a chain of action variables (a_i) and a chain of reaction variables (r_i). These variables can be scalar or vector. The two connected components are dual each other: if the action is potential, the reaction is kinetic.

Extension to Multi-machine Multi-converter Systems (MMS) — A MMS is composed of several monomachine mono-converter systems, which share one or
more power devices. Thus, it yields energy distribution between electric and mechanical sources through coupled conversion chains, which can yield interactions (disturbances) between power structures. The MMS have to enable best power reparation with lower cost equipment.

The energy distribution is obtained by specific conversion structures [19]. These power components are common to several conversion chains. They are called coupling structures. A coupling conversion structure links an upstream device with many downstream one’s, or vice versa. Such structures are drawn by forms with intersections (Fig. 21).

The electric coupling is associated with electric converters. It corresponds to a common electric device of several converters (power switch, capacitor...). It leads to a common electric variable (voltage, current...). The magnetic coupling is associated with electric machines.

The mechanical coupling is associated with mechanical converters.

![Fig. 21: Examples of coupling devices](image_url)

ACKNOWLEDGMENT

This work is part of the project ‘Futurelec2’ within the ‘Centre National de Recherche Technologique (CNRT) of Lille’. The support of the CNRT is kindly acknowledged.

REFERENCES

