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ABSTRACT: Catenary damping has long been a tuning parameter in pantograph-catenary
dynamic interaction models. As the computed contact force is highly sensitive to the choice
of damping model or coefficients, it became critical to measure it independently of the panto-
graph. Original tests have been conducted on a real catenary and damping identification shows a
very low level of damping for a large frequency range. A fitted Rayleigh model and a combined
modal and Rayleigh model are proposed and compared with a reference damping model found in
literature as well as with the tests. Finally, the consequences on a typical contact force simulation
are analysed and the most relevant model is chosen.

1 INTRODUCTION

The performance of the pantograph-catenary interaction has historically been assessed by in-line
tests. Nowadays, methods are moving towards combined use of test and numerical solutions
in order to ensure the interoperability of pantographs. These methods allow scanning a larger
operating range and thus make the certification more robust.

Pantograph-catenary interaction however involves highly non linear phenomena which can be
modelled many different ways. Several existing software participated to a benchmark proposed
by Bruni et al. (2014). One major conclusion was that the most critical open point at time was the
approach used to consider damping in the catenary.

The damping calibration used in most studies is based on dynamic measurements of pantograph-
catenary interaction. It is thus difficult to separate the effects of the pantograph from those of the
catenary. Damping is thus commonly used to tune the simulation in order to be as close as pos-
sible to the dynamic measurement which is supposed to be used for validation. The paper will
present results of vibration tests performed on a catenary and discuss a damping model that can
reproduce the behaviour found in those tests. The first part will detail the experimental case and
the associated damping identification . The second part will develop the damping model chosen
and compare it with a reference damping that can be found in literature. The third part will show
the impact of the damping change on a typical pantograph-catenary dynamic simulation.

2 EXPERIMENTAL ANALYSIS

The tests have been carried out on a SNCF’s catenary of type V300. The height of the contact
wire under steady arms has been fixed to 1.8m, which allows easier access to the structure. The
catenary has never been electrified and except for masts and the messenger wire, all the catenary
has been renewed for these tests. Four tri-axial accelerometers were installed under droppers on
the contact wire or over droppers on the messenger wire.



Excitation was obtained by dropping masses from 20 to 40kg attached to the contact or mes-
senger wires. Multiple mass and sensor configurations, as well as tensions were considered in the
test campaign. The records last between two and four minutes. An example of one configuration
is given in figure 1

Figure 1. Sensors (numbered) and mass placed on the catenary.

2.1 Repeatability

Before analysing a measure, one has to ensure the repeatability of the experiment. Figure 2 shows
an example of test repeated 3 times. Accelerations obtained are very similar even one minute later.
There is no need to check the coherence of these measures. The noise is almost null and one can
thus take only one experiment to identify modal damping.
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Figure 2. Repetition of a mass drop. Velocity at the beginning and acceleration zoomed after one minute.

2.2 Damping identification

From the transient drop response, frequency response functions (FRF) can be estimated and are
shown in figure 4. The FRF clearly shows groups of modes at low frequencies. These are simply
related to span modes (first vertical bending, horizontal bending, ...), with some frequency split
due to span coupling. Figure 3 shows an example of a span mode. For the first group of modes
(vertical bending), one thus finds 6 modes associated with the 6 spans of the test catenary. Above 5
Hz, the frequency separation between mode groups becomes too small to allow a clear separation.



Figure 3. Vertical bending mode of the fourth span.
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Figure 4. Complex mode identification (left) and a zoom on the two first groups (right).

The extraction of damping values from FRF is an identification step and the non-linear fre-
quency domain output error method, explained by Balmes (1996), is used. An example of iden-
tification is shown in figure 4. In the identification, complex modes are used but, as damping is
low, these are close to normal modes and the values can be used in modelling Balmes (1997).

For a robust identification, five points inside the−3dB band are considered good practice. For a
damping of ζ = 0.5% at the frequency f = 0.9Hz of the first modes, a measurement time of 555s
would be needed. Since the damping is even lower and longer signals would require maintained
excitation with a shaker, there is a significant uncertainty on the damping for low frequencies.

At higher frequencies, figure 4 shows that damping remains low even though the strong modal
density makes identification more difficult. Selected modes around 6 Hz were thus retained for
later comparison.

Figure 5 groups all the relevant tests and shows the dispersion for the three first groups of modes
thanks to a box plot. The variability of identified damping decreases with frequency as expected.
Moreover, outliers (dots of of figure 5 right) always correspond to obvious over-evaluation of
the damping. Damping ratio is notably below 1% for all the frequency range observed. There is
a slight decrease for the first 3 groups of modes. Then, although only the band around 6Hz was
analyzed in detail, the measured responses do not show a damping variation at higher frequencies.

Cremer et al. (2005) gives values of loss factors (for low damping the loss factor is equal to
twice the damping ratio) for copper and bronze (that is assimilated to brass) that are close to the
values observed here. This indicates that the major damping contribution is material damping,
while structural effects, if present, are limited to the very low frequencies.

3 DAMPING MODELS

Damping model has always been a critical subject in problems involving vibrations. A number of
models have been developed and a summary can be found in Gaul (1999). Two damping models
will be compared in the following.
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Figure 5. Identified damping ratio of all tests (left) and associated box-plot (right).

3.1 Rayleigh

Without any experimental data, Rayleigh damping (also called proportional or classical damping)
is typically used. It is a viscous damping proportional to the mass and stiffness matrices.

[C] = αe [K] + βe [M ] . (1)

Viscous damping is the only analytical dissipation model that is linear. It is thus needed for the
sake of computation time. The piecewise Rayleigh model developed by Caughey (1960) has been
introduced in OSCAR by Massat (2007), giving more flexibility to control the model but also
more parameters to determine. The four elements of the catenary structure, namely the contact
(CW) and messenger wires (MW), the dropper (drop) and the steady arm (SA) have thus their
own contribution thanks to two coefficients each in equation 1.
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Figure 6. Example of identified damping ratio on a mass drop simulation using arbitrary Rayleigh
coefficients.

Figure 6 shows an example of damping identification on a simulation of a mass drop with
αCW = 10−4, αMW = 5 · 10−5, βCW = 0.1, βMW = 0.05 and all the four other coefficients
fixed to 0. It appears that the modes identified correspond only with energy dissipated in CW and
MW. Consequently, the only coefficients that can be set from measurements are those of CW and
MW. Figure 7 compares the new fitted damping with the reference and identified damping. The
difference with reference damping particularly large in the medium frequency range.
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Figure 7. Comparison of identified (box-plot), reference (solid), Rayleigh (dashed) and Rayleigh+Modal
(asterisk) damping ratio.

3.2 Rayleigh+modal

Bianchi et al. (2010) have shown that using a combined modal and Rayleigh damping respectively
for low and high frequencies allows a more flexible representation of the catenary damping. The
method consists in fixing the modal damping ratio found by identification and compensate the
linear Rayleigh damping for some of the first modes.

Fixing the exact identified damping using modal damping is not relevant for a few reasons.
First, the uncertainty on identification of low frequency is very high compared to the damping
value. Secondly, one can not easily associate a measured mode with a computed one. Finally, the
aim of this study is to have a damping configuration as generic as possible for a use in a large
range of catenary type.

The choice was thus to fix the same modal damping for every modes in a group for the first two
groups, namely the median damping identified. Figure 7 shows in asterisk the chosen damping
against frequency.

4 DROPPER AND STEADY ARM DAMPING

Setting the dropper damping to zero introduces high frequency oscillations at the dropper where
the mass is dropped. This numerical problem can be solved by setting the stiffness proportional
damping αdrop to a non-null value. In practice, there is no influence on dynamic simulations as
long as its value is small. Figure 8 shows the evolution of the maximum compensation force
in the dropper against αdrop in a mid-span dropper for a usual configuration. A transition zone
is observed between 10−4 and 10−2, after which the dropper is locked by a too high dynamic
stiffness. The numerical oscillation dissipates quicker for higher damping. In the following, αdrop

will thus be set to 10−5.
The steady arm, modelled as either a bar or a beam, does not dissipate any energy. One could

still assume that friction exists in joints. A damping on the rotation of the steady arm can thus be
introduced via a vertical damping at the claw linking the steady arm to the contact wire, under the
small displacement assumption. Figure 9 shows the resulting identified damping on the simulation
with the previously chosen Rayleigh coefficients and an additional vertical damping on steady
arms. This contribution increases damping after the second group of modes (around 2Hz) and its
impact decreases with frequency (no difference visible after 12Hz).

This damping model can thus not be used to explain the observed decrease in damping of the
first three modes groups seen in figure 5. Steady arm damping will thus be set to zero.
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Figure 8. Maximum dropper compensation force against αdrop
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Figure 9. Comparison between identified damping ratio for simulations with Rayleigh only (asterisk) and
Rayleigh with vertical dampers at steady arms (circle).

5 RESULTS

Two damping models were finally considered, the first with only Rayleigh on contact and messen-
ger wires, the second with modal damping on the two first groups of modes with a compensation
of Rayleigh damping at these modes. Results are observed by simulation of a mass drop and
compared with measurements and with the reference Rayleigh model. The impact on a typical
pantograph-catenary interaction is then observed thanks to commonly used criteria to compare
models with measurements.

5.1 Mass drop

Figure 10 shows the velocity of the contact wire where a mass of 40kg is dropped in two time
intervals. The first observation is that Rayleigh and Rayleigh+Modal models are exactly the same.
The damping variation between the two models has thus no influence. The velocity of reference
Rayleigh model is smoothed as expected by the high damping applied in medium frequency range.
Tests show that the signal effectively contains energy in the medium frequency domain and val-
idates the new Rayleigh model in this frequency range. The second part of the figure focuses on
residual vibrations and shows that low-frequency damping of the reference is lightly too small
and validates the one chosen in the new Rayleigh model.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0

0.5

1

Time [s]

V
el

oc
ity

[m
/s

]

Reference Rayleigh
Rayleigh
Rayleigh+Modal
Measure

252 254 256 258 260 262 264 266 268 270 272 274

−5

0

5

·10−2

Time [s]

V
el

oc
ity

[m
/s

]

Reference Rayleigh
Rayleigh
Rayleigh+Modal
Measure

Figure 10. Vertical velocity of the contact wire where the mass is dropped for initial waves and residual
vibration.

5.2 Dynamic pantograph-catenary simulation

In a simulation of contact force at the nominal speed of the catenary, one observes that catenary
damping has a lighter impact on the front pantograph than on the trailing one. The second panto-
graph will thus be observed. Figure 11 shows the computed contact force filtered at two different
frequencies, 20Hz and 50Hz The impact of damping change is clearly visible, on both of them.

Time-signal comparison is difficult. That is why scalar criteria are commonly used for compar-
ison. Table 5.2 groups such criteria. The coefficients of variation of the contact force filtered at
20Hz or 50Hz cumulate informations at low and medium frequencies and do not allow to under-
stand the variations observed. Root Mean Square values (RMS) inside frequency bands give more
informations. One particularly observes that there is no impact for the front pantograph under
5Hz. Moreover, the RMS between 20 and 50Hz increases significantly for the rear pantograph,
as expected.

Table 1. Usual contact force criteria

Damping
model Pantograph σ(Fc)/Fcm

20Hz
σ(Fc)/Fcm

50Hz
RMS*

]0− 5] Hz
RMS

[5− 20] Hz
RMS

[20− 50] Hz

Initial front 0.33 0.38 36.3 34.0 26.0
Updated front 0.30 0.37 36.3 29.6 29.7
Initial rear 0.23 0.28 33.6 37.0 32.9
Updated rear 0.26 0.33 33.0 41.0 42.5

*Root Mean Square
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Figure 11. Contact force of the trailing pantograph over one span filtered at 20 Hz (left) and 50 Hz (right).

6 CONCLUSIONS

Catenary damping has long been used for tuning the dynamical interaction model. The tests car-
ried out on a real catenary have been exploited to estimate the catenary damping independently
to the pantograph. It appeared that the very low damping observed corresponds to the hysteresis
damping. The identified ratio can thus be used in any other catenary type composed of the same
materials. The new damping has been validated by simulating the tests. Its impact on contact force
simulation is not negligible, especially when medium frequency range is observed (over 5 Hz).

This study clearly indicates the importance of frequencies above the 20Hz fixed by standard
EN50318. Current contact force measurement procedures have not been validated at higher fre-
quencies and the use of lumped mass pantograph representations may no longer be relevant. It also
seems that working at higher frequencies may help finding a better correlation between contact
loss and arc formation.
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