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Abstract

In this work a multi-scale two-level (MS2L) optimisation strategy for optimising
VAT composites is presented. In the framework of the MS2L methodology, the design
problem is split and solved into two steps. At the first step the goal is to determine the
optimum distribution of the laminate stiffness properties over the structure (macro-
scopic scale), while the second step aims at retrieving the optimum fibres-path in each
layer meeting all the requirements provided by the problem at hand (mesoscopic scale).
The MS2L strategy has been improved in order to integrate all types of requirements
(mechanical, manufacturability, geometric, etc.) within the first-level problem. The
proposed approach relies on: a) the polar formalism for describing the behaviour of
the VAT laminate, b) the iso-geometric surfaces for describing the spatial variation of
both the laminate stiffness properties (macro-scale) and the layers fibres-path (meso-
scale) and c¢) an hybrid optimisation tool (genetic and gradient-based algorithms) to
perform the solution search. The effectiveness of the MS2L strategy is proven through
a numerical example on the maximisation of the first buckling factor of a VAT plate
subject to both mechanical and manufacturability constraints.

Keywords:
VAT Laminates; Optimisation; Buckling; Genetic Algorithms; B-splines; Composite Ma-

terials.

1 Introduction

Anisotropic materials, such as fibres-reinforced composite materials, are extensively used
in many industrial fields thanks to their mechanical performances: high stiffness-to-weight
and strength-to-weight ratios that lead to a substantial weight saving when compared to
metallic alloys. In addition, the recent development of new manufacturing techniques of
composite structures, e.g. automated fibre placement (AFP) machines, allows for going
beyond the classical design rules, thus leading the designer to find innovative and more
efficient solutions than the classical straight fibre configurations. The use of the AFP
technology brought to the emergence of a new class of composite materials: the variable
angle tow (VAT) composites, [1, 2]. A modern AFP machine allows the fibre (i.e. the
tow) to be placed along a curvilinear path within the constitutive lamina thus implying
a point-wise variation of the material properties (stiffness, strength, etc.). Of course,
this technology enables the designer to take advantage of the directional properties of
composites in the most effective way. The interest of using variable stiffness (VS) laminates
is considerably increased during the last years: in the meantime some works on the a
posteriori characterisation of the elastic response of such materials have gained a lot of
attention from the scientific community of composites materials, [3, 4]. Although the
utilisation of VAT laminates considerably increases the complexity of the design process
(mainly due to the large number of design variables involved within the problem), on the
other hand it leads the designer to conceive non-conventional solutions characterised either

by a considerable weight saving or enhanced mechanical properties when compared to



classical solutions, [5, 6, 7, 8]. One of the first works that tried to explore the advantages
that can be achieved in terms of mechanical performances (stiffness, buckling behaviour,
etc.) by using a VS plate in which each ply is characterised by a curvilinear path of the tow
(i.e. a VAT configuration) instead of the conventional straight fibre format is presented in
[2]. The authors make use of a sensitivity analysis and a gradient-based search technique
to determine the optimal fibre orientation in a given number of regions of the plate. This
work proved that a considerable increment of the buckling load of the structure can be
obtained when employing a VAT solution for the layered plate.

The complexity of the design process of a VAT laminated structure is mainly due to
two intrinsic properties of VAT composites, i.e. the heterogeneity and the anisotropy that
intervene at different scales of the problem and that vary point-wise over the structure.
Moreover, a further difficulty is due to the fact that such a problem is intrinsically a multi-
scale design problem: in the most general case, the designer should take into account,
within the same design process, the full set of design variables (geometrical and material)
governing the behaviour of the structure at each characteristic scale (micro-meso-macro).
Up to now no general rules and methods exist for the optimum design of VAT laminates.
Only few works on this topic can be found in literature, and all of them always make use
of some simplifying hypotheses and rules to get a solution. An exhaustive review focusing
on constant and variable stiffness design of composite laminates is presented in [9, 10].
In [11] the first natural frequency of VS composite panels is maximised by considering
on the one hand the lamination parameters and the classical laminate theory (CLT) for
the description of the local stiffness properties of the structure and, on the other hand,
a generalised reciprocal approximation algorithm for the resolution of the optimisation
problem. This approach is limited to the determination of the stiffness properties of an
equivalent homogeneous plate, since the lay-up design phase is not at all considered. In
[12]| the least-weight design problem of VAT laminates submitted to constraints including
the strength and the radius of curvature is considered. The design variables are the layers
thickness and fibres angles which are represented by bi-cubic Bezier surfaces and cubic
Bezier curves, respectively. A sequential quadratic programming method is used to solve
the optimisation problem.

A two-level strategy was employed in [13]| to design a VAT laminated plate: this work
represents the first attempt of applying a multi-scale numerical strategy which aims at
determining, at the first level, the optimum distribution of the stiffness properties of the
structure (in terms of the lamination parameters of the laminate), while at the second level
the optimum path (in each constitutive layer) matching locally the lamination parameters
resulting from the first step. However, the major drawback of this work actually was in the
determination of the curvilinear fibres-path of each layer: the resulting path was discon-

tinuous because the authors had not foreseen a numerical strategy able to simultaneously



meet on the one hand the continuity of the fibres path (between adjacent elements) and
on the other hand the optimum distribution of lamination parameters provided by the
first step of the procedure. In [14] the two-level approach was abandoned and the authors
stated the problem by directly considering the fibres path in each ply as design variables.
However, as in [11], this approach always leads to a discontinuous fibres-path and, unlike
the strategy proposed in [11], it leads also to the emergence of a new issue: the resulting
optimisation problem was highly non-convex since it was formulated directly in the space of
the layers orientations (which vary locally over the plate). Accordingly, in [14] the authors
conclude that such an issue can be potentially remedied by formulating in a proper way
the design problem of VAT laminates in the framework of the two-level strategy and by
trying to overcome the issue of the continuity of the fibres-path directly in the first level
of the strategy where the design variables are the laminate mechanical properties (e.g. the
lamination parameters as in the theoretical framework of [13]).

Another issue often addressed by researches on VAT laminates concerns the tow place-
ment technology which could introduce several differences (i.e. imperfections) between
the numerical model of the VAT composite and the real structure tailored with the AFP
process, if the design methodology does not take into account the manufacturability re-
quirements. To this purpose in [15] an issue linked to the AFP technology is addressed: the
overlap of tow-placed courses that increases the ply thickness (the build-up phenomenon)
thus affecting the structural response and the surface quality of the laminate. The work
of Blom et al. [15] presents a method for designing composite plies with varying fibres
angles. The fibre angle distribution per ply is given while, using a streamline analogy,
the optimal distributions of fibres courses is determined for minimising the maximum ply
thickness or maximising the surface smoothness. An improved research on this topic has
been developed in [16] where an algorithm is presented to optimise the fibres path in order
to ensure manufacturability. A further work focusing on the development and/or improve-
ment of manufacturing techniques for tailoring VAT laminates in order to minimise the
imperfections induced by the fabrication process is presented in [17]. The continuous tow
shearing (CTS) technique, utilising the ability to shear dry tows, is proposed as an alterna-
tive technique to the well-known AFP process. Later, the work presented in [17] has been
improved through the introduction of a computer-aided modelling tool [18| which can cre-
ate accurate finite element models reflecting the fibre trajectories and thickness variations
of VAT composites manufactured using the CTS technique.

To overcome the previous restrictions, recently the authors presented in [19] a first work
focused on the generalisation and extension of the multi-scale bi-level (MS2L) procedure
for the optimum design of composite structures (initially introduced in |20, 21]) to the
case of VAT composites. Such a MS2L procedure has already been employed by the

authors and their co-workers in the past for the design and optimisation of several classes



of hybrid anisotropic structures [22, 23, 24, 25, 26, 20, 21, 27]. The MS2L design strategy
is characterised on the one hand by the refusal of simplifying hypotheses and classical rules
usually employed in the framework of the design process of laminates, and on the other
hand by a proper and complete mathematical formalisation of the optimum design problem
at each characteristic scale (meso-macro). The MS2L strategy relies on the use of the polar
formalism (initially introduced by Verchery [28], and later extended to the case of higher-
order theories by Montemurro [29, 30, 31]) for the description of the anisotropic behaviour
of the composite. The real advantage in using the Verchery’s polar method is in the fact
that the elastic response of the structure at the macro-scale is described in terms of tensor
invariants, the so-called polar parameters having a precise physical meaning (which is linked
to the elastic symmetries of the material) [32]. On the other hand the MS2L strategy relies
on the use of a particular genetic algorithm (GA) able to deal with a special class of huge-
size optimisation problems (from hundreds to thousands of design variables) defined over
a domain of variable dimension, i.e. optimisation problems involving a “variable number”
of design variables [25].

As far as concerns the problem of designing VAT composites in [19] several modifica-
tions have been introduced in the theoretical and numerical framework of the MS2L design
procedure at both first and second levels. At the first level (laminate macroscopic scale)
of the procedure, where the VAT laminate is modelled as an equivalent homogeneous
anisotropic plate whose mechanical behaviour is described in terms of polar parameters
(which vary locally over the structure) the major modifications concerned: 1) the utilisa-
tion of higher-order theories (First-order Shear Deformation Theory (FSDT) framework
[29, 30]) for taking into account the influence of the transverse shear stiffness on the overall
mechanical response of VAT composites; 2) the utilisation of B-spline surfaces for obtain-
ing a continuous point-wise variation of the laminate polar parameters. Regarding the
second-level problem (laminate mesoscopic scale, i.e. the ply level) the main modifica-
tions were: 1) the utilisation of B-spline surfaces for obtaining a continuous point-wise
variation of the fibres-path within each ply; 2) a proper mathematical formalisation of the
manufacturability constraints linked to the AFP process in the framework of the B-spline
representation. All of these modifications imply several advantages for the resolution of the
related optimisation problems (both at first and second level of the strategy) as detailed
in [19]. However, the major drawback of the approach proposed in [19] is in the fact that
the manufacturability constraints have been introduced only within the second step of the
design procedure. Actually, when using such an approach, there is no warranty that the
optimisation algorithm could find an optimum fibres path able to meet on the one hand
the optimum distribution of the laminate polar parameters resulting from the first step
and on the other hand the manufacturability constraints imposed during the second step.

To overcome such an issue, in the present work the theoretical formulation of the



design problem of VAT laminates together with the related MS2L optimisation strategy
have been improved: in particular the manufacturability constraints are now integrated
within the first-level problem (the structural optimisation) while the second-level problem
(the lay-up design) is now formulated as an unconstrained minimisation problem as all
the requirements (geometrical, technological, mechanical, etc.) are satisfied since the first
step of the MS2L strategy. The paper is organised as follows: the design problem and the
MS2L strategy are discussed in Section 2. The mathematical formulation of the first-level
problem is detailed in Section 3, while the mathematical statement of the second-level
problem (the lay-up design) is presented in Section 4. A concise description of the Finite
Element (FE) model of the VAT laminated plate is given in Section 5, while the numerical
results of the optimisation procedure are shown in Section 6. Finally, Section 7 ends the

paper with some concluding remarks.

2 A new design paradigm for VAT laminates
2.1 Description of the problem

The optimisation strategy presented in this study is applied to a VAT laminated plate
composed of a fixed number of plies, hence the total thickness of the plate is fixed a priori.
The fibres-tow is made of carbon-epoxy pre-preg strips whose elastic properties are listed
in Table 1.

Concerning the mechanical behaviour of the VAT plate, further details have to be added

in order to clearly define the theoretical framework of this work:

e the geometry of the laminated structure and the applied Boundary Conditions (BCs)

are known and fixed;
e the VAT plate is composed of identical plies (i.e. same material and thickness);
e the material behaviour is linear elastic;

e the VAT plate is quasi-homogeneous and fully orthotropic [22, 23, 27, 19| point-wise,

i.e. these properties apply locally in each point of the structure;

e at the macro-scale (i.e. the scale of the structure) the elastic response of the VAT
plate is described in the theoretical framework of the FSDT and the stiffness matrices
of the plate are expressed in terms of the laminate polar parameters [29, 30] which

constitute also the design variables of the VAT plate at the macroscopic scale.

As far as concerns the mesoscopic scale of the VAT laminate (i.e. that of the constitutive
ply) no simplifying hypotheses are made on the rest of the design parameters of the lami-
nated plate, i.e. the design variables of the stack, namely the layer position and orientation

angle (which varies point-wise for each layer).



2.2 Description of the multi-scale two-level optimisation strategy

The main goal of the design strategy is the maximisation of the first buckling load of a

VAT plate subject to

e feasibility constraints on the mechanical parameters (i.e. the laminate polar param-

eters) governing the behaviour of the structure at the macroscopic scale;

e manufacturability constraints on the local radius of the tow (i.e. the local steering)

due to the considered AFP technology.

The optimisation procedure is articulated into the following two distinct (but linked) op-

timisation problems.

1. First-level problem. The aim of this phase is the determination of the optimum
distribution of the mechanical design variables of the VAT structure in order to
minimise the considered objective function and to meet, simultaneously, the full set
of optimisation constraints provided by the problem at hand. At this level the VAT
composite plate is modelled as an equivalent homogeneous anisotropic continuum
whose behaviour is described in terms of laminate polar parameters, which vary
point-wise over the structure and constitute the design variables of the first-level
problem. Moreover, thanks to a proper formulation of the optimisation problem
(detailed in Section 3), at this stage the designer can add further requirements, e.g.
manufacturability constraints, strength and damage criteria, etc. by acting directly

on the resulting distribution of the laminate polar parameters.

2. Second-level problem. The purpose of this design phase is the determination of
the optimum lay-up of the laminate composing the structure meeting the optimum
distribution of the polar parameters provided by the first level of the strategy. At
this stage, the design variables are the layer orientation angles which vary point-wise

in each ply (namely the fibres-path).

It is noteworthy that the integration of the manufacturability constraints within the
first-level problem implies some important consequences on the formulation as well as on

the resolution technique of the second-level problem that will be detailed in Section 4.

3 Mathematical formulation of the first-level problem

As discussed in [19], in order to apply the MS2L numerical optimisation strategy |23, 27|
to the case of VAT composites some major modifications have been introduced. Regarding

the first-level problem these modifications focus on:



e the utilisation of higher-order theories (in this case the FSDT) for taking into account

the influence of the transverse shear stiffness on the overall mechanical response of
the VAT laminate;

e the utilisation of B-spline surfaces for expressing the variation of the laminate polar

parameters over the structure.

The first point represents a very important step forward in the MS2L strategy when
applied to every kind of composite structure (classical or VAT) as it allows to properly
design thin as well as moderately thick plates.

The second modification leads to important consequences, too. Such consequences
constitute just as many advantages for the resolution of the related optimisation problem.
Firstly, the utilisation of iso-geometric surfaces leads to a considerable reduction in the
number of mechanical design variables (at the macro-scale), i.e. the polar parameters de-
fined in each point of the control net of the B-spline surface. Secondly, thanks to the strong
convex hull property of the B-spline blending functions the optimisation constraints of the
problem, related to the specifications of the considered application, can be imposed only
on the control points of the net: if they are satisfied on such points they are automatically
met over the whole domain.

However, in the present work, in order to integrate the manufacturability constraints
within the mathematical formulation of the first-level problem further modifications have

been introduced:

e only the variation of one polar parameter (namely the polar angle, as discussed in the
next subsection) is described in terms of iso-geometric surface over the plate, while

the others are kept constant;

e thanks to the previous assumption, the technological constraint on the minimum
admissible radius of curvature of the tow can be directly imposed on the B-spline

surface describing the variation of the polar angle.

These last aspects are of paramount importance: due to the functional relationship existing
between the polar angle and the plies orientation angles [29, 30|, whether the manufactura-
bility constraint is satisfied by the optimum distribution of the polar angle over the plate
it will be automatically met also by the B-spline surfaces describing the variation of the
fibres path in each layer as discussed in Section 4.

As previously stated the goal of the first level of the strategy is the maximisation of
the buckling load of the VAT laminate by simultaneously satisfying the feasibility and
manufacturability constraints on the distribution of the laminate polar parameters over

the plate. All of these aspects are detailed in the following subsection.



3.1 Mechanical design variables

In the framework of the FSDT theory [33] the constitutive law of the laminated plate
(expressed within the global frame of the laminate R = {0;z,y, z}) can be stated as:

N Al B ({0}
oy (T Bl e [ M)

{F} = [H {0} (2)

where [A], [B] and [D] are the membrane, membrane/bending coupling and bending stiff-
ness matrices of the laminate, while [H| is the out-of-plane shear stiffness matrix. {N},
{M} and {F} are the vectors of membrane forces, bending moments and shear forces per
unit length, respectively, whilst {eo}, {xo} and {7y} are the vectors of in-plane strains,
curvatures and out-of-plane shear strains of the laminate middle plane, respectively, [33].

In order to analyse the elastic response of the multilayer plate the best practice consists

in introducing the laminate homogenised stiffness matrices defined as:

(A = 31 ,

B] = -5 [B] |

D] = 13 D] , (3
1
—[H]  (basic) ,

] = }112 ,
o [H] (modified)

where h is the total thickness of the laminated plate.

As discussed in [29, 30[, in the framework of the polar formalism it is possible to express
the Cartesian components of these matrices in terms of their elastic invariants: it can be
proven that, also in the FSDT theoretical framework, in the case of a fully orthotropic,
quasi-homogeneous laminate the overall number of independent mechanical design vari-
ables describing its mechanical response reduces to only three, i.e. the anisotropic polar
parameters R()‘l; and R’l‘l* and the polar angle <I>’14* (this last representing the orientation of
the main orthotropy axis) of the homogenised membrane stiffness matrix [A*]. For more
details on the polar formalism and its application in the context of the FSDT the reader
is addressed to [29, 30, 32].

For a VAT composite, in the most general case, all of the three independent polar
parameters can vary point-wise over the structure [19]. However, the aim of this work
is to improve the MS2L procedure in order to integrate the manufacturability constraint

on the local steering (i.e. the local radius of curvature of the tow) since the first step



of the strategy. To achieve this goal a simplification must be imposed: only the polar
angle ®" can vary over the structure (and such a variation is expressed by means of a
B-spline surface) while RS‘;{ and R‘f‘* are kept constant. In particular, in the mathematical
framework of the B-spline surfaces the variation of the laminate polar angle <I>’14* can be

expressed as:
Tp Mp

O (6,7) = 30N Ny () Ny (7) @17, (4)

i=05=0
Eq. (4) fully describes a B-spline surface of degrees p and ¢ along the parametric coordinates
& and v, respectively, as depicted in Fig. 1.
The dimensionless coordinates £ and + can be arbitrarily defined: a natural choice
consists of linking them to the Cartesian coordinates of the laminated plate,

_r Y
é_ 7’)/_b7 (5)

a
where a and b are the lengths of the plate edges along x and y axes, respectively. In
Eq.(4) & (i-9) (i=0,---,np, j =0,---,my) is the value of the laminate polar angle at
the generic control point (the set of (n, 4+ 1) x (m), + 1) control points forms the so-called
control network), while N; ,(€) and N; 4(v) are the p*-degree and ¢'"-degree B-spline basis
functions (along ¢ and ~y directions, respectively) defined on the non-periodic, non-uniform

knot vectors:

== 07"'707Ep+17"'7ET—p—1717"'71 )
N—— N——
p+1 p+1 (6)
I' = 0)"')O)Fq—l—lv"')rs—q—lal)"'71
—— ——
q+1 q+1

It is noteworthy that the dimensions of the knot-vectors Z and I' are » + 1 and s + 1,
respectively, with:

r=n,+p+1, (7)
s=my+q+1.
For a deeper insight in the matter the reader is addressed to [34].
This new formulation of the mechanical design variables of the first-level problem allows
the designer to impose the manufacturability constraints directly on the spatial distribution
of the polar angle <I>‘14*: if this requirement is met at this stage of the strategy it will be
automatically met by the optimum lay-up resulting from the second-level problem without
imposing further constraints, as detailed in Section 4. Furthermore, this formulation is

characterised by the following advantages:

e the use of an iso-geometric surface for describing the variation of ®{!" over the struc-
ture implies that the three independent polar parameters have no discontinuity over

the plate (Rjy and R{'" being constant);
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e thanks to the B-spline representation the laminate polar angle must be determined
solely on each point of the control net, implying in this way a significant reduction

in the number of design variables involved within the first-level problem.

Therefore, the optimisation variables of the problem can be grouped into the vector:
*(070) *(n ,m ) * *
x:{cp{‘ R P,R@“K,R{‘} . (8)

The total number of design variables is hence equal to 2 + (n, + 1) x (m, + 1).
Thanks to the utilisation of the B-spline surface for representing the spatial variation
of ®4" the technological constraint on the minimum admissible radius of curvature of the

tow can be stated in a straightforward way:

91(X) = Tadm — Tmin <0, (9)

where 744, is the minimum admissible radius of curvature of the tow whose value depends
upon the AFP process, while r,,;, is the local least radius of curvature of the B-spline

surface describing the variation of <I>‘14*. Tmin 18 defined as:

Tin = min r(x,y) ,
(z,y)

r(z,y) = (t~V<I>‘14*)_1 , x€l0, d ,
y €0, 0] .

(10)

In Eq. (10) t is the local tangent vector of the angular field ®;4 (), while V&4 is the
gradient of the orthotropy orientation with respect to coordinates (z,y), namely
t= {cos o4 sin <I>‘14*} )
el _ 100" 109" (11)
! a 96 b Oy

In addition, in the formulation of the optimisation problem for the first level of the strat-

egy, the geometric and feasibility constraints on the polar parameters (which arise from the
combination of the layers orientations and positions within the stack) must also be consid-
ered. These constraints ensure that the optimum values of the polar parameters resulting
from the first step correspond to a feasible laminate that will be designed during the second
step of the optimisation strategy, see [35|. Since the laminate is quasi-homogeneous, such

constraints can be written only for matrix [A*] as follows:

—Ro < R{{x < Ry,

0 §2Rf* <Ry, (12)
A* A*
9 (R_1> —1— RM <0.
Ry Ry

11



First and second constraints of Eq. (12) can be taken into account as admissible intervals for
the relevant optimisation variables, i.e. on RS‘;{ and R’f‘*. Hence, the resulting feasibility

constraint on the laminate polar parameters is:

gg(x):2<i> —1—@go. (13)
Ry

For a wide discussion upon the laminate feasibility and geometrical bounds as well as

on the importance of the quasi-homogeneity assumption the reader is addressed to [35].

3.2 Mathematical statement of the problem

The first-level problem focuses on the definition of the optimal distribution of the laminate
polar parameters. In this background, the solution of the structural optimisation problem
is searched for an orthotropic and quasi-homogeneous (point-wise) plate subject to given

BCs.

Therefore the optimisation problem can be formulated as follows:

min  — A (x)

subject to: (14)
gi(x) <0, (i=1,2)

where A is the first buckling factor of the laminated structure.

3.3 Numerical strategy

Problem (14) is a non-linear, non-convex problem in terms of the mechanical design vari-
ables. Its non-linearity and non-convexity is due to the nature of the objective function, the
first buckling factor, that is a non-convex function in terms of the orthotropy orientation.
In addition, the complexity of such a problem is also due to the feasibility and manu-
facturability constraints imposed on the polar parameters of the plate, see Eqs. (9) and
(13). We recall that the overall number of design variables and optimisation constraints
for problem (14) is 2 + (n, + 1) x (my, + 1) and two, respectively.

For the resolution of problem (14) a hybrid optimisation tool, composed of the GA
BIANCA |[25] interfaced with the MATLAB fmincon algorithm [36], coupled with a FE
model of the plate (used for numerical calculation of the first buckling load) has been
developed, see Fig. 2.

The GA BIANCA was already successfully applied to solve different kinds of real-world
engineering problems, e.g. [23, 27|]. As shown in Fig. 2, the optimisation procedure for
the first-level problem is split in two phases. During the first phase the GA BIANCA is
interfaced with the FE model of the VAT plate: for each individual at each generation,

a FE-based buckling analysis is carried out for the evaluation of the first buckling load

12



of the structure. The FE model makes use of the mechanical design variables, given by
BIANCA and elaborated by an ANSY'S Parametric Design Language (APDL) macro which
generates the B-spline surface representing the distribution of the polar angle <I>‘14* over the
VAT plate, in order to calculate the first buckling load of the structure together with the
minimum radius of curvature of the angular field. At the end of the FE analysis, the
GA elaborates the results provided by the FE model (in terms of objective and constraint
functions) in order to execute the genetic operations. These operations are repeated until
the GA meets the user-defined convergence criterion.

The generic individual of the GA represents a potential solution for the problem at
hand. The genotype of the individual for problem (14) is illustrated in Fig. 3 and it
is characterised on the one hand by a modular part composed of (n, + 1) x (m, + 1)
chromosomes with only one gene coding the value of the polar angle <I>‘14*(i’j) while on the
other hand by a fixed chromosome with only two genes each one coding the remaining
polar parameters, i.e. Ré“;‘( and Rf*. Due to the strong non-convex nature of problem
(14), the aim of the genetic calculation is to provide a potential sub-optimal point in the
design space which constitutes the initial guess for the subsequent phase, i.e. the local
optimisation, where the fmincon gradient-based algorithm is interfaced with the same FE

model of the VAT plate.

4 Mathematical formulation of the second-level problem

The second-level problem concerns the lay-up design of the VAT laminated plate. The
goal of this problem is the determination of at least one stacking sequence satisfying the
optimum spatial distribution of the polar parameters over the structure resulting from the
first level of the strategy and having the elastic symmetries imposed to the laminate within
the formulation of the first-level problem, i.e. quasi-homogeneity and orthotropy.

In the case of a VAT solution the fibres-path varies point-wise in every ply composing
the laminate. Hence a proper description of the fibres-path is necessary to formulate and
solve the second-level problem of the MS2L strategy. To this purpose, the point-wise
variation of the fibres orientation (in each ply) is described through the use of a B-spline
surface. As explained in [19] the use of B-spline surfaces allows, as in the case of the
first-level problem, to reduce the total number of design variables.

Nevertheless, unlike the approach proposed in [19], the improved formulation of the
first-level problem along with the integration of the manufacturability constraints described
in Section 3 lead to some major modifications (and simplifications) also for the second-level
problem. In particular, as in [19] the fibres-path in the generic ply is represented through

a B-spline surface as:

np Mp

0x (&,7) = Z%ZONP (&) Njy (7) 6% with k=1,--- ,n, (15)
1=0j=
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where ;%7 is the orientation angle at the generic control point for the k-th layer. More-
over, this B-spline surface is characterised by the same parameters (with the exception of
the value of the orientation in each control point) as those utilised for the definition of the
B-spline surface of the polar angle ®{'" (¢,7), see Eqs. (4)-(7).

As a consequence of both the new formalisation of the first-level problem and the
assumptions made on the spatial distribution of the polar parameters of the laminate, the
value of the fibre orientation angle in each control point (for each layer) can be calculated

as follows:
5,09 = 4" 5 (60, 70) — 14 (€0,70) (16)

where 6, (€0,70) and ®14” (£, 7o) are the fibres orientation angle for the k-th layer and the
local orthotropy orientation of the laminate, respectively, calculated at the arbitrary point
(€0,70)- As it clearly appears from Eq. (16) the only unknowns are the layer orientation
angles 0y (£0,70). Therefore, in this background (and unlike the approach proposed in [19])
the design variables of the second-level problem are not the layers orientation angles in each
point of the control net, rather the value of the orientation angle at the arbitrary point
(€0,70) for each ply, namely dx (§0,70). This fact implies some consequences of paramount
importance which constitutes as many advantages in the formalisation and resolution of
the second-level problem.

Firstly, when compared to the approach presented in [19] the number of design variables
of the second-level problem is drastically reduced and passes from n x (n, + 1) x (m, + 1)
to only n, i.e. the plies orientation angles defined for the arbitrary pair (o, o).

Secondly, the second-level problem can now be formulated as an unconstrained min-
imisation problem (because the manufacturability constraints are integrated into the first
stage of the MS2L strategy) and solved solely in one (arbitrary) point of the VAT laminated
plate:

min (6 (§0,7)) k=1,---,n. (17)
5k(£0770)

In Eq. (17) 1(0x (£0,70)) is the overall objective function which is defined as:

6
I (6x (§0,70)) = Zfi (0k (§0570)) - (18)

=1

where f;(0x (£0,70)) are quadratic functions in the space of polar parameters, each one

representing a requirement to be satisfied. For the problem at hand the partial objective
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functions write:
2

O (05 (€0:70)) — D1 (0 (£0,70)) KA*(opt):|

J1(6r (§0,70)) = [ I

J2(6r (§0,%0)) =

)

* *(0 2
RA" 8k (€0,70)) — R P
Ry

J3(0k (§0,70)) =

3

* (o 2
RA (6% (€0,70)) — R{Y (P
Ry

(19)
A" _ A* (opt) 2
ﬁ@k@m%ﬁ%:[®10%@mvﬂimé1 (&rmq |
F5(0% (€0,70)) [ %mwu7
fmmw>p”ﬁﬁwM,
where
Aoy = L Ryl <0, (20)
0 otherwise .

In Eq. (19) f1(0k (€0,70)) represents the elastic requirement on the orthotropy of the
laminate having the prescribed shape, fa(dx (£0,70)), f3(0r (£0,70)) and f1(9x (£0,70)) are
the requirements related to the prescribed values of the optimal polar parameters resulting
from the first-level problem, while f5(dx (£0,70)) and f6(0x (£0,70)) are linked to the quasi-
homogeneity condition. For more details on the meaning of the partial objective functions,
on the elastic symmetries of the laminate in the framework of the FSDT and on the
symbols appearing in Eq. (19), the reader is addressed to [29, 30]. I(dx (&0,70)) is a
positive semi-definite convex function in the space of laminate polar parameters, since it is
defined as a sum of convex functions, see Eqs. (18)-(19). Nevertheless, such a function is
highly non-convex in the space of plies orientations because the laminate polar parameters
depend upon circular functions of the layers orientation angles, see [29, 30]. Moreover, one
of the advantages of such a formulation consists in the fact that the absolute minima of
I(0x (€0,70)) are known a priori since they are the zeroes of this function. For more details
about the nature of the second-level problem see 25, 26, 21].

Concerning the numerical strategy for solving problem (17) the GA BIANCA has been
employed to find a solution also for the second-level problem. In the most general case,
the genotype of the individual is composed of n chromosomes (one for each ply), each one

characterised by a single gene coding the layer orientation angle.

5 Finite element model of the VAT laminate

In order to determine the current value of the objective function (the first buckling factor)

and that of the optimisation constraints of problem (14) a classical eigenvalue buckling

15



analysis must be achieved for the VAT composite. The need to analyse, within the same
calculation, different configurations of the VAT plate requires the creation of an ad-hoc
input file for the FE model that has to be interfaced with the hybrid (GA + gradient-
based algorithms) optimisation tool.

The FE model of the VAT laminated plate (see Fig. 4) employed during the first step
of the MS2L strategy, is built within the ANSYS environment and is made of SHELL281
elements based on the Reissner-Mindlin kinematic model, having 8 nodes and six Degrees
Of Freedom (DOFs) per node. The mesh size is chosen after preliminary mesh sensitivity
analyses on the convergence of the value of the first buckling load for a given set of BCs.
It was observed that a mesh having 2482 DOFs is sufficient to properly evaluate the first
buckling load of the structure.

It is noteworthy that the B-Spline mathematical formalism has been implemented by
the authors into the ANSYS environment by using the APDL [37] for creating a set of
appropriate macros that were integrated within the FE model of the VAT plate. At this
stage, the plate is modelled as an equivalent homogeneous anisotropic plate whose stiffness
matrices ( [A*], [B*], [D*] and [H*]) vary point-wise, i.e. for each element discretising the
real structure. In particular, in order to properly define, for every element of the VAT

plate, the correct value of its stiffness properties the following strategy has been employed:

1. for a given set of the laminate polar parameters defined in each control point (i.e.
the design variables passed from the optimisation tool to the FE model of the VAT

plate), build the corresponding B-spline surfaces;
2. discretise the plate into N, elements;

3. fix the element index ¢: for the i-th element retrieve the Cartesian coordinates of
its centroid, i.e. (z%,y¢) and calculate the corresponding dimensionless coordinates

(€1, 4%) according to Eq. (5);

4. calculate the laminate polar parameters (and hence the Cartesian components of the
stiffness matrices of the laminate) for (£2,7¢) and assign the material properties to

the element i;
5. repeat points 3 and 4 for each element of the plate.

Finally, the linear buckling analysis is performed using the BCs depicted in Fig. 4 and
listed in Table 2.

6 Studied cases and results

In this section a meaningful numerical example is considered in order to prove the effec-

tiveness of the MS2L strategy for the optimum design of VAT laminates. As depicted in
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Fig. 4, a bi-axial compressive load per unit length is applied on the plate edges with a ratio
Ny/N, = 0.5. The plate has a square geometry with side length ¢ = b = 254 mm and is
made of n = 24 plies whose material properties are those listed in Table 1. Concerning the
first-level problem, the parameters defining the B-spline surface which describe the spatial
distribution of the polar angle over the VAT plate are set as: n, = m;, = 4 (hence five
control points along each direction), p = ¢ = 2 (degrees of the blending functions along

each direction). Moreover, the B-spline is defined over the following uniform knot-vectors:
[ 1 2
- {070707 3 3717171} )

I=1{0,0,0%21,1,1}.

(21)

Accordingly, for the first-level problem the overall number of design variables and optimi-
sation constraints is 27 and two, respectively. The mechanical design variables together
with their nature and bounds for the first-level problem are listed in Table 3. In addition,
the reference value for the minimum admissible radius of curvature of the tow, i.e. 7y is
set equal to 80 mm.

Concerning the second-level problem, the parameters defining the B-spline surface
which describes the point-wise variation of the fibre orientation angle (for each ply) are the
same as those employed during the first step of the strategy. However, in order to further
simplify the problem of retrieving an optimum stack, the search space for problem (17)
has been restricted to a particular class of quasi-homogeneous laminates: the quasi-trivial
(QT) stacking sequences which constitute exact solutions with respect to the requirements
of quasi-homogeneity, i.e. functions f5(dx (£0,70)) and fe(dk (£0,70)) in Eq. (19). QT
solutions can be found for laminates with identical plies (same material and thickness) by
acting only on the position of the layers within the stack. Indeed, the potential of QT
stacks is in the fact that they constitute exact solutions (in terms of quasi-homogeneity
condition) regardless to the value of the orientation angle assigned to each layer: in this
way the orientations represent free parameters which can be optimised to fulfil further
elastic requirements. The procedure for searching QT stacks is (conceptually) quite sim-
ple: it suffices to fix the number of layers n and the number of saturated groups ng (i.e.
the number of possible different orientation angles within the stack) and look for all the
permutations of the position of each group meeting the quasi-homogeneity condition. More
details on this topic can be found in [38|. Nevertheless, as discussed in [38], the problem of
determining QT stacks gives rise to a huge number of solutions: the number of QT stacks
rapidly increases along with n. To this purpose a database of QT stacks has been built for
different combinations of n and n,.

For the problem at hand, and for each considered case, the number of saturated groups
ng has been fixed a priori. Let be ng, the number of QT stacks for a particular combination
of n and n4. Each solution collected within the database is uniquely identified by an 1Dy

(i.e. an integer) which varies in the range [1,n4y]. Therefore the 1Dy, represents a further
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design variable along with the n, orientation angles. As stated previously, the solution
search is performed through the GA BIANCA; in the case of QT stacks the structure of
the individual’s genotype is simple because it is composed of a single chromosome with
ng + 1 genes: the first one codes the variable IDg, whilst the remaining genes code the
orientation angles associated to every group which are continuous variables in the range
[-90°, 90°].

Regarding the setting of the genetic parameters for the GA BIANCA utilised for both
first and second-level problems they are listed in Table 4. Moreover, concerning the
constraint-handling technique for the first-level problem the Automatic Dynamic Penal-
ization (ADP) method has been employed, see [39]. For more details on the numerical
techniques developed within the new version of BIANCA and the meaning of the values of
the different parameters tuning the GA the reader is addressed to [25, 21].

As far as concerns the fmincon optimisation tool employed for the local solution search
at the end of the first step, the numerical algorithm chosen to carry out the calculations is
the active-set method with non-linear constraints. For more details on the gradient-based
approaches implemented into MATLAB, the reader is addressed to [36].

Before starting the multi-scale optimisation process a reference structure must be de-
fined in order to establish a reference value for the first buckling factor of the plate. The
reference structure is still a square plate of side a = b = 254 mm composed of 24 unidirec-
tional fibre-reinforced laminae whose material properties are those listed in Table 1. The
stacking sequence of the reference solution is [0/—45/0/45/90/45/0/—45/90/45/90/ —45]s.
The choice of the reference solution has been oriented towards a symmetric quasi-isotropic
stack, of common use in real-world engineering applications, which constitutes a “good”
compromise between weight and stiffness requirements (in terms of buckling load): such a
configuration is characterised by a buckling factor A\.cy = 81.525 when N, =1 N/mm and
N, = 0.5 N/mm.

6.1 Case 1: design without manufacturability constraints

Problem (14) has been firstly solved to design a VAT plate which is not subject to manufac-
turability constraints. In this case the only optimisation constraint is that on the feasibility
of the polar parameters Ryt and R1?", see Eq. (13). Concerning the first-level problem,
the optimum distribution of the laminate polar angle 14" over the VAT plate is illustrated
in Fig. 5, while the optimum value of the polar parameters Roxg?" and R as well as
that of ;4" for each control point are listed in Tables 5 and 6, respectively.

Regarding the solution of the second-level problem, the number of saturated groups ng
is set equal to three. In the case of a laminate composed of 24 plies and three saturated
groups the overall number of QT stacks is ng, = 26. Assigning the scalars zero, one

and two to the first, second and third saturated group, respectively, the optimal stacking
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sequence provided by the GA is:
010120202200001101012020]. (22)

This means that within the optimum stack layers

e 1,3, 6,8, 11-14, 17, 19, 22 and 24 belong to the saturated group “0”, i.e. they share

the same orientation &g (&, 7);

e 2 4 15,16, 18 and 20 belong to the saturated group “1” characterised by the local

orientation angle d1 (£,7);

e 5, 7,9, 10, 21 and 23 belong to the saturated group “2” sharing the orientation angle
52 (57 7)

Since the orientation angle for every saturated group is described by means of a B-spline
surface, it suffices to list the value of the orientation in each point of the control net to
uniquely define the B-spline surface. To this purpose the optimum values of the orientation
angle in each point of the control net for every saturated group are reported in Tables 8-10,
whilst an illustration of the optimum fibres-path (for each group) is depicted in Fig. 6.

It is noteworthy that the optimal solution found at the end of the MS2L design pro-
cedure is characterised by a buckling factor of 145.74 which is about 78% higher than the
reference counterpart and, in the meantime, satisfies the feasibility constraint on the polar

parameters.

6.2 Case 2: design including manufacturability constraints

In this section the problem of the optimum design of a VAT laminated plate is solved in
the most general case, i.e. by taking into account also the manufacturability constraint on
the minimum radius of curvature of the tow imposed by the AFP fabrication process, see
Eq. (9). Concerning the first-level problem, the optimum value of the polar parameters
ROKA* and RlA* as well as that of CIJOA* for each control point are reported in Tables 5
and 7, respectively, whilst the optimum distribution of the laminate polar angle Py over
the VAT plate is illustrated in Fig. 7.

As shown in Table 5, for this second case a particular solution has been obtained: the
optimum value of the polar parameter R;" is equal to zero in each point of the VAT
composite plate which means that locally the structure is characterised by the square
elastic symmetry, see [31]. In this case, the main direction of orthotropy is represented
(point-wise) by the spatial distribution of the polar angle ®y". The relationship between
the two polar angles, which represents a tensor invariant too, is:

DA — A = KA’E : (23)
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which applies for every point of the B-spline surface, thus for the points of the control net
too. Moreover, in this case K4~ = 1 because Ry < 0, see Table 5.

As far as concerns the solution of the second-level problem, a number of saturated
groups ny = 4 has been chosen. In the case of a laminate composed of 24 plies and four

saturated groups only one QT stack exists having the form:
012323130201013120232301], (24)

where an integer between zero and three has been assigned to each saturated group. How-
ever, in performing the solution search for problem (17), the GA provided an optimum

stack with only two saturated groups having the form:
002222020200002020222200], (25)

which means that groups 0 and 1 are identical as well as groups 2 and 3. The optimum
values of the orientation angles in each point of the control net for every saturated group
are reported in Tables 11 and 12, whilst an illustration of the optimum fibres-path (for
each group) is depicted in Fig. 8.

It is noteworthy that the optimal solution found at the end of the MS2L design pro-
cedure is characterised by a buckling factor of 136.09 which is about 67% higher than the
reference counterpart and, in the meantime, satisfies both the feasibility constraint on the
polar parameters and the manufacturability constraint on the minimum (local) radius of

curvature of the tow.

6.3 General discussion of results

From a careful analysis of the optimum configuration of the VAT laminated plate provided

by the MS2L procedure, it is possible to deduce the following facts.

e The point-wise variation of the laminate polar angles resulting from the first step of
the strategy is totally asymmetric. Symmetric solutions are, of course, possible: it is
sufficient to impose the symmetry condition directly on the values of the polar angles
at the points of the control network of the B-spline surfaces. However, in order to
state and solve the optimisation problem in the most general case, such a condition

has not been imposed in this study.

e When looking at the optimum spatial distribution of the laminate polar parameters
(Tables 5-7), one can notice that the laminate can be characterised either by an ordi-
nary orthotropy shape with K4~ = 0 (case 1) as well as by a square symmetry with
R{"" =0 (case 2). Indeed, in the first case (where the manufacturability constraint is

not considered) the spatial distribution of ®14" over the plate is characterised by a
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pronounced value of the gradient, hence by small values of the local radius of curva-
ture which “stiffen" the structure by increasing the buckling factor. Conversely, when
looking at the solution of case 2 (where the requirement on the local steering is taken
into account) the variation of ®y*" is smoother than that of the previous case in or-
der to comply with the manufacturability constraint. Moreover the solution of case
2 is located on the boundary of the elastic domain of the laminate polar parameters,
see Table 3. Accordingly, when searching for an optimum stack solution of problem
(17) the GA found a point-wise QT symmetric cross-ply stack (indeed the angular
difference between the two saturated groups is equal to 90° for each point of the
plate, see Tables 11 and 12) whose main axis of orthotropy (i.e. ®o") varies locally
to maximise the buckling factor and to meet, at the same time, the technological

constraint.

Unlike the vast majority of works reported in literature [40]|, the optimum fibres-
path for each ply is very general. In the framework of the proposed approach, the
point-wise variation of the fibres-path in every lamina does not follow simple linear
or parabolic variations (with respect to laminate global frame), rather it is described
by a general B-spline surface, see Eq. (15). This fact, together with the very gen-
eral formulation of the design problem of VAT laminates, allows the designer to find
an optimum stack meeting all the requirements (i.e. elastic and manufacturability
constraints) which are integrated directly in the first step of the strategy (i.e. at the
macroscopic scale), see Eq. (14), without the need of a further post-processing treat-
ment to simplify the trajectory of the tows in order to comply with the constraints

imposed by the AFP process.

Finally, the optimum fibres-path (for each layer) found at the end of the second step
of the MS2L procedure does not need of a further step for the reconstruction of the
CAD model because the variation of the fibres-path is described by a B-spline surface
which is fully compatible with several standard file formats (IGES, STL and STEP),
allowing in this way a rapid exchange of information among the CAD tool and the

software of the AFP process.

7 Conclusions

In this work an improved version of the multi-scale two-level design/optimisation method-

ology of VAT composite structures (initially presented in [19]) has been introduced. This

design paradigm essentially relies on the utilisation of a MS2L optimisation procedure char-

acterised by several features that make it an original, effective and general method for the

multi-scale design of VAT structures. In the present work this strategy has been employed

to deal with the problem of the maximisation of the buckling factor of a VAT multilayer
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plate subject to both mechanical and manufacturability constraints. On the one hand,
the design process is not submitted to restrictions: any parameter characterising the VAT
composite (at each scale) is an optimisation variable. This allows the designer to look for
a true global minimum, hard to be obtained otherwise. On the other hand, both the for-
mulation of the design problem and the MS2L optimisation strategy have been generalised
and improved in order to be applied to the problem of designing a VS composite.

In the framework of the MS2L design methodology several modifications have been
introduced for both first and second level problems. As discussed in [19], regarding the

first-level problem the main modifications are:

e the use of higher-order theories (introduced as result of [29, 30, 31]) for taking into
account the influence of the transverse shear stiffness on the overall mechanical re-

sponse of VAT composites;

e the utilisation of B-spline surfaces for describing the distribution of the laminate
polar parameters over the structure which leads to a continuous point-wise variation

of the laminate stiffness matrices.

These aspects lead to some important advantages for the resolution of the related optimi-
sation problem. In the most general case the utilisation of B-spline surfaces for describing
the point-wise variation of the polar parameters leads to a considerable reduction in the
number of design variables (the polar parameters have to be defined solely in each point
of the control network of the B-spline surface). In this background, thanks to the strong
convez-hull property of the B-spline blending functions, the optimisation constraints of
the problem (related to the specifications of the considered application) can be imposed
only on the control points of the network: if they are satisfied on such points they are
automatically met over the whole domain.

In this study a new formalisation of the first-level problem is presented: unlike the
approach proposed in [19], only the polar angle ®{" varies over the structure (ad its
spatial distribution is always described through a B-spline surface), whilst the anisotropic
moduli R{% and Ri'" of the VAT laminate are kept constant. This fact gives rise to some

important advantages:

e the feasibility constraints on the laminate polar parameters can be stated only one

time for the whole VAT laminate (and not in each point of the control net as in [19]);

e the new formulation of the mechanical design variables allows for integrating the
manufacturability requirements linked to the AFP process since the first step of the

strategy as optimisation constraints on the spatial distribution of the polar angle <I>‘14*.

The integration of the technological constraints since the first step of the MS2L strategy

together with the new formalisation of the first-level problem imply some consequences of
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paramount importance also for the second-level problem (i.e. the lay-up design of the VAT

laminate):

e the fibres-path of each layer can be described through a B-spline surface having the
same parameters (number of control points, degree along each direction, components
of the knot vectors) of the B-spline surface employed for <I>‘14* during the first step of
the procedure; moreover the value of the orientation angle at each control point (for

each layer) can be got through a straightforward analytical relationship;

e the second-level problem can be formulated and solved only in an arbitrary point
of the VAT laminate thus implying a significant reduction of the number of design

variables;

e the mathematical formulation of the second-level problem is considerably simplified
and it can be stated in the form of an unconstrained minimisation problem (because

manufacturability constraints are already included within the first-level problem).

All of these modifications allow to go beyond the main restrictions characterising the design
activities and research studies on VAT composites that can be found in literature.

Finally, the effectiveness of the improved version of the MS2L strategy has been proven
through a meaningful numerical example. The optimisation tool allows to find an optimum
VAT laminate characterised by a significant increment of the first buckling factor (about
78% when manufacturability constraints are not involved and about 67% when they are
integrated within the design problem) when compared to a reference classical solution
(composed of straight-fibres unidirectional plies).

Concerning the perspectives of this work, there are still some theoretical, numerical
and technical aspects that need to be deeply investigated and developed in order to make
the proposed approach a very general and comprehensive strategy able to provide solutions
that are both efficient (true optimal configurations) and manufacturable. Of course, this
action passes through a real understanding of the potential and the technological restric-
tions linked to the AFP process. Currently, only the technological constraint on the tow
steering has been integrated in the MS2L strategy. A step forward can be realised by
properly formalising and including into the design problem other kinds of manufacturabil-
ity constraints: tows gap and overlapping, the variation of the fibre volume fraction due
to imperfections, etc. Moreover, from a numerical point of view, the designer could be
interested in optimising also the number of design variables (i.e. the number of parameters
tuning the shape of the B-spline surfaces) involved into both levels of the MS2L procedure:
this point can be easily taken into account by exploiting the original features of the GA
BIANCA. Finally, further modifications may also be considered in the formulation of the

design problem depending on the nature of the considered application, e.g. by including
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constraints on inter- and intra-laminar damage, variability effects linked to the fabrication

process, costs, etc.

Research is ongoing on all of the previous aspects.
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Tables

Technical constants ~ Polar parameters of [Q] * Polar parameters of [Q] b

E, [MPa]  161000.0 | Ty [MPa] 23793.3868 | T [MPa| 5095.4545
E, [MPa]  9000.0 | T, [MPa] 21917.8249 | R [MPa] 1004.5454
Gy [MPa]  6100.0 | Ry [MPa| 17693.3868 | ® [deg]  90.0

V12 0.26 R1 [MP&] 19072.0711
V923 0.10 (I)Q [deg] 0.0
O, [deg] 0.0

Density and thickness
p [Kg/mm3] 1.58 x 1076
hypiy [mm] 0.125

@ In-plane reduced stiffness matrix of the pre-preg strip.
b Out-of-plane shear stiffness matrix of the pre-preg strip.

Table 1: Material properties of the carbon-epoxy pre-preg strip taken from |29, 30].

Sides BCs

AB, CD

Il
co oo

Uz
U,
BC, DA U,
U,

Table 2: BCs of the FE model of the VAT laminated plate.

Design variable Type Lower bound Upper bound
R [MPa) continuous —17693.3868  17693.3868
R{™ [MPa] continuous 0.0 19072.0711
@f*(z’]) [deg] continuous  —90.0 90.0

Table 3: Design space of the first-level problem.

28



Genetic parameters

1%t level problem  2"? level problem

N. of populations 1 1

N. of individuals 270 500

N. of generations 250 500

Crossover probability  0.85 0.85
Mutation probability  0.0037 0.002
Selection operator roulette-wheel roulette-wheel
Elitism operator active active

Table 4: Genetic parameters of the GA BIANCA for both first and second-level problems.

Polar parameters

case 1 case 2

Rox™ 13756.4634 —17693.3868
RA 17164.86 0.0000

Table 5: Optimum value of the polar parameters Rox** and R

0 1 2 3 4
Tp
0 —45.5311 —10.1854 —85.8024 90.0000 —60.6225
1 —59.4246  —90.0000 90.0000 71.8029 81.9769
2 —70.5450 39.6424 —90.0000 —48.3263 0.2430
3 87.7414 55.5200 71.4718  —77.6823 —42.7740
4 —58.0815 90.0000 —1.2187 —78.7346 —31.8303

Table 6: Optimum value of ;4" [deg| for each control point of the B-spline surface, case
1.

0 1 2 3 4

49.1349 40.1612 54.0772 30.9143 44.3536
33.0933  86.2196 40.7661 15.8884 60.8939
29.1137 21.5929 51.7663 47.8135 59.6959
66.0686 29.2392 54.6419 55.1906 28.4075
40.2953  25.9924 41.6383 T71.7229 45.2671

=W N = O

Table 7: Optimum value of ®p4" [deg| for each control point of the B-spline surface, case
2.
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0 1 2 3 4
Tp
0 —45.2978 —9.9521 —85.5691 90.2333 —60.3892
1 —59.1913 —89.7667 90.2333 72.0362 82.2102
2 —70.3117 39.8757 —89.7667 —48.0930 0.4763
3 87.9747 55.7533 71.7051 —77.4490 —42.5407
4 —57.8482 90.2333 —0.9854 —78.5013 —31.5970

Table 8: Optimum value of §,*7) |[deg] for each control point of the B-spline surface of the
1%t saturated group, case 1.

e 0 1 2 3 4
p
0 —60.2078  —24.9521 —100.5691  75.2333 —75.3892
1 —74.1913  —104.7667  75.2333  57.0362  67.2102
2 —85.3117  24.8757 —104.7667 —63.0930 —14.5237
3 729747  40.7533  56.7051 —92.4490 —57.5407
4 ~72.8482 752333  —15.9854 —93.5013 —46.5970

Table 9: Optimum value of &; 7 [deg| for each control point of the B-spline surface of the

2" saturated group, case 1.

0 1 2 3 4
Tp
0 —31.2978 4.0479 —71.5691 104.2333 —46.3892
1 —45.1913 —75.7667  104.2333 86.0362 96.2102
2 —56.3117 53.8757 —T75.7667 —34.0930 14.4763
3 101.9747 69.7533 85.7051 —63.4490 —28.5407
4 —43.8482  104.2333 13.0146 —64.5013 —17.5970

Table 10: Optimum value of d,7) |[deg]| for each control point of the B-spline surface of
the 37¢ saturated group, case 1.

0 1 2 3 4

49.1349 40.1612 54.0772 30.9143 44.3536
33.0933  86.2196 40.7661 15.8884 60.8939
29.1137  21.5929 51.7663 47.8135 59.6959
66.0686 29.2392 54.6419 55.1906 28.4075
40.2953 25.9924 41.6383 71.7229 45.2671

= W N = O

Table 11: Optimum value of 8ot [deg| for each control point of the B-spline surface of
the 1% saturated group, case 2.
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0 1 2 3 4
Tp
0 —40.8651 —49.8388 —35.9228 —59.0857 —45.6464
1 —56.9067 —3.7804 —49.2339 —74.1116 —29.1061
2 —60.8863 —68.4071 —38.2337 —42.1865 —30.3041
3 —23.9314 —60.7608 —35.3581 —34.8094 —61.5925
4 —49.7047 —64.0076 —48.3617 —18.2771 —44.7329

Table 12: Optimum value of d%7) |[deg]| for each control point of the B-spline surface of
the 2"¢ saturated group, case 2.
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Figure 1: Example of a B-spline surface representing the spatial distribution of o
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Figure 2: Logical flow of the numerical procedure employed for the solution search of the
first-level problem.
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Figure 3: Structure of the genotype of the generic individual for problem (14).

(b)
Figure 4: Geometry of the VAT plate: applied BCs (a) and FE model of the structure (b).
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Figure 5: Optimal distribution of the polar angle ®;" over the VAT plate resulting from
the first-level optimisation problem, contour plot (a) and quiver plot (b), case 1.
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Figure 6: Optimum fibres path for the three groups of layers of the VAT plate resulting
from the second-level optimisation problem, 1%¢ group (a), 2"¢ group (b) and 3" group (c),

case 1.
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Figure 7: Optimal distribution of the polar angle ®*" over the VAT plate resulting from
the first-level optimisation problem, contour plot (a) and quiver plot (b), case 2.
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Figure 8: Optimum fibres path for the two groups of layers of the VAT plate resulting from
the second-level optimisation problem, 1% group (a) and 2"¢ group (b), case 2.
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