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Abstract

With the design of new devices with complex geometry and to take advantage of their
large recoverable strains, shape memory alloys components (SMA) are increasingly sub-
jected to multiaxial loadings. The development process of SMA devices requires the
prediction of their thermomechanical response, where the calibration of the material pa-
rameters for the numerical model is an important step. In this work, the parameters
of a phenomenological model are extracted from multiaxial and heterogeneous tests car-
ried out on specimens with the same thermomechanical loading history. Finite element
analysis enables the computation of numerical strain fields using a thermodynamical con-
stitutive model for shape memory alloys previously implemented in a finite element code.
The strain fields computed numerically are compared with experimental ones obtained
by DIC to find the model parameters which best matches experimental measurements us-
ing a newly developed parallelized mixed genetic/gradient-based optimization algorithm.
These numerical simulations are carried out in parallel in a supercomputer to reduce the
time necessary to identify the set of identified parameters. The major features of this
new algorithm is its ability to identify material parameters of the thermomechanical
behavior of shape memory alloys from full-field measurements for various loading con-
ditions (different temperatures, multiaxial behavior, heterogeneous test configurations).
It is demonstrated that model parameters for the simulation of SMA structures are thus
obtained based on a reduced number of heterogeneous tests at different temperatures.

Introduction

Shape memory Alloys Metals (SMA) are utilized in a wide range of applications and
incorporated in more and more complex systems. Their unique ability to recover sub-
stantial deformation when subjected to particular thermomechanical load made them
very attractive and suitable for actuator devices and to replace complex assemblies. The
development of new design solution, combining three-dimensional models along with an
integration in Finite Element Analysis (FEA) packages, has contributed to the appear-
ance of Shape Memory Alloys parts with complex geometrical shape. It has been recently
noticed that the development of modern computer design and analysis tools based on
three-dimensional constitutive models, calibrated from carefully obtained material char-
acterisation and experimental data is considered essential for the development process
of SMA applications (Mohd Jani et al., 2014)



These structures are subjected to heterogeneous loading conditions, where the ma-
terial locally undergoes non-proportional loadings. Once provided with the adequate
material parameters, the three-dimensional constitutive models based on thermodynam-
ics of irreversible processes can predict accurately and efficiently the behavior of such
multiaxial, non-proportional loading . A review of these models for SMAs can be found
in Patoor et al. (2006) for the behavior of the single crystal and Lagoudas et al. (2006)
for the constitutive modeling of polycrystals. The design of SMA structures and the op-
timization of their characteristics relies now on finite element analysis, which constitutes
a powerful tool, especially for components subjected to complex loading. The accuracy
of numerical simulations of the SMA structural behavior relies on the model ability to
accurately account for uniaxial but also multiaxial, non-proportional loadings. However,
these solutions require more advanced characterization techniques than the uniaxial ten-
sion or thermal analysis recommended by the ASTM standards (F2004, 2005; F2082,
2003). For homogeneous tests, a recent method has been developed to identify the phase
transformation parameters from a set of experiments, utilizing a gradient-based inverse
approach (Meraghni et al., 2014). A similar approach has been adopted to determine
the parameter of a SMA model from experimental data (Whitten and Hartl, 2014).

However, even if identification strategies based on optimization algorithms have been
used, these methods require the experimental characterization of specimen of several na-
tures (tensile dogbone specimen, double shear specimens, thin tubes) to obtain the whole
set of material parameters required for Finite Element (FE) simulations. In the case of
Ni-Ti shape Memory Alloys, the processing of these specimens strongly influences the
behavior (Ren and Otsuka, 2005) and thus the extraction of a unique set of parameters
that represents the material behavior is not possible. Moreover, localization effects may
be observed in specimens of simple geometry subjected to homogeneous loading, but
the SMA device will not necessarily exhibit such effects, depending on its geometry and
loading conditions. The identification of material parameters on specimens as close as
possible to the final product shall be preferred for these reasons. Moreover, the design
process is accelerated if the characterization requires only a few specimens. The identifi-
cation procedure that utilizes full-field kinematical fields seems thus to be an appropriate
method for the identification of the set of material parameters for the purpose of SMA
devices design, that may include parameters characteristic of loading-path dependent
behavior.

Identification methods coupled with kinematical fields measurement have been exten-
sively developed in the last decades. The most used methods are described in the useful
review work of Avril et al. (2008), where the advantages and drawbacks of each method is
described extensively. The FEMU approach, proposed by Kavanagh and Clough (1971)
is the most intuitive, and has a lot of flexibility with regard to the definition of the cost
function. Furthermore, the FEMU approach has the advantage to perform at the same
time a parametric study of the material parameters, utilizing the numerical simulations
performed for the identification, assuming that the design space has been sufficiently
explored.

Following these considerations, in this work a FEMU method is developed and cou-
pled with an innovative combined genetic/gradient-based optimization algorithm. Since
Finite Element Analyses are necessary to compare the experimental data with the numer-



ical simulations, a specific attention is devoted to the parallelization of such approach in a
supercomputer. Based on all the previously discussed points, the proposed work focuses
on the development of a parallelized hybrid identification procedure for the parameters
of the model of Lagoudas et al. (2012) that has the following features:

1. It is adapted to the identification of material parameters directly on an SMA struc-
ture under very different solicitation (i.e. local thermomechanical paths)

2. It is based on the definition of a cost function by means of a square difference of
the experimental and numerically computed variables (strains and forces).

3. A parallelized optimization algorithm is utilized, which combine an evolutionary
algorithm with the Levenberg-Marquardt algorithm

Material selection and experimental procedure

The material utilized for the experiments was a NiTi (Ti50.4Ni) shape memory alloy. It
has been received in a fully annealed state and provided by Nimesis Technology in the
form of plates (2.5 mm thickness). Samples were cut using waterjet hyperbaric machin-
ing and annealed (400°C, 30min) followed by a water-quenching. The mechanical test is
a non-standard tensile test inspired from the work by Meuwissen et al. (1998). This non-
standard test configuration gives rise to heterogeneous and non-uniform in-plane strain
fields, namely longitudinal (in the direction of loading), transverse and shear strain com-
ponents. By using such a heterogeneous specimen, the behavior of shear strain and stress
may be demonstrated in conjunction with the principal strain and stress on the same
specimen. While the sample geometry is complex, it is loaded using an uniaxial tensile
test machine. The specimen is loaded under applied displacement, into a thermal cham-
ber with a crosshead velocity of 0.5 mm/minute. This value has been set from previous
experiments to obtain a maximal quasi-static strain rate of the range of 1073571 even in
the area where the strains are localized, i.e. between the notches. By incrementing the
applied traction, one obtains hence a spatio-temporal distribution of the strain, which
are measured using optical whole-field displacement /strain measurements by digital im-
age correlation (DIC).Three experiments were performed at different temperatures : 50
°C, 60 °C and 70 °C, respectively.

Thermomechanical model of martensitic transformation for SMAs and
model parameters

The model proposed by Lagoudas et al. (2012) describes the behavior of a Shape Mem-
ory Alloy representative volume element (RVE). This model has been implemented in
the FEA package Abaqus, which is used in this work to perform the finite element sim-
ulations. The model parameters of this model can be deducted from a unified set of
material parameters has been defined by Stebner et al. (2011) (see Table 1).
Considering that the SMA is subjected only to superelastic loadings, it is unneces-
sary to identify the two parameters associated with martensitic reorientation o* and o”.
Moreover, since it is assumed that the transformation hardening is proportional to the



Table 1: Material parameters for typical NiTi materials

EA(EM) (MPa) Elastic Modulus, Austenite (Martensite)

vA (M) Poisson ratio of Austenite (Martensite)

at(a™M) Coeff. Thermal Exp., Austenite (Martensite)
M, Mart. Start Temperature, c=0
My Aust. Finish Temperature, =0
A, Mart. Start Temperature, c=0
Ay Aust. Finish Temperature, c=0
cM Uniaxial stress - temperature slope, forward transformation
cA Uniaxial stress - temperature slope, reverse transformation
o’ Martensitic reorientation start
ol Martensitic reorientation finish

gactmaz Maximum recoverable transformation strain

volume fraction of martensite, a relationship is assumed between M; — M, CM and
Ay — A,, CA. An additional parameter is introduced to represent such relation, already

utilized by Peultier et al. (2006) and Chemisky et al. (2011) has been defined:

Hy = emmoz  OM 4 (My — M,) = ™% x C4 % (A — Ay), (1)

such that the knowledge of g*mez CM C4 M, Ay and Hjy is sufficient for the
knowledge of the martensitic transformation characteristics. Furthermore, the effect of
thermal expansion is neglected for superelastic loadings and the elastic parameters are
assumed to be the same for the austenitic and martensitic phases. With such condi-
tions, The remaining eight independent parameters are E (MPa), v, H; (MPa), gome®
Cy (MPa.°cC™1),Cy4 (MPa.°C™1), M, (°C) and Ay (°C).

Parameter identification using Finite Element updating method coupled
with an hybrid optimization algorithm

Having a constitutive model with a specific set of material parameters, the identification
problem consists of the determination of material parameters that minimize the difference
between computed data and a set of experimental data. The cost function is considered
to be:

Cp) = 5 3 7 (1""(B) = i) @)

where C(p) is the cost function, v (p) is the i-th information obtained with the
numerical simulation, " is the i-th information obtained from the set of experiments
conducted and NN; is a weight factor. Note that all these informations are potentially ob-
tained from a number of experiments at different times and at different spatial positions.

In the methodology proposed here, the boundary conditions are determined using the

displacement experimentally measured using DIC at the lower and upper boundary (as



y is considered as the vertical axis) of the zone of interest. Considering a thin specimen,
on the left and right side and on the front and back faces it is assumed that no tractions
are applied to complete the definition of the boundary-value problem. The experimental
data utilized for the definition of the cost function are (i) the in-plane strain field (derived
from the displacement field obtained by DIC) and (ii) the information of forces measured
by means of the load cell in the experimental setup. To minimise the cost function and
obtain appropriate model parameters, genetic algorithm and gradient-based method are
used simultaneously, with the following procedure:

1. An initial population of Cj individuals (each individual is a set of parameters) is
generated. The selection of individuals can be aleatory, given limitations of the
material parameters, or can be generated using Design Of Experiments (DOE).

2. The numerical simulation for all the individual is computed in parallel. The cost
function of all the individual is thus determined

3. A set of children of the current generation (with n members) are determined using
the crossover technique from a set of the best individuals. A mutation probability
has been added to increase the diversity of the children generation.

4. The bests members of the current generation are selected and a gradient-based
method (Levenberg-Marquardt) is utilized to find an update of their parameters.

5. The current generation n + 1 is determined from the the best individuals among
the current generation n and the children

6. Stationary condition test for the best individual of the current generation compared
to the previous best. If needed, reloop from item 5

On overview of the identification procedure in general is presented in Figure 1

A finite element model has been developed using Abaqus. Only an area close to
the notches is considered for the model that corresponds to the window recorded by the
camera. Over a full loading-unlading cycle, the values of the strain of the material points
are compared on 20 increments, uniformly spaced according to the applied displacement.

Parameter identification results and validation of the identification
procedure

The developed identification software has been ran on a cluster to be able to parallelize
the numerical simulations. This is achieved using a software dedicated to the generation
of jobs coupled with TORQUE Resource Manager for the management of the execution
of those jobs on the cluster. The set of initial parameters is bounded to define the design
space (see Tab. 2):

The final material parameters have been identified and presented in Table 3. It is
noted that a sufficient initial population is necessary to be able to efficiently find a
good starting point close enough to the global minima for the gradient-based algorithm.
Indeed, according to the complexity of the behavior, the number of experimental points
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Figure 1: Overview of the identification procedure

Table 2: Min and max bounds for the material parameters

E (MPa) v H;(MPa) &/,

min 50 000 0.2 0.5 0.03

max 80 000 0.45 6 0.05
CM (MPa.°C™1)) CA(MPa’C™') Mg (°C) A;(°C)

min 4 4 -73 -33

max 12 12 27 47

and the noise introduced by the experimental measurement of DIC, local minima close
to the global minimum solution are expected.

The comparison between the strain field obtain using DIC and the numerical sim-
ulation with the identified parameters is shown in Figure 2. Globally, the correlation
between the experimental and simulated fields are very close, especially in the area
where the strain are rather large due to the localization effect induced by the presence of
notches. It is further noticed that differences appear for the longitudinal strain ¢,, and
the in-plane shear strain ¢,, around the notches.

The overall mechanical response of the sample, in terms of the evolution of force with
respect to the average displacement at the boundary of the DIC window is compared in
Figure 3. It is shown that globally the overall behaviour during loading is accurately
represented by the numerical model using the identified parameters. The behaviour
during unloading is correctly simulated for the test performed at 50°C. More pronounced
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Figure 2: Contour plots of the experimental strain fields (a, d, g), the numerical strain
fields (b,e,h) and their absolute difference (c,f,i) for the components e,,, €y, and e,,,
respectively



Table 3: Identified material parameters NiTi materials

E (MPa) v H;(MPa) &/,

67 500 0.394 1.79 0.0416

CM (MPa.°C™1)) CA(MPa’C™!) Ms(°C) A;(°C)
8.74 9.66 -14.5 5.5

differences appear during reverse transformation, especially at 60°C and 70°C. It is
noted here that the transformation hardening characteristics have been selected to be
similar between forward and reverse transformation. The selection of different hardening
parameters could have improved the results, with the cost of increasing the number of
parameters to identify.
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mental characterisation and numerical simulation with the identified material parameters



Conclusions

In this work, an inverse identification procedure has been developed to determine the
material parameters of SMAs directly on structures using full field measurements. The
proposed identification method, using a parallelized hybrid genetic-gradient based op-
timisation algorithm, is able to properly identify the material parameters of a Shape
Memory Alloy. It has been noted that a large initial population is important to be able
to rapidly select a good starting point for a gradient-based Levenberg-Marquardt algo-
rithm, avoiding hence local minima. Such an identification method is of great importance
for material that are extremely sensitive to thermomechanical processing conditions, e.g.
NiTi materials where it is very difficult to test the material properties since process-
ing conditions of the device could not be easily reproduced on the simple test samples.
Thus, it is very difficult to proceed in such cases with the legacy calibration methods
and identification procedures have to utilize the thermomechanical characterization of
the structures, often implying heterogeneous conditions. Furthermore, exploiting the het-
erogeneity of the local strain paths, this method can also be utilized to extract material
parameters that are difficult to obtain based on uniaxial experiments, such as material
parameters characteristic of anisotropy and tension-compression asymmetry, since this
method applies to heterogeneous tests with local multiaxial non-proportional conditions.
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