Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/11217

To cite this version:
Fatigue life under non-Gaussian random loading from various models

A. Banvillet a, T. Łagoda b,*, E. Macha b, A. Niesłony b, T. Palin-Luc a, J.-F. Vittori c

a E.N.S.A.M. CER de Bordeaux, Laboratoire Matériaux Endommagement Fiabilité et Ingénierie des Procédés (EA 2727), Esplanade des Arts et Métiers, F-33405 Talence Cedex, France
c Renault, Technocentre, Dir. Ingénierie des Matériaux, See 64130, API : TCR LAB 035, 1 Av. Golf, F-78288 Guyancourt Cedex, France

Abstract

Fatigue test results on the 10HNAP steel under constant amplitude and random loading with non-Gaussian probability distribution function, zero mean value and wide-band frequency spectrum have been used to compare the life time estimation of the models proposed by Bannantine, Fatemi–Socie, Socie, Wang–Brown, Morel and Łagoda–Macha. Except the Morel proposal which accumulates damage step by step with a proper methodology, all the other models use a cycle counting method. The rainflow algorithm is used to extract cycles from random histories of damage parameters in time domain. In the last model, where a strain energy density parameter is employed, additionally spectral method is evaluated for fatigue life calculation in the frequency domain. The best and very similar results of fatigue life assessment have been obtained using the models proposed by Socie and by Łagoda–Macha, both in time and frequency domains for the last one.

Keywords: Fatigue life calculation; Strain energy; Spectral method; Rainflow algorithm; Random loading

1. Introduction

The known algorithms for assessment of fatigue life of machine components and structures under random loading can be divided into two groups. Some of them use numerical methods for cycle counting and damage accumulation step by step. On the other group, there are the so called ‘spectral methods’ based on the spectral analysis of stochastic processes. In the first group, the loading of the material is usually represented by time courses of stresses and/or strains, and in the other group by their frequency characteristics, i.e. by the power spectral density function or its parameters. Lately [1–4], the strain energy density parameter has been proposed for fatigue life evaluation. This parameter seemed to be efficient in the case of fatigue life determination based on a cycle counting method [1,2,4]. The energy parameter includes the strain and stress histories and keeps the frequency character of the loading. Thus, we may ask if the strain energy density parameter can be applied in spectral methods where the power spectral density function plays the most important role.

The algorithms of fatigue life determination under multiaxial random loading must be also valid for the uniaxial random stress state. In a particular case, elements of machines and structures can remain in such a stress state for a certain life time. Verification of the model of multiaxial fatigue only for the uniaxial stress state includes one of the important stages of correctness these algorithms. This paper deals with the comparison of some selected models of fatigue life estimation under stationary non-Gaussian random axial loading on the basis of experimental data obtained for the 10HNAP steel in high cycle fatigue (HCF). In this paper the following models for multiaxial loading are analyzed and their predictions compared with experiments: Smith–Watson–Topper damage parameter used by Bannantine–Socie [5], Fatemi–Socie [5,6], Socie for HCF [7], Wang–Brown [8,9], Morel [10,11] and Łagoda–Macha [1–4].

* Corresponding author. Tel.: +48-77-4006-198; fax: +48-77-4006-343.
E-mail address: tlag@po.opole.pl (T. Łagoda).
Nomenclature

$A_W = W_{af}^a N$ fatigue curve in an energy approach for the energy approach, coefficient allowing to include cycles with amplitudes below the fatigue limit from an arbitrary stress level

$A = \sigma_{af}^a N$ fatigue curve

a coefficient allowing to include stress amplitudes below the fatigue limit

b tensile fatigue strength exponent

b_0 shear fatigue strength exponent

c tensile ductility exponent

c_0 shear fatigue ductility exponent

E Young modulus of the material

$M^+ = \frac{\hat{\lambda}_2}{\lambda_2}$ expected number of peaks in a time unit

G shear modulus of the material

$G(f)$ power spectral density function

m slope of the Wöhler curve,

$m' = m/2$ slope of the energy fatigue curve

N_o number of cycles corresponding to the fatigue limit

N_f number of cycles to failure

n_i number of cycles with a stress amplitude σ_{ai}

$\bar{n}(\theta, \phi)$ unit normal vector to a material plane orientated by the angles θ, ϕ (spherical coordinates)

p, q, r material parameters of the Morel approach

$P_{n\hat{n}}$ material plane orientated by $\bar{n}(\theta, \phi)$

q_1 asymmetry or skewness

q_2 excess

T_{Ba} life calculated according to the Bannantine–Socie model

$T_{Ch-D,W}$ life (in s) calculated according to the Chaudhury–Dover model with strain energy density parameter

T_{exp} experimental fatigue life

T_{FS} life calculated according to the Fatami–Socie model

T_{Mo} life calculated according to the Morel model

$T_{RF,W}$ life calculated according to cycle counting algorithm from strain energy density parameter history

T_{RMS} root mean square value of the macroscopic resolved shear stress

T_{So} life calculated according to the Socie model

T_{WB} life calculated according to the Wang–Brown model

T_o observation time

x, y, z axis linked with the specimen

x', y', n arbitrary axis linked with the critical plane orientated by $\bar{n}(\theta, \phi)$

W strain energy density parameter, distinguishing tension and compression,

W_{af} fatigue limit according to the energy parameter

$\alpha = \frac{\lambda_2}{\sqrt{\lambda_0 \lambda_4}}$ coefficient of irregularity

ε_f' tensile fatigue ductility coefficient

$\gamma' = \sqrt{1 - \alpha^2}$ coefficient of the spectrum width

γ_f' shear fatigue ductility coefficient

$\Gamma(x)$ gamma function

ν Poisson’s ratio

τ_f' shear fatigue strength coefficient

σ_i' axial fatigue strength coefficient

θ, ϕ angles orientating \bar{n} in spherical coordinates system

$\mu_\sigma = \lambda_0$ variance of a stress history $\sigma(t)$

$\sigma_{a max}$ maximum amplitude in the history of stress after cycle counting by means of the rainflow algorithm
In the last model the strain energy density parameter is used both in time and frequency domain. In the first four models the damage parameter used has been originally proposed for cyclic loading, then used by some authors for variable amplitude multiaxial loading [5]. One aim of this paper is also to investigate if such models should be valid also for uniaxial random loading.

2. Comments about the methods using a cycle counting algorithm and based on the critical plane approach

With a general point of view, all the fatigue life calculation methods using a cycle counting algorithm can be summarized with the same methodology. First a cycle counting variable is chosen in order to extract the cycles (with their amplitude and mean value) from the variable amplitude or random multiaxial loading signal (stresses and/or strains). For the simulations presented hereafter the ASTM rainflow algorithm was used [13] (with 64 classes). All the random loadings are considered as stationary for life calculation. Secondly, a damage parameter Dp is chosen; it depends on stress-strain quantities. This damage parameter is computed on each material plane \(P_{\pi} \), orientated by the unit normal vector \(\mathbf{n}(\theta, \phi) \) (Fig. 1), in order to look for the critical plane \(P_{\pi_c} \). Note that since the fatigue critical point is at the specimen surface the stress state is plane at this location, thus the number of planes to examine to look for the critical one can be reduced. All the computations were done by considering that \(\theta = 45^\circ \) and \(90^\circ \), for \(\phi \) varying between \(0^\circ \) and \(180^\circ \) as proposed in ref. [9,14]. Thirdly, to quantify the damage generated by each cycle identified with the counting algorithm it is necessary to use an equation relating the damage parameter and the number of cycles to failure \(N_t \) under constant amplitude loading. It is then possible to compute the elementary damage caused by each extracted cycle and to accumulate step by step this damage by using, for instance, the linear Palmgren–Miner rule. Small cycles with a stress amplitude generating an elementary damage smaller than \(10^{-12} \) were neglected in our computations. According to the S–N curve of the tested material, it corresponds to a stress amplitude \(\sigma_{af} \) in fully reversed tension. Finally, the fatigue life is calculated by assuming a threshold value for the total damage sum. One is usually used for this threshold value as it was done in this paper, but some authors have shown that this limit can vary in a large interval [15,16].

3. Fatemi and Socie’s model

According to Fatemi and Socie (FS) [5–7], for each material plane \(P_{\pi} \), the cycle counting method has to be applied on two variables: the shear strains \(\gamma_{n_c}(t) \) and \(\gamma_{n_v}(t) \). The critical plane is, for each of these two counting variables, the plane experiencing the highest shear strain range. For the materials where the fatigue crack initiation is dominated by plastic shear strains FS recommend to use the following damage parameter: \(D_{FS} = \gamma_a(1 + k_1\sigma_{n_{max}}/\sigma_y) \) related to the Manson–Coffin curve in torsion by equation:

\[
\gamma_a(1 + k_1\sigma_{n_{max}}/\sigma_y) = \frac{\tau_c(2N_f)}{G} + \gamma'_t(2N_f)^{\alpha_0}
\]

(1)

The term on the left-hand side represents the damage parameter on the critical plane. For each loading cycle extracted by the rainflow method, \(\gamma_a \) is the shear strain amplitude \((\Delta \gamma_{n_c}/2 \text{ or } \Delta \gamma_{n_v}/2) \). \(\sigma_{n_{max}} \) is the maximum of the normal stress on the critical plane, during the current cycle of the counting variable \(\gamma_{n_c}(t) \) or \(\gamma_{n_v}(t) \) (Fig. 2). \(\sigma_y \) is the yield stress of the material in tension. In this damage parameter, \(k_1 \) is a material constant identified by fitting uniaxial against pure torsion fatigue data.
for each load cycles extracted by the rainflow method. In this equation and for each load cycles extracted by the rainflow method, \(\epsilon_{n,i} \) is the amplitude of the normal strain and \(\sigma_{n,max} \) is the maximum normal stress during the current cycle of the counting variable (Fig. 2). The algorithm used to compute life according to this model is shown in Appendix 2.

5. Socie’s proposal for HCF regime

According to Fatemi and Socie for HCF and ductile materials, most of the fatigue life is consumed by crack nucleation on the planes where the shear stress is maximum. In this case, Socie [7] proposes the following stress-based approach by using as damage parameter: \(D_{P_{SWT}} = \varphi + k_2 \sigma_{n,max} \). This is the linear combination of the shear stress amplitude \(\tau_a \) and the maximum normal stress \(\sigma_{n,max} \), acting on the critical plane, both during the load cycle (Fig. 2). For each material plane \(P_{\tau_a} \), the cycle counting algorithm has to be applied on two counting variables: the shear stresses \(\tau_{n,i}(t) \) and \(\tau_{n,y}(t) \). The critical plane is the plane experiencing the highest shear stress range \((\Delta \tau_a(t) \text{ or } \Delta \tau_{n,y}(t)) \). The relation linking the damage parameter and the number of cycles to failure under constant amplitude loading is given by the following equation:

\[
\tau_a + k_2 \sigma_{n,max} = \tau_a(2N)^{b_0}.
\]

The right-hand side of this equation is the elastic part of the strain-life curve. \(k_2 \) is a material parameter identified by fitting tension and torsion fatigue data. The algorithm used to apply this method is illustrated in Appendix 3.

6. Wang and Brown’s model

Wang and Brown [8,9] developed a model first restricted to low cycle fatigue (LCF) and medium cycle fatigue (MCF) according to the assumption that fatigue crack growth is controlled by the maximum shear strain. For each material plane \(P_{\tau_a} \), the rainflow cycle counting method has to be applied on two counting variables: the shear strains \(\gamma_{n,i}(t) \) and \(\gamma_{n,y}(t) \). The critical plane is the plane experiencing the highest shear strain range. Assuming that, during one cycle the normal strain excursion \(\Delta \varepsilon_n \) plays an important additional role, Wang and Brown propose the following expression as damage parameter: \(D_{P_{SWT}} = \gamma_{n,i} + S \Delta \varepsilon_n \) where \(\gamma_{n,i} \) is the shear strain amplitude and \(S \) is a material parameter identified by fitting tension against torsion fatigue data. The relation between the damage parameter and the life time is expressed as

\[
\gamma_{n,i} + S \Delta \varepsilon_n = (1 + \nu_e + S(1-\nu_p)) \frac{\sigma'_a - 2\sigma_{n,mean}}{E} (2N)^b + (1 + \nu_e + S(1-\nu_p)) \frac{\epsilon'_a(2N)^c}{E}.
\]

where \(\nu_e \) and \(\nu_p \) are respectively the elastic and plastic Poisson’s ratio of the material. \(\sigma_{n,mean} \) is the mean normal stress on the critical plane during each extracted cycle (Fig. 2) of counting variable \(\gamma_{n,i}(t) \) or \(\gamma_{n,y}(t) \).

The algorithm used to compute the fatigue life according to the Wang–Brown model is shown in Appendix 4.

7. Morel’s approach

Morel developed a model for polycrystalline metals in HCF based on the mesoscopic plastic strain accumu-
mean value and phase difference of each stress

axial loading (so that the hydrostatic stress parameter' on a line orientated by the unit vector T the hydrostatic stress

On a line orientated by the unit vector T cal plane, the most damaging one. One way to localize mental S–N curve. crystal) which can be identified from only one experi-

where p, q, and r are three material parameters (function of the hardening, saturation and softening phases of the crystal) which can be identified from only one experimental S–N curve.

Under variable amplitude loading, the amplitude, mean value and phase difference of each stress $\Sigma(t)$ cannot be defined. In this case, to simplify the fatigue life prediction problem Morel proposed to consider as critical plane, the most damaging one. One way to localize this plane is to look for the maximum value of $T_{\Sigma,RMS}(\psi)$ (noted $T_{\Sigma,RMS}$), which is the root mean square of the macroscopic resolved shear stress acting on a line orientated by the unit vector $\overrightarrow{m}(\psi)$. This unit vector is determined by the angle ψ from fixed axis in the plane defined by its angles θ and ϕ (spherical coordinates) [10,11].

$$T_{\Sigma,RMS} = \max_{\theta,\phi} T_{\Sigma,RMS}(\theta,\phi) \text{ with } T_{\Sigma,RMS}(\theta,\phi)$$

$$= \sqrt{\int_0^{2\pi} T_{\Sigma,RMS}(\theta,\phi,\psi)d\psi}$$

(8)

Once the critical plane located, the ‘phase parameter’ H is computed with equation

$$H = \frac{T_{\Sigma,RMS}}{C_{RMS}} \text{ where } C_{RMS} = \max T_{\Sigma,RMS}(\psi)$$

(9)

on this plane (Appendix 5).

After this step, the time history of the hydrostatic stress $\Sigma(t)$ and of the resolved shear stress $\tau(\psi,t)$ on the critical plane is computed. The amplitude of the hydrostatic stress and its mean value between two extreme at t_i and t_{i+1} of the macroscopic resolved shear are respectively: $\Sigma_{H,i} = \frac{\Sigma(t_i) + \Sigma(t_{i+1})}{2}$ and $\Sigma_{H,m} = \frac{\Sigma(t_i) + \Sigma(t_{i+1})}{2}$. The amplitude of the resolved shear stress is $\tau(\psi,t) = \frac{\tau(\psi,t_{i+1}) - \tau(\psi,t)}{2}$. By assuming that $T_{\Sigma} / \tau(\psi)$ (for each transition t_i to t_{i+1}) and $H = T_{\Sigma,RMS} / C_{RMS}$ (for all the load sequence) are the same; T_{Σ} is computed for the current transition by: $T_{\Sigma} = H \tau(\psi)$. Thus, for each transition, the application of Eq. (6) allows us to estimate the limit value of the mesoscopic shear stress with $\tau(\psi) = \frac{T_{\Sigma,RMS}}{C_{RMS}}$ for the direction $\overrightarrow{m}(\psi)$. Finally, the saturation yield limit of the crystal, in this direction of the critical plane, can be estimated from the mean value ($\tau(\psi)_\text{lim,mean}$ calculated over the whole sequence) of the saturation shear stress at each loading transition. This calculation is done over each direction of the critical plane; the number of sequences to fatigue crack initiation is deduced from the direction leading to the highest accumulated damage. Note that for the Morel method the damage accumulation is done step by step without any cycle counting method (rainflow for instance) according to the rules described in the following paragraph. Thus, the calculated life is sensitive to the order of the stress levels.

To apply this calculation method the parameters $p = \frac{c + \mu}{4}(1/g + 1/h)$, $q, r = q \frac{\tau(0)}{\mu}$ of the S–N curve (7) are necessary but the initial yield stress of the crystal $\tau(0)$ is also needed to be able to cumulate damage. The identification of these four parameters requires a specific damage cumulative fatigue test (detailed in [11]) to identify separately the hardening parameter g. Damage is cumulated according to the following rules. During the hardening phase $\tau(\psi) = \frac{1}{c + \mu + 1} \sqrt{\frac{\Sigma(t)}{g}}$, and during the softening...
phase \(\hat{\tau}_y = \frac{1}{1 - e + \mu} \sqrt{\hat{\tau}_y^2} \). If the yield stress of the crystal \(\tau_y \) is equal to \(\tau_{im} \) the saturation phase is reached. Then, the softening phase begins as soon as \(\Omega = 4 \Omega_{\tau_{im}} \) where \(\Omega = \sqrt{\hat{\tau}_y^2} \). Fatigue crack initiates in the grain when the crystal yield stress reaches zero.

8. The strain energy density parameter

A change of strain energy density, applied in theory of plasticity, has been proposed as a parameter to describe multiaxial fatigue [1–4]. In order to distinguish the work under tension and compression during a uniaxial fatigue cycle, Łagoda and Macha introduce the functions \(\text{sgn}[\sigma(t)] \) and \(\text{sgn}[\varepsilon(t)] \) as follows,

\[
W(t) = \frac{1}{2} \sigma(t) \varepsilon(t) \text{sgn}[\sigma(t)] + \text{sgn}[\varepsilon(t)]
\]

where

\[
\text{sgn}[x] = \begin{cases}
+1 & \text{for } x > 0 \\
0 & \text{for } x = 0 \\
-1 & \text{for } x < 0
\end{cases}
\]

\(\sigma(t), \varepsilon(t) \) are stress and strain time history in the critical plane. For uniaxial loading it means \(\sigma(t) = \sigma_i(t) \) and \(\varepsilon(t) = \varepsilon_i(t) \).

Eq. (10) expresses positive and negative values of the strain energy density parameter in a fatigue cycle and it allows to distinguish energies under tension and compression. If this parameter is positive, the material is subjected to tension. When it is negative, the material is subjected to compression. Eq. (10) has another advantage: energy course in time has the zero mean value when cyclic stresses and strains change symmetrically in relation to the zero levels.

If the cyclic stresses and strains reach their maximum values \(\sigma_i \) and \(\varepsilon_i \), the maximum value of the energy parameter (10) and its amplitude are the same: \(W_a = W_{max} \).

\[
W_a = \frac{1}{2} \sigma_i \varepsilon_i
\]

Assuming \(W(t) \) according to Eq. (10) as a fatigue failure parameter, the standard characteristic curves of cyclic fatigue \((\sigma_i - N_f) \) and \((\varepsilon_i - N_f) \) can be rescaled to obtain a new curve, \((W_a - N_f) \). In the case of high-cycle fatigue, when the characteristic \((\sigma_i - N_f) \) is used, the \(\sigma_i \) axis should be replaced by \(W_a \), where

\[
W_a = \frac{\sigma_i^2}{2E}.
\]

So we obtain,

\[
W_a = \frac{(\sigma_i')^2}{2E} - (2N_f)^{b} = \frac{(\sigma_i')^2}{2E} (2N_f)^b
\]

From among the cyclic counting methods, the rainflow algorithm and the Palmgren–Miner hypothesis of damage accumulation have been chosen [1,2,4]. The life time, \(T_{RF} \) is calculated from cycles and half-cycles in the time observation \(T_o \) of stress history \(\sigma(t) \),

\[
T_{RF} = \frac{T_o}{\sum_{i=1}^{k} [n_i/(N_o(\sigma_{ai}/\sigma_{af})^{m})]}
\]

For spectral method the Chaudhury–Dover model [17] for wide-band frequency processes has been chosen [17–20]

\[
T_{Ch-D} = \frac{A}{M(2\mu_o)^2 \left[\frac{\gamma^{m+2}}{2\sqrt{\pi}} \left(\frac{m+1}{2} \right) + \frac{3\alpha}{4} \left(\frac{m+2}{2} \right) \right]}
\]

The models—Eqs. (11) and (12) in energy notation with parameter \(W(t) \)—Eq. (10)—can be modified as follows:

\[
T_{RF,W} = \frac{T_o}{\sum_{i=1}^{k} [n_i/(N_o(W_{ai}/W_{af})^{m'})]}
\]

for \(W_{ai} = a' W_{af}, a' = 0.25 \)

\[
T_{Ch-D,W} = \frac{A_w}{M(2\mu_w)^2 \left[\frac{\gamma_w^{m'+2}}{2\sqrt{\pi}} \left(\frac{m'+1}{2} \right) + \frac{3\alpha}{4} \left(\frac{m'+2}{2} \right) \right]}
\]

where \(M^{+}, \mu, \gamma, \alpha \) are as in Eq. (15), remember that these parameters are determined from the power spectral density function, \(G_{st}(f) \) of the energy parameter \(W(t) \) (see definition in Appendix 6).

A block diagram of calculation algorithms is shown in Appendix 6. Let us remember that calculations according to the cycle counting method are done in a time domain and calculations using the spectral method—by estimation of the power spectral density function—are done in the frequency domain.

9. Fatigue test conditions and results

Flat smooth specimens were cut out from 10HNAP steel \((R_e = 389 \text{ MPa}, R_m = 566 \text{ MPa}, A_{10} = 31\%, Z = 29.1\%, E = 215 \text{ GPa}, \nu = 0.29) \). From constant amplitude fatigue tests on smooth specimens in fully reversed ten-
Table 1
The fatigue test data of 10HNAP steel under random loading and the calculation of results of life time according to various models

<table>
<thead>
<tr>
<th>No.</th>
<th>σ_{max} (MPa)</th>
<th>σ_{RMS} (MPa)</th>
<th>T_{exp} (s)</th>
<th>T_{FS} (s)</th>
<th>T_{Ba} (s)</th>
<th>T_{So} (s)</th>
<th>T_{WB} (s)</th>
<th>T_{Mo} (s)</th>
<th>$T_{\text{RF.W}}$ (s)</th>
<th>$T_{\text{Ch-D,W}}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>297</td>
<td>132</td>
<td>111,954; 327,225</td>
<td>524,434</td>
<td>319,334</td>
<td>135,003</td>
<td>480,298</td>
<td>98,007</td>
<td>227,460</td>
<td>183,920</td>
</tr>
<tr>
<td>2</td>
<td>311</td>
<td>140</td>
<td>72,004; 114,601</td>
<td>362,820</td>
<td>211,591</td>
<td>89,569</td>
<td>341,401</td>
<td>50,626</td>
<td>144,590</td>
<td>110,160</td>
</tr>
<tr>
<td>3</td>
<td>322</td>
<td>146</td>
<td>40,785; 54,150; 145,654</td>
<td>284,934</td>
<td>168,104</td>
<td>70,098</td>
<td>264,164</td>
<td>44,785</td>
<td>103,513</td>
<td>76,791</td>
</tr>
<tr>
<td>4</td>
<td>338</td>
<td>153</td>
<td>27,933; 76,908; 32,918</td>
<td>203,802</td>
<td>111,637</td>
<td>46,083</td>
<td>203,153</td>
<td>26,611</td>
<td>68,235</td>
<td>46,135</td>
</tr>
<tr>
<td>5</td>
<td>350</td>
<td>159</td>
<td>24,563; 34,586; 53,382</td>
<td>170,070</td>
<td>96,060</td>
<td>38,294</td>
<td>164,210</td>
<td>26,611</td>
<td>51,066</td>
<td>34,827</td>
</tr>
<tr>
<td>6</td>
<td>361</td>
<td>165</td>
<td>18,846; 21,013; 28,584</td>
<td>129,810</td>
<td>70,747</td>
<td>27,260</td>
<td>131,758</td>
<td>20,121</td>
<td>36,397</td>
<td>23,828</td>
</tr>
<tr>
<td>7</td>
<td>377</td>
<td>171</td>
<td>21,764; 9713; 28,116</td>
<td>109,690</td>
<td>59713</td>
<td>22,717</td>
<td>108,392</td>
<td>20770</td>
<td>26,327</td>
<td>17,736</td>
</tr>
<tr>
<td>8</td>
<td>386</td>
<td>177</td>
<td>17,926; 18,035; 24,993</td>
<td>85,675</td>
<td>44,784</td>
<td>16,226</td>
<td>88,920</td>
<td>16,875</td>
<td>24,116</td>
<td>12,388</td>
</tr>
<tr>
<td>9</td>
<td>398</td>
<td>186</td>
<td>13,905; 18,379; 5695</td>
<td>36,347</td>
<td>12,981</td>
<td>72,694</td>
<td>16,226</td>
<td>14,146</td>
<td>8978</td>
<td></td>
</tr>
</tbody>
</table>

* Specimen not subjected to failure.

For the Woehler curve the following equation was identified.

$$\log_{10} N_f = A - m \times \log_{10} \sigma_a = 29.69 - 9.8 \log_{10} \sigma_a \quad (18)$$

The fatigue limit is $\sigma_{af} = 252$ MPa which corresponds to $N_o = 1.25 \times 10^6$ cycles according (18) [1,2,4,19,21].

Specimens similar to those tested under constant amplitude loading were subjected to tests under random loading for tension-compression with the zero expected mean value and the parameters included into Table 1. The probability density function for the stress course $f(s)$ (Fig. 3a) and the energy parameter $f(W)$ (Fig. 3b) are different. The distribution $f(s)$ differs from the normal probability distribution (excess $q_2 = 0$, asymmetry $q_3 = 0$), while $f(W)$ takes similar values of excess and asymmetry as the normal probability distribution (excess $q_2 = 0$, asymmetry $q_3 = 0$).

Asymmetry is defined as

$$q_3 = \frac{\mu_3}{\mu_2^{3/2}}$$

and excess is defined as

$$q_2 = \frac{\mu_4}{\mu_2^2} - 3$$

where μ_k is central moment of signal x, which is calculated by

$$\mu_k = E[(x - \bar{x})^k].$$

Thus, we can draw a conclusion that in this case the energy parameter is a more suitable parameter to characterize the loading for spectral methods (Appendix 6), which assumes the normal probability distribution of a loading history [4].

For this steel, the FS parameter k_1 is 2.2, the material constant k_2 is 0.79 and the WB parameter S is 1.44. For the Morel model the following parameters were identified: $p = 80,000$ cycles, $q = 10,000$ cycles and $r = 0$ MPa·cycles [22].

10. Comparison between calculated and experimental fatigue lives

The fatigue test data for 36 specimens were compared with the calculation results. Figs. 4 and 5 show the points corresponding to the fatigue lives $T_{RF,W}$, $T_{Ch-D,W}$ and the experimental ones T_{exp}. Observation time for the stress was $T_o = 649$ s, and the sampling time was $\Delta t = 2.64 \times 10^{-3}$ s. The lives $T_{RF,W}$ can be accepted because they are included into the scatter band with coeffcient 3 [17,19,21] in relation to the experimental lives T_{exp} as in the case of tests under the constant amplitudes. The lives calculated with the spectral methods are satisfactory for the Chaudhury–Dover model ($T_{Ch-D,W}$).

From Table 1 and Figs. 4 and 5 it appears that the proposed approach to fatigue life determination seems...
to be very efficient. Both the algorithmic method and the Chaudhury–Dover formula based on the strain energy density parameter give satisfactory results. We can expect that the proposed parameter is also efficient for fatigue life determination under complex loading states. From Figs. 4 and 6–10 it appears that the best results are obtained for the strain energy density parameter and the Socie model. Some results obtained using the Morel model are out of the factor of 3 scatter band. For Bannantine, Wang–Brown and Fatemi–Socie models the calculated life times are too large. After analysing of six presented model it is possible to see that there are necessary to know some fatigue constants: for Fatemi–Socie 6; for Wang–Brown 8; SWT model and Morel 5, Socie...
3 and for strain energy density parameter 3—practical 2 because the fatigue limit is not very important in this model.

For Fatemie and Socie’s model, the Wang and Brown’s and for the Socie’s approach, the cycle counting parameter is computed on a critical plane related to axis (x',y',n) linked with this plane orientated by the unit normal vector \bar{n}. Since x' and y' are arbitrary it is possible, especially under non-proportional loadings, that x' and y' do not coincide with the directions of the highest shear strain (or shear stress depending on the method). This means that, under non-proportional loading, some damaging cycles can be omitted by the cycle counting procedure which does not count on the damage parameter but on another variable. But in our push–pull tests this is not the case (proportional loadings). Nevertheless, the computation time for these models is short compare with the Morel approach. Other tests under non-proportional loadings have to be carried out to discuss this point in details with experimental data as reference in high cycle multiaxial fatigue.

11. Conclusions

Basing on the fatigue tests in high cycle regime of 10HNAP steel under uniaxial random stresses with non-Gaussian probability distribution function, zero mean value and wide-band frequency spectrum the following conclusions can be drawn:

1. The best and very similar results of fatigue life assessment has been obtained using strain energy density parameter both in time domain, $T_{RF,W}$, on the basis of the rainflow algorithm and on frequency domain, $T_{Ch,D,W}$, on the basis of spectral method with Choudhury–Dover model.

2. The shear and normal stresses on the maximum shear stress plane model proposed by Socie gives also satis-
factory results included in a scatter band of the factor of 3 as for constant amplitude cyclic tests. Some results obtained using the Morel model are out of this scatter band.

3. For Bannantine, Wang–Brown, Fatemi–Socie models calculated life times are not conservative.

4. It is also interesting to note, that for our experimental fatigue test data, the best predictions are obtained with the fatigue life calculation models for which the parameters have been identified on the elastic S–N curve (in Łagoda–Macha and Socie models). Furthermore, the high interest of the frequency domain approaches is the short computation time compared with the model in the time domain.

Acknowledgements

With the support of the Commission of the European Communities under the FP5, GROWTH Programme, contract No. G1MA-CT-2002-04058 (CESTI).

Appendix 1. : Algorithm used to apply the Fatemi-Socie model

```
Peaks and valleys of $\varepsilon_i(t)$ (total strain: elastic and plastic)

Computation of peaks and valleys of $\sigma_i(t)$

For $\theta=45^\circ$ and $90^\circ$ and $\Phi=[0^\circ, 180^\circ]$ orientating the plane

Compute the shear strain, $\gamma_{xy}(t)$ and the normal stress $\sigma_n(t)$

Rainflow (ASTM) cycle counting on $\varepsilon_{nx}(t)$

Look for the critical plane $P_{nx}$

i.e. where $\Delta \varepsilon_{nx}$ is maximum

On the critical plane $P_{nx}$, for each extracted cycles:
- Compute $\Delta \varepsilon_{nx}$, and $\sigma_{n,\text{max}}$
- Compute elementary damage $d_i = \frac{1}{N_{f,i}}$
according to Fatemi-Socie equation
- Damage accumulation with Palmgren-Miner rule
  $D_{nx} = \sum d_i$

Rainflow (ASTM) cycle counting on $\varepsilon_{ny}(t)$

Look for the critical plane $P_{ny}$

i.e. where $\Delta \varepsilon_{ny}$ is maximum

On the critical plane $P_{ny}$, for each extracted cycles:
- Compute $\Delta \varepsilon_{ny}$, and $\sigma_{n,\text{max}}$
- Compute elementary damage $d_i = \frac{1}{N_{f,i}}$
according to Fatemi-Socie equation
- Damage accumulation with Palmgren-Miner rule
  $D_{ny} = \sum d_i$

Life estimation assuming that the critical total damage sum is $1$

$N_f = \frac{1}{\operatorname{Sup}(D_{nx}, D_{ny})}$
```
Appendix 2: Algorithm used to apply the Bannantine-Socie model with the SWT damage parameter

1. Peaks and valleys of $\epsilon_{ij}(t)$ (total strain: elastic and plastic)
2. Computation of peaks and valleys of $\sigma_{ij}(t)$
3. For $\theta=45^\circ$ and 90° and $\phi=[0^\circ, 180^\circ]$ orientating the plane P_n
4. Compute the normal strain $\varepsilon_n(t)$ and the normal stress $\sigma_n(t)$
5. Rainflow (ASTM) cycle counting on $\varepsilon_n(t)$
6. For each extracted cycles,
 - Compute $\Delta\varepsilon_n$ and $\sigma_{n,max}$
 - Compute elementary damage $d_i = \frac{1}{N_{f,i}}$ according to Bannantine-Socie equation
 - Damage accumulation with Palmgren-Miner rule $D_n = \sum_i d_i$

- The critical plane is the plane where D_n is maximum
- Life estimation assuming that the critical total damage sum is 1
 \[N_f = \frac{1}{\max(D_n)} \]
Appendix 3. Algorithm used to apply the Socie model in HCF

Peaks and valleys of $\varepsilon_{ij}(t)$ (total strain: elastic and plastic)

Computation of peaks and valleys of $\sigma_{ij}(t)$

For $\theta=45^\circ$ and 90° and $\phi=[0^\circ, 180^\circ]$ orientating the plane P_{ij}

Compute the shear stresses $\tau_{nx}(t)$, $\tau_{ny}(t)$ and the normal stress $\sigma_n(t)$

Rainflow (ASTM) cycle counting on $\tau_{nx}(t)$

Rainflow (ASTM) cycle counting on $\tau_{ny}(t)$

Look for the critical plane P_{ri}

Look for the critical plane P_{ri}

i.e. where $\Delta\tau_{nx}(t)$ is maximum

i.e. where $\Delta\tau_{ny}(t)$ is maximum

On the critical plane P_{ri}, for each extracted cycles:

- Compute $\Delta\tau_{nx}(t)$ and $\sigma_{n,max}$

- Compute elementary damage $d_i = \frac{1}{N_{f,i}}$ according to Socie's equation

- Damage accumulation with Palmgren-Miner rule

$D_{nx} = \sum d_i$

On the critical plane P_{ri}, for each extracted cycles:

- Compute $\Delta\tau_{ny}(t)$ and $\sigma_{n,max}$

- Compute elementary damage $d_i = \frac{1}{N_{f,i}}$ according to Socie's equation

- Damage accumulation with Palmgren-Miner rule

$D_{ny} = \sum d_i$

Life estimation assuming that the critical total damage sum is 1

$N_f = \frac{1}{\text{Sup}(D_{nx}, D_{ny})}$
Appendix 4. : Algorithm used to apply the Wang-Brown model

- Peaks and valleys of $\varepsilon_{ij}(t)$ (total strain: elastic and plastic)
- Computation of peaks and valleys of $\sigma_{ij}(t)$
 - For $\theta=45^\circ$ and 90° and $\phi=[0^\circ, 180^\circ]$ orientating the plane P_n
- Compute the shear strain $\gamma_{nx}(t)$, $\gamma_{ny}(t)$ and the normal stress $\sigma_n(t)$
 - Rainflow (ASTM) cycle counting on $\gamma_{nx}(t)$
 - Look for the critical plane P_{n_c}
 - i.e. where $\Delta \gamma_{nx}(t)$ is maximum
 - Rainflow (ASTM) cycle counting on $\gamma_{ny}(t)$
 - Look for the critical plane P_{n_c}
 - i.e. where $\Delta \gamma_{ny}(t)$ is maximum
- On the critical plane P_{n_c},
 - for each extracted cycles:
 - Compute $\Delta \gamma_{nx}$, $\Delta \sigma_n$ and $\sigma_{n,mean}$
 - Compute elementary damage $d_i = \frac{1}{N_{f,i}}$
 - according to Wang-Brown equation
 - Damage accumulation with Miner rule
 - $D_{nx} = \sum d_i$
- On the critical plane P_{n_c},
 - for each extracted cycles:
 - Compute $\Delta \gamma_{ny}$, $\Delta \sigma_n$ and $\sigma_{n,mean}$
 - Compute elementary damage $d_i = \frac{1}{N_{f,i}}$
 - according to Wang-Brown equation
 - Damage accumulation with Miner rule
 - $D_{ny} = \sum d_i$
- Life estimation assuming that the critical total damage sum is 1
 - $N_f = \frac{1}{\text{Sup}(D_{nx}, D_{ny})}$
Appendix 5. : Algorithm used to apply the Morel fatigue life calculation method

1. \(\sigma(t) \)
 Look for the critical plane so that \(T_{\text{RMS}} \) is maximum on the loading sequence

2. Compute \(C_{\text{RMS}} = \max_{\Phi} T_{\text{RMS}(\Phi)} \) and \(H_{\text{RMS}} \)

3. Compute the time evolution, on the critical plane, of \(\Sigma H(t) \) and \(\tau(t, \omega) \)

4. Compute \(\tau_{\text{lim}} = T_{\text{lim}} / H \) at each transition on the loading signal

5. Compute the mean value of \(\tau_{\text{lim}} \): \(\tau_{\text{lim}} \)\text{mean}

6. Follow and compute the evolution of the yield stress \(\tau_y \) versus \(\tau(t, \omega) \)

7. Compute the number of sequences corresponding to \(n(t, \omega) \) to reach \(\Gamma_f \) (i.e. \(\tau_y = 0 \))

8. Estimation of the number of sequences to crack initiation \(N_t \) along the \(m \) direction experiencing the largest damage.

Appendix 6. : Scheme showing differences and similarities between the calculation algorithms applied to fatigue life determination both in time and frequency domain

1. Time history of \(\sigma(t) \) and \(\varepsilon(t) \)
 Computation of time history of \(W(t) \)

2. Cycle counting method (time domain)
 Computation of peaks and valleys of \(W(t) \)
 Rain flow cycle counting on \(W(t) \)
 Damage cumulation by the Palmgren-Miner hypothesis
 Calculation of life time \(T_{\text{RFW}} \)

3. Spectral method (frequency domain)
 Determination of power spectral density function \(G_{\omega}(\Omega) \) using Welch’s method
 Calculation of the parameters:
 \[\lambda_1 = \int_0^\infty G_{\omega}(\Omega) d\Omega, \quad \mu_w = \lambda_0, \]
 \[M^+ = \sqrt{\frac{\lambda_2}{\lambda_2}}, \quad \alpha = \frac{\lambda_2}{\sqrt{\lambda_0 \lambda_4}}, \]
 \[\gamma = \sqrt{1 - \alpha^2}. \]
 Calculation of life time \(T_{\text{Ch.D.W}} \)
References

