Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/10934

To cite this version:

Hazem MUBARAK, Laurent BARRALLIER, Sébastien JEGOU, Polina VOLOVITCH, Kévin OGLE - Effect of stress on passivation kinetics and passivation modelling of 304L stainless steel in acidic medium - 2015

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Effect of applied stress on passivation kinetics and passivation modelling of 304L stainless steel in acidic medium

Hazem Mubarak, Laurent Barrallier*, Sébastien Jegou*, Polina Volovitch**, Kevin Ogle**

1 Passivation Role in Stress Corrosion Cracking (SCC):
- Film rupture-dissolution model (FRM): describes intergranular SCC, shown in Fig. 1, as repetitive cycles of local surface activation, dissolution, and passivation near the crack tip [1]. Fig. 2 illustrates one of these cycles as described next:
 - To develop a model quantifying the passivation kinetics and parameters of passive films constructed in acidic medium.
 - To use this model to check the influence of stress on stainless steel passivation and passive film quality.

2 Quantification of Passive Film Thickness and Quality in Acidic Medium:
- Stressed and non-stressed samples of 304L stainless steel are subjected to potentiodynamic cycling tests as shown in Fig. 2. These serve as an electrochemical simulation of SCC activation/passivation cycle as described by FRM.
- Experiments were performed in 2 M H2SO4 solution at room temperature.
- In-situ atomic emission spectrophotometry (AESSEC) [3] was coupled with conventional electrochemistry during the tests. By this, the passivation current due to metallic dissolution can be quantified, as shown by Fig. 4.

3 Influence of Stress on Passive Film Thickness and Quality:
- For stressed samples, slightly higher charge exchange and thicker passive film (1.64 vs 1.58 nm ±0.03).
- Slopes of curves in Fig. 6 = CBV, a direct measure of the passivation rate and the film ionic conductivity.
- eBV is inversely proportional to the film quality [4]. Fig. 7 shows this factor for stressed and unstressed cases.

Fig. 1: SCC of 304L stainless steel after 88 h immersion in 2 M H2SO4 + 0.5 M NaCl.
Fig. 2: Representation of crack propagation by the film nature-dissolution model.
Fig. 3: Polarization curve showing an activation/passivation cycle.
Fig. 4: AESSEC experiment showing the metallic dissolution current densities during a potentiodynamic activation/passivation cycle. A: open circuit potential (OCP). B: Passivation pulse. D: OCP.

References: