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Error Estimation for Model Order Reduction of Finite E lement
Parametric Problems

S. Clénetand T. Hennerdn

'L 2EP, Arts et Métiers ParisTech, 59046 Lille, Franc
2L 2EP, Université Lille 1, 59655 Villeneuve d’Asderance.

To solve a parametric model in computational electbmagnetics, the Finite Element method is often usedlo reduce the
computational time and the memory requirement, theFinite Element method can be combined with Model Gder Reduction Technic
like the Proper Orthogonal Decomposition (POD) andhe (Discrete) Empirical Interpolation ((D)EI) Meth ods. These three numerical
methods introduce errors of discretisation, reducthn and interpolation respectively. The solution ofthe parametric model will be
efficient if the three errors are of the same orderand so they need to be evaluated and compared. this paper, we propose an a-
posteriori error estimator based on the verification of the constitutive law which estimates the threelifferent errors. An example of
application in magnetostatics with 11 parameters isreated where it is shown how the error estimatorcan be used to control and to
improve the accuracy of the solution of the reducechodel.

Index Terms— Finite Element Method, Model Order Reduction, PODmethod, (D)EI method, error estimation, adaptive pocedure

I. INTRODUCTION

Finite Element (FE) models are now the standardtudys
electromagnetic devices like electrical

transformers because they are so accurate thatcidmeybe
considered as a virtual prototype. However, for design of
electromagnetic device, these models cannot be dsgdg
the whole process of design but only at the endauez of
their computational time. In fact, at the beginniof the
design process, the space of parameters has topberexd
which requires a huge amount of model runs. Touamngent
this issue, an analytical model based on
considerations and much faster than a FE modeisiscéated.
The issue is then the relationship between thetisaki given
by the FE model and the analytical model which doet
explicitly exists, that is to say that it is notasghtforward to
reconstruct a solution obtained by the analyticatlet in the
FE space and reversely to take advantage of treokifon to
improve the accuracy of the analytical model. Mo@eder

other self-adaptive procedures [12-16].
If the equation system, derived from the parameFkie
model, is affine in parameters that is to say wigten under

machineshe form of a sum of terms equal to the produca ebnstant

matrix and a function of the parameters of the |emob the
Reduced Basis can be derived which can really ialiewhe
memory requirement and the computational time. \Dagi an
affine expression from the FE model is not alwagssible,
approximation methods like (Discrete) Empiricalelolation
(D)EI) method can be applied in order to obtain
approximation under an affine form [17,18]. An e&rrgo-

an

physicahlled interpolation error in the following, arisedich needs

also to be evaluated.

Moreover, when applying a model order reductiombéc in
the literature, the FE model is often assumed tpdréect in
the sense the discretization error due to the egmdin of the
FE method is negligible. It is assumed that thesBHkition is
equal to the exact solution of the partial diffdr@nequation
system. In practice, this is not true and the diszation error

Reduction (MOR) methods have been proposed in dwler always exists and should be also controlled.
reduce the computational time and the memory storagTo summarize, we have finally three errors, which the

requirement [1-4]. Among these methods, Proper adxhal
Decomposition methods (or derived method like tleeliRed
Basis method) which consist in searching an apprate
solution in a subspace of the FE space spannechyddel
solutions, so called snapshots. This method has bpplied
successfully to solve non-linear problems in tintendin in
computational electromagnetics [5-8] and also tdveso
parametric models [9-12]. The POD solution can bsilg
projected in the space of the FE solution providingatural
link with the full FE model. Moreover, the accuragj the
POD model can be improved by introducing “naturaliny
new FE model solution (snapshot). The key poirthen the
control of the accuracy of the POD model which delse
highly on the choice of the snapshots. A posteremrior
estimators have been proposed in the literatusvatuate the
error introduced by the process of reduction. Thrsor
estimator is then applied along with a greedy afigor or

discretization error intrinsic to the FE methode tleduction
error introduced by the MOR method and finally the
interpolation error due to the approximation by affine
system of equations of the original FE model. Thegers
have to be compared to each other. For examptleg i€rror of
discretization is about 10 percent it is uselesshtain a error
of reduction of less than one percent becauserittvimprove
much the accuracy of the POD model providing tha t
increasing of POD model accuracy comes along with a
increasing of its construction and computationakti

At least in computational electromagnetism,
simultaneous estimation of the three errors has besn
treated in the literature. For example in [12], &tlmod is
proposed to construct adaptively a reduced modet f finite
element model, without applying the offline/onlimeethod.
The adaptive construction is based on an erramastir which
enables to evaluate only the reduction error withou

the



considering the error of discretisation due to e method.
Since the (D)EI method was not used in [12] to dpae the
solution of the problem, no approximation error walso
considered.

In this paper, we propose a unique error estimatoch can
be applied to evaluate the three kinds of errord ahich
enables to control the accuracy of the full proadsgduction.
This error estimator is based on the verificatioh tloe
constitutive relationship which has been alreadycsasfully
used to estimate the discretization error [19,20jis error
estimator can be incorporated in an adaptive proreedn
order to determine automatically the snapshotsthadffine
interpolation.

The paper is organized as follow. In order to idtrce the
notation, the two FE potential formations in magsedtic are
presented. The principle of the error estimatoredasn the
verification of the constitutive relationship iscedled. Then,
the parametric FE model is detailed particularky technic to
account for geometric parameters. The reductiorhaust like
POD method and (D)EI method are presented as weheir
combination. The error estimator enabling to ev&utne
three sources of errors is then introduced. Finathye

K K
v(x) = kZVklk(X) B, (x)= kZBrklk(X) (6)
=) =]

With I (x) a function equal to 1 ik belongs to [pand O
elsewhere. To solve a system of Partial Differériguations
(PDE) given by (1), (2) and (5), two FE potentiairiulations
can be used.

B. Vector potential formulation

In the case of the vector potential formulatiore thagnetic
flux density is expressed under the focurlA (x) = B(x) and
A(X)xn(x)=0 on G;. Combining (1) and (5), the PDE to solve
reads:

curl [v(x) curlA (x)] = I(x)+ curl [v(X) B,(X)] ©)

To find an approximation of the solution, the FEthoa is
generally applied. An approximation of the vectatgmtial
Aer(X) is sought in the edge element space such that [21

N
Agr(x) = 2.aw;(x) ®)
=

with N the number of Degrees of Freedom (DoR/g{x) the

proposed approach is applied to reduce a FE moflel oedge shape functions ang unknown real coefficients. By

magnetic holder with 11 parameters. It is shown hbe
proposed error estimator enables to evaluate tffereft
kinds of error and how it can be applied to obt&&inaccurate
reduced model.

Il. MAGNETOSTATICFEMODEL

A. Magnetostatic problem

We will consider an electromagnetic device whicim dse
described by the magnetostatic equations on a daoain
this section, we aim at introducing the notatioAdl. the
dimensions, the constitutive law of the materiated ahe
sources are supposed to be set. The equationsstiveel are:

curl H(X) =J(x) D)
divB(x) =0 2
with H(x) the magnetic fieldB(x) the magnetic flux density
andJ(x) the current density, which its distribution isasied
to be known. In addition, conditions di(x) and B(x) are
added on the boundary G of the domain D:
nx)xH(Xx)=0 on G
nx)B(x)=0 onG

®)
(4)

With GynGg=0, G40Gg=G andn(x) the outward normal
vector. Finally, the fieldsH(x) and B(x) satisfy the
constitutive law:

HX)=v(x) [B(X)-Br(X)] ©)

With v(x) the magnetic reluctivity an®,(x) the remanent
magnetic flux density. In practice, the domain D often
divided into K subdomains Don which the reluctivity (resp.
the remanent flux density) is constant and equaltFesp
B). The reluctivityv(x) and the remanent magnetic fIBYx)
can be written under the form:

applying the Galerkin method to a weak form of (K),
equations are obtained:

Iv(x)curIA er (X) Leurlw; (x)dx =

p (9)
.[[J(x) +curl V(X)Br(X)] Owv; (x)dx i O [1,N]
D

ReplacingAgr(X) by its expression (8) in (9), we obtain N
linear equations which can be written under thenfor
SXA=FA (10)
with S* the stiffness matrix (KN), F* the source vector

(Nx1) andX” the vector of the coefficients. &he coefficients
s; of Sand f of F satisfy:

Sj = Iv(x)curlwi (x) [eurlw ; (x)dx

2 (11)
f, = .[[.] (x) +curl |/(x)Br (x)] Ceurlw; (x)dx
D

C. Scalar potential formulation
According to (1), the magnetic field can be expressed as a
function of the gradient of a scalar potenfal H=HsgradQ
with Q(x)=C®¢ on Gu. The source fieldHs is defined such that
curlH (x)=J(x) with H¢x)*xn(x)=0 on G&;. Combining (2) and
(5), the PDE in the case of the scalar potentiahtdation is:

div [v(x)*grad Q(x)] =div[v(x) *H(X)]-div[B,(x)]  (12)
Similarly to the vector potential formulation presed before
(see (8)), an approximatioQgr is expressed in the finite
dimensional space (the nodal element space). Amplyie
Galerkin method to a weak form of (12) leads toveoa

system of linear equations under the form (B)x® = F®



Ill. ERROR ESTIMATION

The application of the FE method leads to an ewobr
discretization. If Bex(X),Hex(X)) denotes the exact solution o
the problem (the solution satisfies (1)-(5)) i ttontinuous
domain, the solutionBes(X)=curlAgr(x) of the FE vector
potential formulation (7) is not equal By(x) in the general
case. This is the same for the solutidp(x) of the scalar
potential formulation. The coupl8£-x),Hex(X)) satisfies the
equations (1)-(4) but not the behavior law (5). Téren

&’=Her(x)-V(x)[Ber(x)-B:()IIFy (13)

with:
VO = [vHx)V (x) OV ()l
D

is always positive and is equal to zero when theaggn (5)
is satisfied that is to say that the couBlg(x),Hgr(X)) is
equal to the exact solution. Moreover, it can beaghthat:

&=IHer(9)-Hex(X)IFy +IBer(X)-Bex(X)|F1n

The diminution of the value ofeneans that the solution is changes from a parameter set to another.

closer to the exact solution. The terigives an estimation of
the error of discretization introduced by the FEthmd.
Finally, solving the two potential formulations dhe same
mesh M leads to a coupl8gx(X),Hes(X)) which enables to
estimate the error due to the FE method by caiogatl3).
We can also define a relative ereor

_ 4¢?
€= 2 2
"H EF (X)"v + ||BEF (X)"1/ v

(14)

This error estimator based on the verification &k t
constitutive relationship has been widely used dotml the
quality of the FE mesh. The aim of this paper igxtend the
domain of application of this estimator to the retihn of
parametric model. To introduce that, we will prasenthe
following the parametric model and the model omgeluction
technics in the case of the vector potential foatiah but the
extension to the scalar potential formulation
straightforward.

IV. PARAMETRIC FEMODELS

A. Parametric Finite Element Model

the coefficients jsand f (see (11)) have to be calculated for
each new set of parametegrand the coefficients; af X* as
swell, which satisfy the system of linear equatiatependent

onp:
S*(p) X"(p) =F" (p)

The vector potential is then a functionpénd we have:
Aex(ip)= 32 p )

The processing of parameterized geometries is tbligh
different than the processing of the previous Kkinals
parameterization on the source or the behavior dad it
requires additional treatments. An easy way comsist
remeshing each geometry corresponding to a newnedea

(15)

(16)

setp. However, this approach has some drawbacks. With a

new remeshing for each new parameter gethe stiffness
matrix and the source vector must be recalculatddch is
time consuming. Moreover, remeshing the domain DBsaal
numerical noise on the output data because the rthsh
connectivities between elements, the number of ehtsn..)
Finalg t
expression of the shape functiowgx) (see (8)) changes as
well. Consequently, it is not obvious to obtain explicit
expression of the vector potential as (16) so theiblution of
the fieldsH(x) andB(x). To avoid the former drawback, one
possibility is to introduce additional functionsnfehment
basis method) that can account for these discdtigauThis
technique has been proposed for the stochastie fadement
method in [22,23]. Another possibility consistsioplying the
transformation method proposed in [24,25] whicH i used
in the following. It can be shown that the paraizetion on
the geometry can be transferred on a parametnzatiothe
material characteristics [26]. The unknovay®f the problem
remain the same whatever the values of the pararsete
and also the connectivities between nodes and elsme
meaning that the matrix filling d& does not depend gnbut
only the coefficient values; &nd f. Finally, whatever the kind
of parametrization, the parametric model is given the
iSystem of equations (15). For the design of elewagnetic
devices or uncertainty quantification, this systeinequations
should be solved a numerous number of times whéchbe
very time consuming even unfeasible if the numbér
unknowns is very high. In the following, we willggent MOR
method in order to alleviate the calculation timed ethe
memory storage.

Let consider now that some inputs of the model like

dimensions, reluctivitiey,, of some materials or currents in

some stranded inductors are not fixed. This sibnatian arise
during a design process where the inputs are thkeawns of
the problem and should be fixed in order to satigiyen
criteria of performances. The inputs can also besicered as
unknown because of a lack of knowledge or becausg dre
intrinsically variables and subject to dispersidhese inputs
are then considered as parameters. We dgd®,..,[) the
parameter set of dimension P. If the parametedrdiblds on
the magnitude of the source terrdisafdB;) or on the material
characteristicyy (see (6)), the same mesh (related only to t
geometry) can be used for any parameter valuesvdloes of

V. MODEL ORDERREDUCTION TECHNICS

A. Principles

In the following, we consider P parametegsepch belonging
to an interval [f™p™]. The parameter sep=(p,,...0n)

P .
belongs to the domaim = ﬂ [p'.?'” P
=1

A N,x1 vectorX(p) of functions defined o is given.X(p)
can be, for example, the solutioff*(p) of the parametric

hmodel (15). The vectoX(p) can represent also the veckdp)
e



or a vectorised form of theXW matrix S(p). In the last case,
the mi" entry x,(p) of X(p) is given by:
Xm(P)=5;(p) With m=(j-1)N+i 17)

The idea of MOR technics is to find an approximatiof
X(p) under the form:
R
X(p)= X xq(P)Xq (18)
g=1

With X4 Nx1 vectors with constant entries and(p}

C. (Discrete)Empirical Interpolation ((D)EI ) method

In the following, we will consider the vectéi(p) to present
the (D)EI method. However, as it was mentionecdeictisn V-
A, the (D)EI method can be applied also on the m&(p) by
vectorising it as presented in (17). The idea iagproximate
F(p) under the form:

F(p)=FDE.(p):uc(p):§ci b,

With c(p)=(ci(p)...,c(p)) a vector which entries are linear
combinations of Q “well-chosen entries” of the \@cdE(p).

(21)

functions ofp. The reduction holds here in the fact the vectorhen, it is possible to calculate only Q entriesF@p), to

X(p) does not require the calculation of fdnctions ofp but
only R which is supposed to be much lower than N.

compute €p) and then, by applying (21), to determine an
approximationFpg (p) of F(p). This method works very well

Two methods based on the previous principles wél bif the entries of the vectoF(p) are strongly correlated

presented in the following: the POD method and (b¥El
method which can be combined efficiently to redacé&E
model.

B. Proper Orthogonal Decomposition (POD) method
The POD method, detailed in the following, is orfettwe

meaning that they vary in the same way with theupater set
p. In order to determine these Q entries, the veEfp) is
calculated for Z' parameter set9s(..,pz). Then, the
approximationFpg(p) is sought in the spad€ spanned by
(F(p4),...,F(pz)) which correspond to a snapshot matfix
Let denotdJ=(Uy,...,Ug), an orthogonal basis of K’ which can

most popular MOR methods. Consider Z parameter sgf§ determined by a Gram-Schmidt Process or a SVDeof

(p1,-..,pz) and the NxZ matribA of the associated solutions

(XA(Po), ..., X* (p2)) of (15). This matrixA is often so-called

the matrix of snapshots adf\(p;)) a snapshot. We define the

linear spac& spanned by the vector&(p.),..., X*(pz)) and
the NxR matrix ¥ (R<Z) of the vectors ¥;,..Wg), an
orthogonal basis of the spadé The matrix ¥ can be
obtained by a Singular Value Decomposition (SV@nirthe

snapshot matri¥. Then, by applying the algorithm presented
in Fig. 1, the most “significant” Q entries df(p) are
determined [18]. Let denotefi,,..,ig} their indices (kij<N)
and P the N«Q matrix such that the"jcolumn is the;f
columne; of the NN identity matrix. All the entries d? are
equal to zero except the Q entrﬂlgej§(1§j§Q). The vector(p)

matrix A. In fact, the matrix is constructed easily frone th is then given by:

EigenValue Decomposition (EVD) of the ZxZ matiXA
which is almost costless because Z is equal toraktgiezen in
practice. The idea of the POD method is to seek aor
approximation of the solution of (15) in the spaCewhich

o(p) = (P'U)™* P'F(p) (22)

The xQ matrix P'U)™ can be precalculated and the Q
entries of the vectolP'F(p) are equal to the Q entries Bfp)

means thatX” (p) is approximated by the following linear with indices belonging to the sét{is,...ig}. Then, F(p) is

combination:
R
XA (p)=9 XA (p) = 2 a (o),
i=1

The approximation has to satisfy the equation (Mb)ich is
not generally possible because the system of emsatis
overdetermined. The idea is then to cancel thelueS*(p) ¢

(19)

approximated by applying (21). With the (D)EI meaihonly

Q entries ofF(p) are calculated instead of N, which can save
calculation time. However, the accuracy of the agjpnation
should be controlled and depends also on the chaficbe
parameter sets p{,...,pz). Moreover as shown in the next
section, the system of equations becomes affirgamameter
which enables to speed up the computational timahef

XA, (p)-FA(p) in the spac& which is equivalent to solve an reduced model.

system of R linear equations:
¥'s'(p) ¥ XA (p) = ¥ F(p) (20)

The size of the system (20) is then equal to Relvis much
lower than N, the size of the full system (15). Huotution of
the system of equations is much faster reducingifgigntly
the computational time. However, the accuracy efrtethod
is closely related to the choice of the snapshét§r(), ..., X*
(pz)) used to determine the reduced basis. Moreovercan
see that we have still to calculate the full ma8ip) and the
vector FA(p) for each new parameter setIn the following,
we will present the (D)EI method to approximate thatrix
S*(p) and the vectorF*(p) in order to reduce their
construction time.

D. Combination of (D)EI method and POD method

Using the (D)EI method and according to (21),
approximation Spgi(p) of the stiffness matrixS(p) can be
written:

an

Qs
Spei(p) = Z;Si (v, (23)
=
With V;, Qs sparse matrices with the same data structure as
S(p) and gp) linear combinations of Qentries ofS(p). The
vectorF(p) can be approximated also under the form (21) with
Qr vectorsU; and coefficients;(p).
Introducing the approximation &(p) in the reduced model
(20), we obtain:
Si(p) Xi(P)=F+(p) (24)
with



()X s 6 vr=Ys ),

i=1 (25)
Qr Qf
Fr(p):_%ci (p)l}’lui :_Zici (p)Uri
1= =
The RxR matrices V,; and R1 vectors U; can be

precalculated. Once these terms are pre-calculatied,
construction of the reduced model (24) for a gipanameter
setp requires only:

-the calculation of the Qentries ofS(p) and Q entries of
F(p).

-the determination of the vectsfp) andc(p) (see (22) with
a pre-calculated matrixPU)™)

-the computation o%.(p) andF,(p) using (25).

method is applied alone (which has no practicarist), ¢!
and ¥ are identity matrices. From the vecto8(p) and
X%p), two potentials Ag(x,p) and Qe(x,p) can be
determined respectively (see (16Xccording to section lil,
an error g(p) can be calculated from the fields
Ber(x.p)=curlAee(x,p) and Her(x,p)=Hs(x,p)-gradQer(x,p)
using (13). This error includes the discrepancyordy due to
the discretization of the mesh of the full model but also due
to the approximation by the POD and/or the (D)Elthrod.
For a given parameter sgt the error &p) of the full model
will be always lower thandp) because the two potential
formulation solutions of the full model minimizeket error
(13) for a given mesM. The smaller and the closer the error
€(p), the better the approximation using POD and (D)EI

Consequently, the construction of the reduced maslel methods.

hugely alleviated because only a small number @sp(rQ)

We can see that the same error estimator can he tose

of tiny RxR matrices (resp. Rx1 vectors) are involved in thevaluate the discretization error due to the FEhout the

calculation.
GREEDY ALGORITHM

inputU=[Uy,...,Uq]
outputl={i,,..., ig} andP=(ey,...,eq)

Max() operator
If V=(vy,...,v) thenMax(V)=v; with |v|2|vi| i0{1,...,m}

Initialisation
U=[U]
i;=Max(U,)
I={i .}
P=[ey1]

For j=2t0 Q
Solve(P' S) ¢ =P'U;

residue=U;-S ¢

ij=Max(residue)

U=[U,U]] and P=[P,&] andI={1,i})
End

Fig. 1: Greedy algorithm to determine the mafiand the index s&{{18]

The combination of the (D)EI method and the PODhoet
is very attractive in terms of computational tirklawever, as
mentionned above, these methods leads to an appatan
of the solution and the accuracy of the methodschrsely
related to the snapshots.

In the following, we will derive an error estimatfsom the
one presented in section Il in order to contra #tcuracy of
the reduced model and to determine adaptively tagixnof
snapshots.

VI.

We consider the solution$*(p) andX®(p) of two reduced
models derived from the two FE formulations butdshen the

ERROR ESTIMATION

reduction error due to the POD method and the potation
error due to the (D)EI method.

This error estimator can be very useful to evaltiaeguality
of the reduction. Moreover, as mentioned above atwiracy
of the reduction is strongly dependent on the dmatgs|t is so
legitimate to derive an iterative procedure basedhis error
to determine the snapshots.

VIL.

In the following, we will describe how to take advage of
the proposed error estimator to construct autorlltican
accurate reduced model.

CONSTRUCTION OF THE PARAMETRIC REDUCED MODEL

A. POD and iterative determination of the snapshots

Let us consider the"hiteration of the adaptive procedure to
construct the reduced bas” and ¥,% The reduced basis
has beerobtained by solving the FE model (15) with the two
formulations for the parameter setp,(..,p,). At the '
iteration, P new parameter sefs,(..p'p) are considered. The
parameter sep’; is determined by changing only th& i
component op,. The reduced problem (24) is solved for the
P parameterp’; for both formulations. We denote”Xp’;)
and X(p")) the P solutions. Then, for each parameteran
error é(p’;) can be calculated (see section VI). Them'jfis
the parameter leading to the highest error, tharpater sets
(P1,--..pn) is completed by,.,=p’j. The FE model is solved
for the two formulations, the snapshot sets areptetad with
XA(p’ n+2) and X(p’ 1) and the new basi#,.,” and ¥,.,“ are
calculated by applying a SVD. Moreover, an errgpg.,) is
determined which corresponds just to the discridimaerror
due to the FE method. The ratio:

Opep = erz(p' n+l)
n+ R
eZ(p n+1)
is a good candidate to evaluate the quality ofrddiction
versus the quality of the discretisation by the rR&thod. In

(26)

same meshM. The two reduced models are obtained aftefact, since it is always greater than 1 (see VIy,i, is close

applying either the POD method or the (D)EI metbodboth.

to one, it means that the reduction error is ndgkgcompared

We denote¥! and ¥ , the matrices of the two reduced basigo the discretisation error.

(see section V-B) and”(p)=¥'X"(p) and X(p)= X (p)
the projected solutions in the initial mesh If the (D)EI



The iterative procedure is repeated until the vabfien,
remains close to 1. We dend®g the set of parametefs, of
which correspond to the snapshots.

With other criteria proposed in the literature, tipgality is
evaluated assuming that the discretization errareigligible,
which is not necessarily the case in practice, @afg when
the mesh is deformed to account for parameterizedgtry.

B. (D)EI method
To determine an approximate of the mat8p) and the

intervals of the parameters (dimensions and maéderia
characteristics) are not the same as well as tmebau of
parameters. For instance, the variation intervals the
dimensions considered here are 9 times greaterithd?] to
emphasize the error of discretisation.

The ferromagnetic materials are supposed to halmeear
behavior and the magnetic permeability is equ&@QQ., with

Mo the vacuum permeability. The force experiencedthsy
mobile plate, when the coil is not energized (dak/ do the

vector F(p) using the (D)EI method, an iterative method caR€rmanent magnet), has been calculated using thevélla

be also used but at the opposite to the POD methetk is no  Stress Tensog]. We have fixed nominal values for the
FE system to solve just snapshots of the m&p) and the Pparameters ¥ (see Table I) and consider an interval of
vector F(p) needs to be calculated. An exploration of theariation of [0.1§°",1.9p™"] for each parameter. To account

domain is then affordable. Let denote alsaif L parameters
p. For each parametgx of I, the matricesS*(p) and S*(p)

for the modification of the geometry, the transfation
method is used but with always the same mesh. Udy ghe

and the vector#"(p) and F®(p) are calculated. Then, aninfluence of the mesh, we consider 4 meshes Mi with

approximation is calculated that we denote respelgti

S*oeiL(p), S oerL(P), FAoeiL(p) andFpe (p). The quality of
the approximation of the (D)EI method can be eualdidy

rectangular elements which characteristics arengimeTable
II. The full model, the error estimation, the PObBda(D)EI
methods have been programmed under Matlab envinonme

comparing the error p{), already calculated for parameter seThe feature of the force has been estimated usiadihest

P, constructed by the iterative procedure used torahite the
snapshots (see VII.A), to the erraP¥p;) calculated using
the POD-(D)EI model (see V.D). We should pointed tbat

mesh (see VIII.B). Due to the high range of vaoatbf the
parameters, the ratio between the maximum and thienom
of the force is approximately equal to 650. The mealue of

the reduced model given by the POD method intetesla the force has been estimated equal to 90 N witkaadard

perfectly the FE model at the parameter gethat is to say
e(P)=e(p;). Consequently the difference betweemp;)e@nd
e"F(p;) corresponds to the interpolation error due to(B)E|

method. However, if the parameter pebf P, is employed to
determine the snapshots &p) and F(p) (pOl), then

e " (p)=e)=e(p) (the (D)EI method is also interpolant).

Consequently, this procedure of evaluation willdfiécient if
the parameter set used for the (D)EI method andPO®
method are different that is to s&n I =[0. To estimate the
error due to the (D)EI we introduce the followiragio:

DEI _erDEIZ(P)
=)

To determine the (D)EI approximation of the mawi&(p)
andS%(p) and the vectors”(p) andF®(p), we consider first a

(27)

sequence of nested detof parameters. From given parameter  —
setl, a POD-(D)EI reduced model is constructed from the hclo’

(D)EI apprOXimationssADEl,L(p)v SQDEI,L(p)v FADEI,L(p) and
Fe (). Then, the ratim®f(p) (see (27)) is calculated for
each parametep of P,. If the values ofa”(p) remains
sufficiently close to 1, the (D)El approximation ncébe
considered as good quality if not the next paramstél . is
considered. The process is repeated until conveegen

deviation of 81 N showing that the dispersion & thrce is
large. The wide range of parameter values leadsuariation
of the discretization error due to a high deforomtof the
mesh which needs to be controlled.

: Symetry axis
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|
|
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Teul A P

i S|

Mobile plate (Iron)
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HLATN

Permanent magnet

Yoke (Iron)

Fig.2: Half of the geometry of the magnetic holdad the definition of the
parameters {fi,aim bot €, io,E: Neios Naim Nent, Moot Mom)

TABLE |: NOMINAL VALUE FOR THE PARAMETERS(MM)

VIIl.  APPLICATION

A. Presentation of the problem

We consider a magnetic holder modelled by the tWo
potential formulations using the FE method. Thengeiny of
the device is presented in Fig.2 and is parametnzith 11
dimensions.

We should mention that the example of the magrtetider
has been also used in [12] to evaluate an adaRiV®
method to solve a stochastic problem. However vHr&tion

lcul laim Tbot e Ielo & hgo  haim Nen hpot  hpre
10.5 20.5 32 1 42 0.15 10 5 5 10 10
TABLE II: M ESHCHARACTERISTICS
2 Mesh M1 M2 M3 M4
Elements 130 460 1400 2750
Nodes 154 504 1476 2856

Using the Latin Hypercube method [27], we have gzieel
a sampleS of S=1000 parameter sets. If we denotg) ygn
output of the model (full or reduced), the mear, standard
deviation and the maximum value opy(@re estimated using



always the same samdby the following expressions: is really profitable in terms of accuracy improvertsefor the
1 reduced model.
<y>=22 () To illustrate the previous point, we have stoppeliterative
poS procedure after n=10, 30, 50, 70 iterations. Likattfor each
1 mesh Mi, we have constructed reduced models with an
std(y):\/g 2 YAp)-<y>? (28) increasing number of snapshots. We present in Figed
pES evolution of the ratio between the mean of the reqe> of
max(y)= y(p) OpOS the reduced model due the discretisation methowedk as

reduction method and the error <e> only due to the
The output y) can be any output of the model like thediscretisation. Above n=30, no real improvement the

relative erroe or the force F. accuracy of the reduced model derived from M1 aritiddn
be noticed for n greater than 30 which is not theecwithM;

and M4.
B. Accuracy of the full problem We have also evaluated the quality of the reducedanby

We have reported in Table Il the estimation of thean, the calculating the meaneg> and the maximum mag] of the
standard deviation and the maximum of the relativer (p)  errorg, as well as the maximum of the variation of thecéor
(see (14)). As expected, the meagpr <f the error tends to differencedF, using (27). The results are reported in Fig.5 and
zero when the number of elements increases. Thlaih Fig.6 fore, and in Fig.7 fodF.. As expected, the errey (resp.
deviation stdf) is not equal to zero meaning that thehe force differencedF,) of the reduced model converges

discrepancy due to the discretization varies withe t towards the erroe (resp. the force differencdF) of the FE
deformation of the mesh due to the parameter vanidtut we  model. Moreover, if we consider the maximum valoés,

can see that this dispersion decreases when theleesmes 414 sk, we can see that there is no real improvement ef th

finer. We have also calculated the relative diffiexs accuracy above n=30 snapshots correlating thetfattit is
SF(p) =2* FaP)-Fo(p) (29) Useless to increase the number of snapshots toimpthe
Fa(p) +Fy(p) accuracy which is bounded by the discretizatiomreof the

with P(p) and F(p) the vertical forces obtained by the twoFE method. B
formulations, the statistics are reported in theletdV. As ~ Additionally to that, the additive value of the ueed model
stated below for the error, the mean and the stdraviation aPPears clearly in Fig.3 because with a small nundje

of F tend to zero when the number of elements incseaje  d€grees of freedom (equal here to the number qiséwas)
can also see a strong correlation between the #eolof the W€ C%n obéaln a(ljaelttedr a_CCUJa?y thanMa4FE mhodgck)a)?ample,h
statistics of the relative errar and of the relative forcer & €duced model denved from wit shaps ots
which ratio is kept almost constant when the numbkr (S€>=6.0%) has a better accuracy than the FE mibtiekith

element increases. 504 nodes (&>=7.7%) with about ten times less DoF’s.
D. Accuracy of the (D)EI method
TABLE |1l STATISTICS OF THE ERROR . . .
Mest ML M2 M3 m We have applied the (D)El method in order to appnexe
<e> (%) 163 7.71 4.00 261 the matrixS(p) andF(p) (see (15)). We have generated two
stdE) (%) 856 4.49 250 1.67 samples of parameter sets of length L equal to rt8 364
max(e)(%) 640 386 233 167 leading to two samples of matric&¥\(p) and S%(p) and
vectorsF(p) andF®(p). Applying the (D)EI method on these
TABLE IV: S;AT'ST'CSOFTHE FORCE DIFFERENCEF two samples, we have obtained two approximationghef
Mes| M1 M2 M3 M4 ; 0 A
<oF> (%) 159 635 315 105 matrlgesSADELL(p) and S pg; (p) and the vectors"pg L(P)
Std@F) (%) 106 569 326 225 andF pgL(p)- _ o
max(@F)(%) 75.3 460 27.6 19.1 To evaluate the quality of the approximation, weveha

applied the strategy proposed in VII.B by calculgti,"%' (p,)
(see(27)) for eachp belonging toP, (see VII.A). We remind
C. Accuracy of the POD model that ep) has been already calculated during the constmicti

We have applied the procedure proposed in VILA tof the POD approximation ang’&(p) is calculated using the
determine the snapshots. For each mesh Mi, we hamgluced model combining the (D)ElI method and theDPO
represented the evolution of the criterimn(see (26)) versus method (see (24)) which is very fast. In Fig.8, gixe values
the iterations of the iterative process in Fig.3teA a fast obtained for 70 snapshots for the four meshes Wwk&@8. For
decreasing, as expectam}, remains close but always greatermost of the snapshots, the ratio is very high prguhat the
than 1. However, for the meshes M1 and Mg,s always (D)EI approximation is not sufficiently accurate.ohover,
lower than 1.09 for n greater than 30. It meang tha We can see that the finer mesh is the more seesitiv
discretisation error is always much greater thanréduction ~ However, with a longer sample of matrices (L=36de
error so no improvement of the reduced model apeeted by value of log@,°=) is always equal to zero meaning that the
increasing n. However with the meshes M3 and M4,case matrix S(p) and the vectoF(p) are perfectly interpolated for
see in Fig.3 thatt, fluctuates with maximum values close todll the p,. The approximation can be considered as valid in
2. In that case the process of enrichment of tla@shots sets that case. It can be shown, in this particular eplanthat the



approximation is exact, in fact, we havSADE,,w(p),
Soera64P), Foersedp) andFog 364p) Which are equal t&8" 25
(), S*(p), F* (p) andF*(p) respectively.
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TABLE V: STATISTICS OF THE RELATIVE ERROFE (%0) AND THE RELATIVE
FORCE DIFFERENCEF (%)

DoF's

<e> stdE max€) <> stdBF) max@F)
FullM4 2700 2.6 16 162 1.9 22 19.0
Reduced 70 4.4 20 180 22 2.0
Full M3 1400  4C 24  23: 3.1 3.2

TABLE VI: AVERAGE RELATIVE COMPUTATIONAL TIMES OF THE
CONSTRUCTION AND THE SOLUTION OF THE SYSTEM OF EQUIONS FOR THE
DIFFERENT MODELS(THE REFERENCE IS THE REDUCED MODEL IN THA
FORMULATON)

DoF's A Q
Full M4 2700 53.4 70.1
Reduced 70 1.0 11
Full M3 1400 16.5 25.1

E. (D)EI POD Model

increase the computation speed with a control efdifferent
sources of discrepancy. Moreover, the accuracheféduced
model can be always controlled by using the progose
estimator. The calculation of the error of the @i model
can be also very fast by taking advantage of th&bhethod

. c19-6 decomposition of the stiffness matrices.

IX. CONCLUSION

In this paper, we have introduced an error estimattch
enables to evaluate at the same time the discrigsanc
introduced by the FE, the POD and the (D)EI methaliéng
this estimator, it is possible to balance the eriotroduced by
the three methods. Based on this error estimaterhave
proposed a procedure to construct automaticallyeduaed
model based on the POD and (D)ElI methods. It han be
applied on an example in 2D magnetostatics totittis the

We consider now the reduced POD-(D)ElI model derivepgroposed procedure. The results show that a redommtel

from:
-the full model based on the mesh M4,

with almost the same accuracy as a FE model can be
constructed but with 20 times less of unknowns B&dimes

-Z=70 snapshots obtained with the iterative prooedufaster.

presented in VIILA based on the proposed errommedtr
which requires the full model solution 70 times foe two
formulations.

-Z'=364 calculations of the stiffness mati$p) and source
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vectorF(p) for the two formulations. The application enables

to extract automatically, by applying the algorittgiven in
Fig.1, an expression of the mati®p) and the vectoF(p)
under the form (23) with =Q%=60 and @=1 and G=2.
The quality of the approximation has been checkgdhe
proposed error estimator (see VIII.B).

The statistics of the reduced model have been cadpa
the statistics of the FE models M4 and M3 by reapgrin

Table V the relative errog and the relative force difference

8. We can see that the reduction process detersoitaie
accuracy of the reduced model versus its origifr&emodel
M4 which is inevitable. However, the reduced modietived
from the mesh M4 has similar statistics as the FiElehM3
but with 20 times less unknowns.

In terms of memory usage, since we have used iadi@n
elements, the number of entries of the mafis equal to 9
times the number of unknowns N. If we account far $ource

vector F, we have to store 10N terms with the full model.

These 10N terms have to be recalculated for eashse¢ of
parameters. In the case of reduced model, we lnas®te the
Qr matrices of size o and @ vectors of size of which

represent approximately 600N terms to store whialchm
higher than the full model however with the (D)Ektimod

only few terms needs to be recalculated in ordeetonstruct
the reduced model.

We have reported in Table VI the relative estimated

computational time to construct and to solve thaascand the
vector potential formulations for the different nedsl taking
the computational time of the reduced model in mect
potential formulation as reference. We can see that
computational time of the two formulations is alinthe same
as expected in 2D. The reduced model is more tlBafaster
than the FE model M3 with almost the same accuracy.

Finally, the reduced model obtained by the proposed

procedure of the construction of the reduced medables to
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