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Bursts are recurrent, transient, highly energetic events characterized by localized
variations of velocity and vorticity in turbulent wall-bounded flows. In this work, a
nonlinear energy optimization strategy is employed to investigate whether the origin
of such bursting events in a turbulent channel flow can be related to the presence of
high-amplitude coherent structures. The results show that bursting events correspond
to optimal energy flow structures embedded in the fully turbulent flow. In particular,
optimal structures inducing energy peaks at short time are initially composed of highly
oscillating vortices and streaks near the wall. At moderate friction Reynolds numbers,
through the bursts, energy is exchanged between the streaks and packets of hairpin
vortices of different sizes reaching the outer scale. Such an optimal flow configuration
reproduces well the spatial spectra as well as the probability density function typical
of turbulent flows, recovering the mechanism of direct-inverse energy cascade. These
results represent an important step towards understanding the dynamics of turbulence
at moderate Reynolds numbers and pave the way to new nonlinear techniques to
manipulate and control the self-sustained turbulence dynamics.
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1. Introduction

Turbulence is a widespread complex phenomenon influencing the behaviour of a
large variety of natural and engineering systems. Flow in a channel (Sano & Tamai
2016), ocean mixing (Moum et al. 2013) and the explosion of a rotating massive
star (Mösta et al. 2015) are three examples of very different phenomena characterized
by turbulent dynamics involving chaotic fluctuations of the physical properties and
sharing the same basic properties. The atmosphere itself, up to a hundred metres from
the Earth’s surface, is characterized by a turbulent, chaotic motion, deep knowledge
and accurate modelling of which may have tremendous implications for improving
meteorological and climatological predictions (Marusic, Mathis & Hutchins 2010). Yet,
achieving a thorough comprehension of the dynamics of wall-bounded turbulent flow
remains a formidable challenge since turbulence appears in a variety of different states
and patterns competing with the ordered laminar state (Barkley et al. 2015).
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To determine low-order models for the onset of this chaotic motion from a laminar
regime, recent studies have turned the attention to the dynamics of large-scale
structures, neglecting the random small-scale motion: two main examples are the
direct percolation model recently provided by Lemoult et al. (2016), and the front
propagation scenario by Barkley et al. (2015), explaining the coexistence of turbulent
patterns competing with the laminar state in the transitional regime.

Even when the flow reaches a fully developed turbulent regime, it remains
characterized by small-scale chaotic fluctuations as well as coherent structures,
i.e. fluid motions highly correlated over both space and time (Panton 2001), with
characteristic wavelengths and lifetimes. From a dynamical point of view, this coherent
motion carries a much larger momentum than the chaotic motion at small scales; thus,
a careful characterization of such structures bears an enormous potential for modelling
and controlling the self-sustained turbulence dynamics.

The first evidence of coherent motion in turbulent flows dates back to the sixties,
when Kline et al. (1967) ran a series of experiments in a boundary-layer flow,
observing ‘surprisingly well-organized spatially and temporally dependent motions’ in
the form of streaks. These streaks populate the region close to the wall, the buffer
layer representing the inner region, with an average spanwise spacing λ+z ≈100 (where
the superscript + indicates variables expressed in inner units, non-dimensionalized by
the viscous length scale δν = ν/uτ , ν being the kinematic viscosity and uτ the friction
velocity).

Such streaky structures are continuously regenerated in a cycle based on the lift-up
mechanism that does not depend on the outer flow, making them a robust, long-living
feature of the inner layer (Hamilton, Kim & Waleffe 1995; Waleffe 1997; Jiménez
& Pinelli 1999). Concerning this regeneration cycle, a strong consensus has been
achieved in the last years about the self-sustained process theorized by Hamilton
et al. (1995) and Waleffe (1997). Grounding on modal and non-modal instability
analysis, these authors conjectured a cyclic process composed of the following three
steps: (i) streamwise streaks originate from weak streamwise vortices, due to the
inherently non-modal lift-up process; (ii) saturating nonlinearly, they become prone to
secondary instability; and (iii) the consequent streak oscillations recreate streamwise
vorticity by nonlinear interactions, leading back to the first step. Such a self-sustained
process can explain the robustness of oscillating streaky structures observed in
transitional and turbulent flows. The extension of this theory led to the discovery of
self-sustained exact coherent structures (Waleffe 1998; Faisst & Eckhardt 2003; Hof
et al. 2004), which are steady, periodic or chaotic states of the phase space with few
unstable directions, that populate the chaotic saddle representing wall turbulence at
low Reynolds numbers (Waleffe 1998; Faisst & Eckhardt 2003; Hof et al. 2004).

Moreover, it has been also observed (Tomkins & Adrian 2003; Adrian 2007) that
large-scale coherent structures populate the outer region of wall-bounded turbulent
flows, with average spanwise length λz ≈ O(h) (h being the outer length scale, for
instance the half-height of a channel flow or the boundary-layer thickness of the flow
over a flat plate). These large-scale structures have the form of packets of hairpin
vortices (Adrian 2007) or large-scale oscillating streaks (Tomkins & Adrian 2003).
Hwang & Cossu (2010b) have recently shown that large-scale streaky structures
remain self-sustained even when small-scale motion is artificially damped. This
numerical observation has been supported by the results of a linear transient growth
analysis of perturbations of a mean turbulent velocity profile, showing that large-scale
streamwise streaks can be amplified by a coherent lift-up effect, without the need
of smaller-scale structures to sustain this growth (Cossu, Pujals & Depardon 2009;
Pujals et al. 2009; Hwang & Cossu 2010a).
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These results suggest a scenario based on self-sustained cycles acting at different
spatial scales from the inner to the outer scale. Nevertheless, this is only a part of
the complex dynamics of wall turbulence, in which inner and outer scale structures
are found to influence each other, as recently shown by Hwang et al. (2016), who
observed a close interaction between large-scale coherent structures and near-wall
small-scale streaks. In fact, the coexistence of separate cycles at different scales does
not explain the spatial and temporal intermittency of large-scale velocity fluctuations
and their possible interaction with inner scale structures (Jiménez 1999; Hwang et al.
2016), neither the existence of the high-energy bursting events, inherently short lived
and intermittent (Jiménez et al. 2005), recurrently observed in wall-bounded turbulent
flows.

Bursting events are dynamically very important since they carry approximately 80 %
of the Reynolds stress production (Panton 2001), accounting for a large part of the
energy transported through the flow. To characterize these vigorous events, quadrant
analysis of time series data has been used, showing a sequence of Q2 (u< 0, v > 0)
events called ejections (i.e. slow fluid carried up by a positive wall-normal motion),
suddenly followed by rather longer Q4 (u > 0, v < 0) events known as sweeps
(high-speed fluid pushed down towards the wall) (Bogard & Tiederman 1986). Very
recently, using a filtered and over-damped large-eddy simulation, Hwang & Bengana
(2016) observed the occurrence of bursting events for isolated attached eddies of
different size, the related spanwise length scale ranging between λ+z ≈ 100 and
λz ≈ 1.5h. Therefore, these energy oscillations are inherently present in the coherent
motion of a fully turbulent flow even when small-scale fluctuations are damped out.

However, despite the robustness of bursts and their main features are now well
recognized, their origin is still not clear. Some authors have linked them to the
secondary instability of streaks; others, to the appearance of hairpin-shaped vortical
structures (Moin & Kim 1985), which can regenerate into packets populating the
outer region of the flow (Robinson 1991), in the same way as streaks populate the
buffer layer. Recently, Jiménez has investigated by a linear analysis the role of the
Orr mechanism in the bursting phenomenon (Jiménez 2013, 2015), showing that
large-scale modes of the wall-normal velocity in a turbulent minimal channel are well
described by transient Orr bursts only at short times (of order 0.15h/uτ ), whereas at
longer times nonlinearity becomes relevant.

This work aims at providing a thorough view of energetic structures in wall-
bounded turbulent flow, explaining the recurrence of bursting events as an interaction
between streaky and vortical structures at different scales. The final goal is to
investigate whether the formation of transient coherent structures inducing bursting
events in a wall-bounded turbulent flow is governed by an energy maximization
process on a suitable time scale. As bursts are short-lived and highly energetic, we
use a transient growth approach in a nonlinear framework in order to unravel which
kind of flow structures are able to trigger rapid events with a strong energy growth
in a canonical wall-bounded turbulent flow such as the channel flow. In the same
way as a linear transient growth analysis on a mean turbulent profile could explain
the linear growth of streaky structures in turbulent flows (Butler & Farrell 1993;
Pujals et al. 2009), a nonlinear approach is a suitable way for studying the energetic
transient events characterized by ejections and sweeps. With respect to the recent
linear analysis provided by Jiménez (2013, 2015), we take into account nonlinear
interactions since the time horizon of the optimization analysis is larger than the
linear time interval limit indicated by Jiménez (2015).

The paper is organized as follows: in the second section we define the problem and
describe the employed numerical methodology; in the third section the main features
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of the nonlinear optimal coherent structures and their time evolution are discussed;
and in the last section, some conclusions are provided. The details of the derivation
of the governing equations are provided in the Appendix.

2. Problem formulation
This work provides the analysis of turbulent channel flow at friction Reynolds

number Reτ = uτh/ν = 180; uτ , h, and ν being the friction velocity, the half-height
of the channel and the kinematic viscosity, respectively. Since two scalings of the
variables are employed, variables expressed in inner units (normalized using uτ and
viscous length scale, δν = ν/uτ ) are indicated with the superscript +, whereas variables
without any superscript are scaled in outer units (normalized using the centreline
velocity Uc and h). Incompressible flow is computed by solving the Navier–Stokes
equations (NS) in a box having streamwise, wall-normal and spanwise dimensions
equal to lx = 4π, ly = 2, lz = 2π, respectively. No-slip boundary conditions for the
three velocity components are imposed at the walls, whereas periodicity is prescribed
in the streamwise and spanwise directions.

The nonlinear evolution of perturbations of the mean turbulent velocity profile is
computed by solving the following system of equations (ÑS):

∂ũ
∂t
=−ũ · ∇ũ− ũ · ∇U−U · ∇ũ−∇p̃+ 1

Re
∇2ũ+∇ · τ ,

∇ · ũ= 0,

 (2.1)

where ũ = (ũ, ṽ, w̃)T and p̃ represent the velocity and pressure perturbations,
respectively, which are composed of a coherent and a fluctuating part; U is the
mean turbulent flow velocity profile; τ is the Reynolds stress tensor forcing the mean
turbulent velocity profile (see (A 2) in the Appendix); and Re=Uch/ν. The Reynolds
stress tensor is computed a priori by direct numerical simulation (DNS) of the fully
turbulent flow. Details of the derivation of (2.1) are provided in the Appendix.

Using (2.1), we look for perturbations capable of inducing a peak of kinetic energy
in a finite time T . Thus, we maximize the kinetic energy growth at time T , G(T)=
E(T)/E(0), where

E(t)= {ũ(t), ũ(t)} =
∫

V
(ũ2 + ṽ2 + w̃2)(t) dV, (2.2)

and V is the volume of the computational domain. The energy gain G(T) is
maximized using a Lagrange multiplier approach, the initial energy E0, equations
(2.1) and the incompressibility condition being imposed as constraints using the
Lagrange multipliers or adjoint variables (ũ†

, p†, λ), as follows:

L= E(T)
E(0)

−
∫ T

0
{ũ†
, ÑS} dt−

∫ T

0
{p̃†, (∇ · ũ)} dt− λ

(
E(0)
E0
− 1
)
. (2.3)

Deriving the functional L with respect to the variables ũ, p̃, one obtains the following
adjoint equations:

∂ũ†

∂t
= ũ† · (∇U)T −U · ∇ũ† −∇p† − 1

Re
∇2ũ† + ũ† · (∇ũ)T − ũ · ∇ũ†

,

∇ · ũ† = 0,

 (2.4)
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as well as the gradient of L with respect to the initial perturbation, which has to
be nullified in order to maximize the given L. Following previous works focusing
on nonlinear optimal perturbations of laminar base flows (see Cherubini et al. 2010;
Pringle, Willis & Kerswell 2012; Rabin, Caulfield & Kerswell 2012; Cherubini
& De Palma 2013; Duguet et al. 2013; Cherubini, De Palma & Robinet 2015),
the optimization problem is solved by direct-adjoint iterations coupled with a
gradient rotation algorithm (Foures, Caulfield & Schmid 2013; Farano et al. 2016).
Computations are performed using the spectral-element code Nek5000 (Fischer,
Lottes & Kerkemeir 2008), with Legendre polynomial reconstruction of degree 7 and
second-order accurate Runge–Kutta time integration (Deville, Fischer & Mund 2002).
The iterative procedure is stopped when the relative variation between two successive
direct-adjoint loops, e = (Gn − Gn−1)/Gn is smaller than 10−7, n being the iteration
number. Depending on the selected target time, 40–80 direct-adjoint iterations are
needed for reaching convergence for one set of parameters, each optimization needing
an overall computational time of 100.000–800.000 hours on an IBM cluster Intel ES
4650.

The flow parameters are chosen according to the DNS of turbulent channel flow
performed by Kim, Moin & Moser (1987) for Reτ =180. The computational domain is
discretized by 24, 20 and 20 elements in the x, y and z spatial directions, respectively,
obtaining a total number of grid points equal to 192× 160× 160. For this setting we
obtain approximately the values of 1x+≈ 12, 1z+≈ 7, 1y+max≈ 4.4 and 1y+min≈ 0.05,
similar to those used by Kim et al. (1987). DNS has been run for approximately
13 time units (tuτ/h) in order to evaluate the mean flow and the Reynolds stress
tensor. The fully turbulent flow obtained by DNS has been validated by comparing
the mean flow and the Reynolds shear stress with the results of Kim et al. (1987),
finding a very good agreement (see the Appendix for details). Furthermore, the
direct-adjoint routine has been validated by computing linear optimal perturbations
following the approach by Pujals et al. (2009), who performed a local stability
analysis by considering a monochromatic sinusoidal coherent perturbation in x and
z. Although we perform a global analysis, where ũ depends on the three spatial
coordinates without any constraint, in the linear limit we have been able to reproduce
the maximum energy amplification, the associated time as well as the shape of the
optimal perturbations with their wavelength, found by a local linear optimization
using the approach of Pujals et al. (2009). This result validates our direct-adjoint
procedure at least in the linear limit. Finally, the nonlinear optimization approach has
been validated in the laminar case with the results of Farano et al. (2015).

3. Results
3.1. Optimal perturbations

Nonlinear optimal structures have been computed for Reτ =180 and for different target
times, T , which is a crucial independent parameter for the optimization procedure.
For such a moderate value of the Reynolds number, there is not a clear spatial scale
separation among the flow structures. However, structures with different scales and
dynamics may be found in the inner and outer region (Chen et al. 2014). The lifetime
of coherent structures populating the flow can be employed as the target time to select
the scale of the structures to be optimized. Butler & Farrell (1993) have chosen as
representative of the time scale of coherent structures the eddy turnover time defined
as the ratio between the turbulent kinetic energy and the dissipation rate, k/ε. In
particular, they consider the value of the eddy turnover time at y+ ≈ 20 (resulting

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.107
https:/www.cambridge.org/core


40 M. Farano, S. Cherubini, J. C. Robinet and P. De Palma

0

0
100500

1000
0

500
1000

1500
2000

0

0
100

500

1000
0

500 1000
1500

2000

(a) (b)

FIGURE 1. (Colour online) Shape of the optimal perturbation for T+in = 80 and E0 = 10−2

at (a) t+ = 0 and (b) t+ = T+in : isosurface of negative streamwise velocity (green, (a) ũ=
−0.025, (b) ũ=−0.18) and Q-criterion ((a) Q= 10−6, (b) Q= 2× 10−6) coloured by the
value of the streamwise vorticity (positive blue, negative red).

in T+ = 80 for Reτ = 180), finding optimal small-amplitude disturbances having the
shape of low- and high-speed streaks with the inner typical spanwise spacing λ+z =110.
Here, we employ the same criterion, choosing the inner optimization time T+in = 80,
(Tin = 8.16) approximately corresponding to one eddy turnover time evaluated in the
buffer layer at y+ = 19 (Butler & Farrell 1993); and the outer optimization time
T+out = 305 (Tout = 31.12), corresponding approximately to one eddy turnover time at
the centreline of the channel, consistent with that used by Pujals et al. (2009) for
higher Reynolds numbers.

3.1.1. Optimal perturbations at the inner time scale
The resulting optimal finite-amplitude disturbance obtained for T+in and E0 = 10−2

is shown in figure 1 at t+ = 0 (a) and t+ = T+in (b). The initial optimal perturbation
consists of alternated inclined streamwise vortices (red and blue), flanking localized
regions of streamwise velocity strong defects (green). Whereas, at T+in , the optimal
disturbance consists of highly modulated streaks having a typical spanwise spacing
of λ+z ≈ 113, surrounded by positive and negative streamwise vortices, with a
spanwise spacing of λ+z ≈ 56; this is a typical value recovered for vortex spacing in
turbulent channel flow (Panton 2001). These nonlinear optimal streaks and vortices
appear much more similar to the oscillating coherent streaky structures observed in
turbulent flows than the idealized linear optimal perturbations presenting a perfect
streamwise alignment (Butler & Farrell 1993; Pujals et al. 2009). Moreover, they are
localized in space in a spot-like fashion, instead of occupying homogeneously the
whole computational domain like the linear optimal ones. These nonlinear optimal
structures well represent the self-sustained turbulence wall cycle: linearly growing
streaks saturate and oscillate due to secondary instability, regenerating new localized
quasi-streamwise vortices by nonlinear coupling. Linear optimizations are able to
describe only the first step of this cycle, whereas a nonlinear approach can capture
all of the elements of the cycle. Notice that a very similar optimal structure has been
recovered for smaller target times, made by oscillating coherent streaks and vortices
at the walls, having smaller wavelength (for instance, λ+z ≈ 65 for T+ = 21.94) but
a very similar spot-like spatial localization. However, as already known (Jiménez
& Moin 1991), these streaks are not self-sustained. In fact, we have verified that
the time evolution of these optimal small structures beyond the target time leads
to their decay. Concerning the influence of E0, we have observed that the optimal
disturbances keep a similar structure as long as the initial energy is sufficiently high
to trigger nonlinear effects.
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FIGURE 2. (Colour online) Shape of the optimal perturbation for T+out = 305 and E0 =
10−2 at (a) t+= 0 and (b) t+= T+out: isosurface of negative streamwise velocity (green, (a)
ũ=−0.016, (b) ũ=−0.3) and Q-criterion ((a) Q= 0.045, (b) Q= 0.15) coloured by the
value of the streamwise vorticity (positive blue, negative red).

0

200

400

600

800

1000

0

200

400

600

800

1000

0 500 1000 1500 2000 0 500 1000 1500 2000

(a) (b)

FIGURE 3. (Colour online) Shape of the optimal perturbation for T+out= 305 and E0= 10−2

at t+ = T+out: isosurface of negative streamwise velocity (green) (a,b); isosurface of
Q-criterion coloured by contours of streamwise vorticity (positive blue, negative red) (b).
The isosurface values are the same as in figure 2(b). Small solid circles indicate small
hairpin vortices, big dashed circles indicate big hairpin vortices.

The results obtained for the inner time scale are in good agreement with the well-
assessed streaky structures observed near the wall by several authors by experimental
and numerical techniques (Kline et al. 1967; Panton 2001); therefore, such results can
be considered a successful validation of the proposed approach.

3.1.2. Optimal perturbations at the outer time scale
Increasing the target time to the outer time scale T+out, the optimization algorithm

provides a different flow structure, as shown in figure 2, at t+ = 0 (a) and t+ = T+out
(b). The initial optimal perturbation is strongly localized in space and is characterized
by alternated streamwise vortices (red and blue) near the wall and localized patches
of streamwise velocity perturbations in the outer region. At t+ = T+out this initial
perturbation turns into a much more complex structure, mostly composed of packets
of hairpin vortices on top of highly oscillating streamwise streaks. In particular, strong
vortical structures are observed at two different scales. The small-scale structures are
not symmetric and have spanwise length λ+z ≈ 100 (consistent with the observations
of Zhou et al. (1999)). They are placed on top of the low-speed streaks, apparently
as a result of their sinuous instability, as shown in the solid circles in figure 3.
On the other hand, the largest vortical structures in the dashed circles have a clear
symmetric hairpin shape, with typical wavelengths λz ≈ 2h and λx ≈ 2.5h, consistent
with the observations of turbulent bulges and packets of hairpin of length ≈ 2h
(Adrian 2007) and with the dimensions of the largest attached eddy computed
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FIGURE 4. (Colour online) Outer optimal perturbation obtained for T+out = 305 and
E0 = 10−2: isosurfaces of the Q-criterion (green) and isocontours of streamwise velocity
(blue negative, red positive) on the planes z+ = 860 and z+ = 320. The isosurfaces values
are the same as in figure 2(b).

using large-eddy simulation by Hwang & Bengana (2016). As one can observe
in figure 3, these hairpin vortices originate from the merging of the streamwise
vortical structures flanking two distinct low-speed streaks (Adrian 2007), which are
modulated quasi-symmetrically with respect to a streamwise axis passing between
them. Large-scale low-speed streaks, with λz ≈ 2.2h and λx ≈ 5h are also induced
between the legs of these large hairpin structures; these streaks can be observed in
figure 4 in a z-constant plane passing through the head of two large hairpin vortices
(blue contours in the plane at z+ = 860 for low-speed large-scale streaks). However,
the streaks with higher intensity are those close to the wall, as shown by the blue
contours in the z+ = 320 plane. These features recall those found for packets of
hairpin vortices described by Adrian (2007), who observed that the larger the packets,
the weaker the backward-induced flow, due to the larger distance of the side vortices
from the centre of the hairpin loop. The same author also conjectured that the passage
of hairpin packets can explain the occurrence of multiple second- and fourth-quadrant
events typical of turbulent bursts.

3.1.3. Probability density function analysis
Thus, we wonder whether this optimal perturbation characterized by a very complex

shape, optimizing the energy at the outer spatial scale, might be a possible candidate
for explaining the onset of transient recurrent bursts on top of the long-living
oscillating streaks. To investigate whether ejections and sweeps could characterize
the dynamics of the nonlinear optimal structure, indicating a strong correlation with
bursting events, we have computed the probability density function (PDF) of the
streamwise and wall-normal velocity disturbance at different wall-normal positions
for the optimal perturbation at t+ = T+out. Figure 5 shows, for y+ = 10, 50, 100 (a,c,e),
that the PDF is concentrated in the second and fourth quadrants of the ũ–ṽ plane,
indicating the prevalence of ejection and sweep events, exactly as in a strong bursting
event. Going from the buffer to the outer region, the strongest contribution to the
Reynolds stress slightly moves towards the sweeps region, suggesting a mechanism
of energy redistribution from the outer to the wall region by means of sweep events
(Jiménez 1999). This PDF has been compared with that extracted from the DNS of the
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FIGURE 5. (Colour online) Logarithm of the PDF of the streamwise and wall-normal
velocity for the outer optimal structures at t= Tout (a,c,e) and for the fully turbulent flow
(b,d, f ) at different constant y+-planes: y+ = 10, y+ = 50, y+ = 100, (a–f ).

turbulent flow, shown in the right column of figure 5 for corresponding wall-normal
positions. The two set of PDF distributions are very similar, although the data in
the left column are obtained by using only the perturbation at a given time, whereas
the results in the right column are computed from the statistics of the DNS. On the
other hand, the PDF of the inner optimal perturbation (not shown) is quite similar to
that extracted from the DNS only at y+ = 10, ũ and ṽ rapidly fading away towards
the centre of the channel. This indicates that, while the inner optimal disturbance is
representative of the self-sustained wall cycle, the outer nonlinear optimal disturbance
is representative of bursting events populating the fully turbulent channel flow.
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Q

R

FIGURE 6. Sketch of the flow topologies associated with different regions of the Q–R
plane, Q and R being the second and third invariant of the velocity gradient tensor, and
D= (27/4)R2 +Q3 (Blackburn, Mansour & Cantwell 1996).

3.1.4. Topology analysis
The outer optimal disturbance has been found to show the same typical features

of a bursting event. However, one may wonder whether its complex structure is well
representative of the vortical disturbances observed in fully turbulent conditions. In
order to answer to this question, we have compared the main vorticity features of
the optimal structures with those of the fully turbulent flow (Blackburn et al. 1996).
Chong, Perry & Cantwell (1990) proposed a topological analysis of vortical flow
structures based on the first three invariants of the velocity gradient tensor, here
referred to as P, Q and R, respectively. Incompressible flows being restrained to the
P = 0 space, the flow topologies that can be found in the channel flow considered
here can be classified depending on the values of Q and R. With reference to
figure 6, flow structures which fall in the upper region of the Q–R plane are called
stable (left) or unstable (right) focus topologies, representing vortex stretching or
compression, respectively; whereas, in the lower region of the plane, stable (left)
and unstable (right) node/saddle/saddle topologies are found. The shapes of the local
flow field corresponding to these topologies are sketched in figure 6. As described
by Blackburn et al. (1996), for a turbulent channel flow, moving from the wall to
the centreline of the channel, the PDF of Q and R will vary, indicating the different
structures found at different wall-normal positions in the flow. Figure 7 provides
the PDF of Q and R for the outer optimal disturbance (a,c,e) and for the DNS of
the corresponding turbulent flow (b,d, f ) at y+ = 10, 50, 100. One can notice that in
both cases, close to the wall, the PDFs are rather uniformly distributed among all
quadrants of the Q–R plane. On the other hand, towards the centreline of the channel,
the dominant structures are tube-like, shaped as those sketched in figure 6 above the
line D = 0. Moreover, the PDFs spread mostly in the second and fourth quadrants,
indicating a predominance of stable focus/stretching and unstable node/saddle/saddle
topologies. As discussed by Blackburn et al. (1996) for the case of turbulent channel
flow, stable focus/stretching topologies appear to provide a link between the inner
and outer regions of the flow, with structures originating in the viscous sublayer
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FIGURE 7. (Colour online) Logarithm of the PDF of the non-dimensional second (Q∗) and
third (R∗) invariant of the velocity gradient tensor, for the outer optimal structures at t=
Tout (a,c,e) and for the fully turbulent flow (b,d, f ) at different constant y+-plane (a–f : y+=
10, 50, 100). Notice that Q∗ = Q/Qw and R∗ = R/Q3/2

w , Qw being the second invariant of
the antisymmetric part of the velocity gradient tensor averaged on each y+-constant plane.

and extending towards the outer region, mostly associated with hairpin or horseshoe
shapes. The presence of hairpin vortices in the outer optimal disturbance and the
fact that its Q–R topology distribution reproduces well that of the corresponding
fully turbulent flow may indicate the presence of those structures in fully turbulent
conditions, at least for the moderate value of the Reynolds number used here. On
the other hand, the inner optimal disturbance, which does not show hairpin vortices,
is characterized by a different topology distribution, without any clear preference for
the stable focus/stretching and the unstable node/saddle/saddle topologies, with the
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λ+z y+ λ+x y+

t+ = T+in
Êuu 113.8 13.6 189.4 9.21
Êvv 113.8 29.1 189.4 16.5
Êww 113.8 10.2 189.4 13.6

t+ = T+out

Êuu 189.6 14.9 757.5 74.2
Êvv 142.2 67.6 757.5 81.5
Êww 227.5 81.5 757.5 74.2

TABLE 1. Wavelength and corresponding wall-normal position of the peaks of the
premultiplied energy density spectrum shown in figure 8.

vortices rapidly fading away far from the wall (not shown). Therefore, the similarity
of the outer optimal flow topology with that of the fully turbulent flow suggests that
these structures are well representative of the vortical dynamics of a turbulent channel
flow from the wall towards the centreline of the channel.

3.1.5. Spectrum analysis
We have found that the outer optimal disturbance reproduces well the vortical

topology of the corresponding turbulent channel flow; now, we want to investigate
whether the size of these vortices and their main wavelengths might be representative
of the broadband spectrum of wavelengths typical of turbulent flows. At this purpose,
we have extracted the streamwise and spanwise premultiplied energy density spectra
from the nonlinear optimal disturbances at T+in and T+out, and compared them with the
same spectra extracted from the DNS of the corresponding fully developed turbulent
flow. Figure 8 provides the premultiplied spectrum distributions along the wall-normal
direction obtained from the DNS (shaded contours) and from the optimal disturbances
at T+in (light blue isolines) and at T+out (black isolines). The spanwise (a,c,e) and
streamwise (b,d, f ) spectra have been obtained for energy densities computed on the
basis of the streamwise (a,b), wall-normal (c,d) and spanwise (e, f ) components of
velocity, Êuu, Êvv and Êww, respectively. The X and the O symbols mark the peak
values of the energy density spectrum for the inner and the outer optimal structures,
respectively. Such peak values are also provided in table 1. For the inner optimal
structure, the energy peak is found for λ+z = 113.8, rather close to the wall (y+
ranging from 10 to 29 depending on the considered energy density), providing the
typical spanwise spacing of streaks (Kline et al. 1967). Concerning the streamwise
wavelength, the energy peak is at λ+x = 189.4, corresponding to the wavelength of the
strong wiggling of the streaks due to the presence of streamwise vortices flanking
them. However, looking at all of the streamwise spectra (right column), one can
notice a secondary peak at k+x ≈ 0.0058, corresponding to a secondary wavelength,
λ+x ≈ 1082.7, close to the typical streamwise wavelength of streaks in fully turbulent
conditions (Kline et al. 1967), and roughly corresponding to the wavelength of
the spot-like localization of the optimal structures characterizing the inner optimal
perturbation. Nevertheless, for this inner optimal structure, both the streamwise and
spanwise spectra appear very narrow, including only a small portion of the broadband
range of wavenumbers found by the DNS (compare the light blue isolines with the
shaded isocontours). On the other hand, the spectra computed for the outer optimal
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FIGURE 8. (Colour online) Logarithm of the premultiplied power spectrum versus the
wall-normal distance y+ for the DNS (shaded contours), inner optimal solution (blue
isolines) and outer optimal solution (black isolines) at target time. The symbols X and O
indicate the maximum value for the inner and outer peak, respectively. The green dotted
line joining the inner and outer energy peak provides the scaling laws y+= c(k+x,z)

−1, with
slopes (a) c = 0.0921, (b) c = 0.4608, (c) c = 0.6970, (d) c = 0.1028, (e) c = 0.1439,
( f ) c= 0.1287.

have energy peaks at larger wavelengths in x and z, with λ+x = 757.5 well reproducing
the peak value found by DNS in the Êuu spectrum, probably corresponding to the
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streak streamwise spacing found in the outer optimal disturbance. Moreover, the outer
optimal perturbation spectra are almost overlapped with those extracted from the DNS
(compare the black isolines with the shaded contours), indicating that the optimal
structure computed for T+out is well representative of the turbulent motion in the same
flow condition.

Concerning the typical wavelength of the coherent structures in fully turbulent
flow, the attached eddy theory of Townsend (1980) suggests that the size of the
typical eddies in a turbulent shear flow scales with the wall-normal direction, the
smallest-eddy dimension scaling with inner units (l+), and the largest-eddy dimension
scaling with outer units, in both streamwise and spanwise directions. In order to
verify whether this hypothesis is valid also for the optimal structures found here,
we have considered the energy peaks of the premultiplied energy spectra, marked in
figure 8 by X and O for the inner and outer optimal disturbance, respectively. Tracing
a straight line between these two peaks (green dashed line), we can infer a scaling of
the form y+ ∝ λ+x,z (y+ ∝ (k+x,z)

−1), as conjectured by Townsend (1980). Concerning
the scaling coefficients, provided in the caption of figure 8, we have obtained values
very close to those available in the literature for all components of the energy (Hoyas
& Jiménez 2006; Hwang 2015). Thus, the scaling laws extracted on the basis of the
inner and outer energy peaks reproduce well the scalings found in fully turbulent
flows. However, we must remark that at the considered moderate Reynolds number
a distinct scale separation in the streamwise direction is not established yet, data
at higher Reynolds numbers being needed for confirming the results (del Álamo &
Jiménez 2003).

3.2. Time evolution of the outer optimal perturbation
3.2.1. Production and dissipation analysis

The optimal structure arising at the outer time scale is structurally rather complex
and the mechanisms leading to a strong energy growth cannot be simply related to a
large-scale cycle similar to that characterizing the inner scale (Hwang & Cossu 2010b).
Insight into the energy growth mechanisms can be gained by considering the time
evolution of the energy density of the structures. Scalar multiplication of (2.1) by ũ
provides the following Reynolds–Orr equation (Schmid & Henningson 2012) for the
disturbance:

1
2
∂E
∂t
=
∫

V
−ũ · (ũ · ∇U)︸ ︷︷ ︸

P

dV −
∫

V

1
Re
∇ũ : ∇ũ︸ ︷︷ ︸

D

dV +
∫

V
ũ · ∇ ·

τ︷︸︸︷
(ũũ)︸ ︷︷ ︸

Pτ

dV, (3.1)

where P(x, y, z, t) is the energy production, D(x, y, z, t) is the energy dissipation and
Pτ (x, y, z, t) is the contribution of the Reynolds stress to the production. Figure 9(a)
shows the time evolution of these three terms integrated over the whole computational
domain, denoted hereafter as PV , DV and Pτ V . First of all, the strong energy peak,
followed by an increase of the dissipation DV , confirms that the transient evolution
of this optimal structure can be interpreted as a strong energy burst, which is then
dissipated in time reaching a dissipation peak at t+≈ 3T+out. Such a time interval is in
agreement with the large-scale temporal oscillation observed by Hwang & Bengana
(2016) for the largest attached eddy and recognized as a bursting event by Flores
& Jimenez (2010). One can notice the non-negligible contribution of the term Pτ V
in the early time evolution of the perturbation, except at very small times, when
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FIGURE 9. (Colour online) (a) Time evolution of the energy E (red), production PV (blue),
Reynolds stress production Pτ V (cyan), and dissipation DV (green). (b) Trajectories in the
plane DV −PV of the production PV , Reynolds stress production Pτ V , and total production
PTotV = PV + Pτ V . The time interval between symbols is equal to 1t+ = 24.5.

the main production mechanism is the Orr mechanism (Orr 1907), as inferred by
analysing the time evolution of the optimal structures provided in § 3.2.2. This points
out the important role of the Reynolds stress in the dynamics of the perturbation. It is
noteworthy that this result is in agreement with the analysis of Jiménez (2015) who
estimates that the effect of the linear energy growth due to the Orr mechanism is
dominant for t= t+/Reτ < 0.15. In our case, tOrr ≈ 0.136 and Tout = T+out/Reτ = 1.694,
therefore, the linear limit is less than one-tenth of the target time. Figure 9(a) shows
that in the first part of the bursting event a strong linear growth can be observed
followed by a larger nonlinear growth till t+ = 2T+out. In particular, the contribution
of the Reynolds stresses increases till t+ ≈ T+out and becomes negligible for t+ > 2T+out.
In fact, the term Pτ V reaches its maximum approximately at the target time, when
the generation of the largest hairpin vortices is completed, and then it decays in
time, leading to the establishment of featureless turbulence. This behaviour can be
better observed in figure 9(b) providing the projection of the time evolution of the
perturbation onto a production–dissipation plane. Starting close to the origin, the
trajectory reaches the peak of the total production PV + Pτ V due to the successive
increase of Pτ V and PV , before starting to oscillate around the point PV ≈DV ≈ 0.35,
representing the turbulent self-sustained state.

In order to analyse the energy production and dissipation mechanisms, we evaluate
the energy exchange in the wall-normal direction by expressing the Reynolds–Orr
equation using the Cartesian notation (Jiménez 1999):(

∂t +Uj∂j − 1
Re
∇2

)
ũiũi

2
+ ∂j

(
ũj

(
p̃+ ũiũi

2

))
=−ũiũj∂jUi − 1

Re
(∂jũi)

2 + ũi∂jτij.

(3.2)
Integrating this equation in the streamwise and spanwise direction, we obtain an
equation for the wall-normal transport of energy, allowing one to identify the last
term on the left-hand side as the wall-normal energy flux, Φ= ṽ[p̃+ (ũ2+ ṽ2+ w̃2)/2],
and the first two terms on the right-hand side as the production and dissipation terms
(whose integral counterparts are denoted as Px,z and Dx,z, respectively). The net
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FIGURE 10. (Colour online) (a) Time evolution of the net local energy production, given
by the difference between the production and dissipation at each y+ (shaded contours),
and of the wall-normal energy flux (isolines for Φ+ = 1, 2, 3, 4, from the outermost to
the innermost contour) for the outer optimal structure. (b) Net local energy production
(red dashed line) and wall-normal flux (black solid line) versus y+, extracted at t+= 2T+out,
showing a production peak in the inner zone (y+ ≈ 20), whereas the outer region is
characterized by a weak dissipation.

energy production at a given y+-constant plane, provided by the difference Px,z−Dx,z,
is plotted versus time in figure 10(a) (shaded contours). As found for fully developed
turbulent flows at comparable values of Reτ (Jiménez 1999), the net production of
turbulent energy (red contours) is well localized at the inner scale (y+ ≈ 20) and
extends to the outer layer for times smaller than the target time indicating that both
inner and outer structures contribute to the perturbation energy increase. The isolines
for positive wall-normal energy flux (Φ+ = 1, 2, 3, 4) are provided in figure 10(a),
clearly indicating an outward flux of energy towards the centre of the channel for
t+≈ T+out, corresponding to the formation of the hairpin vortex. Whereas, at the centre
of the channel, dissipation is found to exceed production, and the flux continuously
decreases becoming slightly negative, as one can observe in figure 10(b), showing the
excess of local energy production and the wall-normal flux extracted at t+=2T+out. This
indicates the presence of a coherent inverse-cascade process (Jiménez 1999) typical
of moderate values of Reτ , in which energy is transferred from the inner scales at
the wall, i.e. the streaks, to large-scale dissipating structures in the outer layer, the
hairpin vortices. Notice that at the considered value of Reτ , when fully turbulent flow
is achieved, no energy production is observed far from the wall, whereas at larger
values of Reτ a (weaker) production peak is observed also at the outer scale (see
Lee & Moser 2015). The large-scale dissipating hairpin structures will eventually
breakdown, transferring the energy to incoherent small-scale fluctuations, closing the
loop. This wall-normal energy transfer occurring in a short time is thus linked to the
occurrence of a transient energy peak which appears in the form of a rapid ejection
(positive wall-normal velocity ṽ) followed by a longer sweep (negative ṽ), similar to
a typical bursting event.

3.2.2. Analysis of the flow structures
To further characterize the dynamics of the outer nonlinear optimal perturbation,

we analyse its time evolution. Figure 11 provides 10 snapshots of the perturbation
(Q-criterion isosurfaces, coloured by the wall-normal distance), from t+ = 0 to
t+ = 431. The initial perturbation is localized in the three space directions and
is composed of two packets of thin counter-rotating vortices showing a spanwise
symmetry, placed at y+ ≈ 20 (as indicated by the colours in figure 11a). Even if the
optimization is based on the outer time scale, the core of the vortical structures
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FIGURE 11. (Colour online) Snapshots of the time evolution of the outer optimal
structures: isosurfaces of Q-criterion coloured by the wall-normal distance y+.

at initial time appears to be in the inner region, the main part of the energy
of the spanwise and wall-normal velocity being located at y+ ≈ 10–40 (whereas
at t+ = T+out the energy peak is at y+ > 36 or y > 0.2, as provided in table 1).
Whereas, the streamwise velocity perturbation is located far away from the wall
at y+ ≈ 60 (at t+ = 0). In figure 11(b) one can observe the typical downstream
tilting due to the Orr mechanism (Orr 1907). This initial phase of the energy growth
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FIGURE 12. (Colour online) (Left) Sketch of the main steps of the dynamics of the outer
optimal perturbation based on the snapshots (right) extracted at (a) t+ = 49, (b) t+ = 123,
(c) t+ = 147.5, (d) t+ = 294, (e) t+ = 172, 196.5, ( f ) t+ = 221. Isosurfaces of negative
streamwise velocity (green) and Q-criterion coloured by the values of streamwise vorticity
(blue for positive, red for negative).

agrees with the linear analysis of Jiménez (2015) who demonstrates that for very
short times (t = t+/Reτ < 0.15) the energy growth due to the Orr mechanism is
dominant. Following the evolution of the perturbation, we can notice that the vortices
tend to be lifted up from the wall towards the centre of the channel, developing
structures of increasing size in an inverse cascade from small to large scales
(Jiménez 1999). Concerning the vortical dynamics, one can observe the formation
of new vortices aligned with the initial ones along modulated streamwise streaks
(see figure 11c,d). These vortices are lifted in the wall-normal direction, creating
symmetric or non-symmetric arches on top of the negative streaks at the wall (Wang,
Huang & Xu 2015), as one can observe in figure 11(d,e). Once the small-scale
hairpin and cane vortices have been created, some of them further grow and lift in
the outer region, merging with the nearest vortices in large-scale symmetric hairpin
vortices whose head is placed between two streamwise streaks at the wall (Adrian,
Balachandar & Lin 2001), as shown in figure 11( f,g), generating a new weaker
large-scale negative streak between the hairpin legs. Once the structures have reached
their maximum spatial growth, corresponding approximately to the energy peak in
figure 9(a), the structures begin to break down, starting an energy cascade from the
large scales towards the small ones, closing the loop (figure 11h,i,j).

Figure 12 summarizes the main steps of the time evolution of the outer optimal
perturbation: we conjecture it is representative of a bursting event which transfers
the energy from small- to large-scale structures, and then back towards small-
scale perturbations. The left panel provides a sketch of the main steps of the
evolution shown by seven successive snapshots on the right panel, for t+ =
49, 123, 147.5, 172, 196.5, 221, 294, respectively. An initial perturbation leading
to a bursting event is originated by two flanking pairs of small counter-rotating
vortices (red and blue isosurfaces at the bottom left angle of both panels), which
are the first elements of the wall self-sustained cycle (Waleffe 1997). These vortices
initially increase their energy by the Orr mechanism and then generate low-speed
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streaks by the lift-up mechanism (Landahl 1980) (green isosurfaces, step (b)). These
streaks increase their amplitude, and exhibit secondary sinuous or varicose instability
(Andersson et al. 2001). As a result, the initial streamwise vortices bend over the
streak at the point where the instability is triggered, forming arch-shaped structures
(Schoppa & Hussain 2002; Wang et al. 2015) (step c). Being very close to each other
and continuously lifting in the wall-normal direction, two of these non-symmetric
arch-shaped vortical structures merge together, generating a large symmetric hairpin
structure (blue and red isosurfaces, step d). This large-scale hairpin vortex increases
in size up to the centreline of the channel and then begins to break down dissipating
the energy; instead, the non-symmetric small-scale vortices on top of the streaks may
induce inflectional instabilities on the instantaneous velocity profile. In particular,
strong low-speed streaks may induce an inflection point in the x–y plane, triggering
a Kelvin–Helmholtz-type instability producing spanwise vorticity, such as the arch of
the hairpin vortices, but also inflection points in the x–z plane, producing wall-normal
vorticity (Heist, Hanratty & Na 2000). The tilting of the wall-normal vorticity by the
mean velocity profile induces streamwise vortices of opposite sign with respect to
the initial one (step e), as discussed by Heist et al. (2000). This new counter-rotating
vortex flanks the initial one, being able to create a new low-speed streak by the lift-up
mechanism (step f ), and the loop can restart again from the small-scale structures
towards the large-scale ones. Concerning the time scales typical of this loop, the
complete formation of the small arch vortices participating to the self-sustained
cycle takes approximately 1t+ ≈ 150 time units (see figure 11c–i) as in Wang et al.
(2015), whereas the complete formation of the train of large-scale hairpin vortices
takes approximately 1t+ ≈ 300 time units, which corresponds approximately to the
target time T+, similarly to the observations of Zhou et al. (1999) where the hairpin
packets have spacing approximately equal to λ+x ≈ 450 (see figure 3). Notice that
the self-sustained cycle mainly involves streaks and vortices close to the wall, but it
transiently induces large-scale hairpin vortices as a by-product of its evolution. These
large vortical structures have the role of realizing an inverse energy cascade reaching
the outer scale and dissipating the stored energy towards smaller scales, allowing a
new wall cycle to be established. It appears thus that the large-scale hairpin vortices
observed in the nonlinear optimal disturbance do not directly participate into the
self-sustained cycle, but they are transient dynamical features which ensure the
occurrence of energy peaks and subsequent dissipation typical of bursting events.

4. Conclusion

It is known that, behind its chaotic dynamics, turbulent flow is populated by
coherent structures, i.e. flow motions highly correlated over both space and time,
carrying a large part of the flow momentum. In the present study, for the first time,
a recently developed nonlinear optimization technique based on Lagrange multipliers
is employed to unravel the dynamics of such structures.

In particular, a nonlinear transient growth analysis has been performed to study
which kind of coherent structures are able to trigger rapid events with a strong energy
growth, similar to bursting events, in a canonical wall-bounded turbulent flow such
as the channel flow. The optimization procedure, focusing on the dynamics of finite-
amplitude disturbances, provides different nonlinear optimal structures depending on
the chosen time scale for the energy growth.

For an inner time scale, corresponding approximately to one eddy turnover time
evaluated in the buffer layer at y+ = 19 (the superscript + indicating variables
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expressed in inner units), nonlinear optimal structures consist of highly modulated
streaks having a typical spanwise spacing λ+z ≈ 113, surrounded by positive and
negative streamwise vortices, with a spanwise spacing λ+z ≈ 56. These nonlinear
optimal structures, localized in space in a spot-like fashion, well represent the
self-sustained cycle of turbulence at the wall: linearly growing streaks saturate and
oscillate due to secondary instability, regenerating new localized quasi-streamwise
vortices by nonlinear coupling.

For the outer time scale, corresponding approximately to one eddy turnover
time at the centreline of the channel, a much more complex optimal structure
is observed, mostly composed of packets of hairpin vortices on top of highly
oscillating streamwise streaks. In particular, strong vortical and streaky structures
are observed at different spatial scales, ranging from the wall to the outer layer.
The probability density function of the velocity disturbance characterizing such an
outer optimal is concentrated in the second and fourth quadrants of the streamwise
versus wall-normal velocity plane. This indicates the prevalence of ejection and
sweep events, as happens in a strong bursting event. Moreover, we show that the
outer most energetic structure well describes the wavenumber spectrum, the vortical
topology, and the production–dissipation wall-normal distribution typical of turbulent
flows at moderate Reynolds numbers. Whereas, the inner optimal structure includes
only a small portion of the broadband range of wavenumbers and vortical topologies
found at different wall-normal positions by a direct numerical simulations of the fully
turbulent flow. The analysis of the distribution of the most energetic wavelengths in
the wall-normal direction for the inner and outer optimal disturbances shows that
the optimal structures computed here scale in size accordingly to the attached eddy
theory of Townsend (1980). In particular, the spatial scaling laws extracted on the
basis of the inner and outer energy peaks reproduce well the scalings found in fully
turbulent flows.

Finally, a careful analysis of the time evolution of the optimal flow structures
has been performed, providing the dynamics of the initial perturbations leading to a
bursting event. An optimal bursting event is originated by two flanking pairs of small
counter-rotating vortices at the wall, the basic elements of the wall self-sustained
cycle; due to the Orr and lift-up mechanisms, these vortices are able to generate
strong low-speed streaks, which exhibit secondary sinuous or varicose instability; as
a result, the initial streamwise vortices bend over the streak at the point where the
instability is triggered, forming arch-shaped structures which lift in the wall-normal
direction and merge together, generating large symmetric hairpin structures; the
large-scale hairpin vortices increase in size up to the centreline of the channel and
then breakdown dissipating the energy; instead, the small-scale vortices on top of
the wall streaks are bent and tilted by the mean flow, leading back to the creation
of a pair of streamwise vortices, restarting the cycle. Thus, the self-sustained cycle
at the wall appears to be the main source of energy of the bursting event, which
transiently induces large-scale hairpin vortices as a by-product; these large vortical
structures have the role of realizing an inverse energy cascade reaching the outer
scale and eventually dissipating the stored energy towards smaller scales, allowing
a new wall cycle to develop. This implies that hairpin vortices, even if inherently
transient coherent structures (see Eitel-Amor et al. 2015), are robust features of
turbulent channel flows, at least at moderate friction Reynolds numbers, arising as
a result of a strong nonlinear instability that repeats in time as a by-product of the
self-sustained wall cycle.

These results show that, despite the main source of turbulent energy being located
close to the wall and sustained by the wall cycle (Waleffe 1997), for moderate values
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of Reτ the turbulent motion is characterized by a complex energy transfer which
involves inner and outer scales.

In conclusion, this study provides an explanation for the recurrence of energy bursts
revealing that they correspond to optimal energy flow structures embedded in the fully
turbulent flow. These optimal structures reproduce well the spatial spectra as well as
the probability density function of the velocity typically measured in turbulent flows,
recovering the mechanism of direct-inverse energy cascade. These results represent an
important step towards understanding the dynamics of turbulence and paves the way
to new nonlinear techniques to manipulate and control the self-sustained turbulence
dynamics. A further challenge will be to extend this analysis to larger values of Reτ ,
for which a clear scale separation is observed in the spatial spectra and a second
peak of energy production exists at the outer scale. This will allow to model the
inner–outer interaction under different operating conditions, aiming at understanding
the universal mechanisms underlying the turbulent coherent motion. Moreover, further
work will aim at exploring the optimal dynamics of coherent structures for other types
of turbulent flows such as the boundary-layer flow.

Acknowledgements
This work was granted access to HPC resources of IDRIS under allocation

x20162a6362 made by GENCI (Grand Equipement National de Calcul Intensif). The
authors would like to thank J.-C. Loiseau for his contribution to the implementation
of the optimization algorithm in the code Nek5000 and the anonymous referees for
their valuable suggestions. The authors also wish to acknowledge the computational
resources of the PrInCE project (grant PONa3-00372–CUP D91D11000100007) at
Politecnico di Bari.

Appendix
In order to derive the equations governing the dynamics of perturbations of the

mean turbulent velocity profile in a plane channel flow, we employ a Reynolds
decomposition approach similar to that used by Eitel-Amor et al. (2015). The
instantaneous flow vector q = [u, p]T, where u is the velocity vector and p is
the pressure, is decomposed into a mean flow component Q = [U, 0, 0, P]T and a
disturbance q̃= [ũ, ṽ, w̃, p̃]T:

q(x, y, z, t)=Q(y)+ q̃(x, y, z, t). (A 1)

Injecting this decomposition in the NS equations and averaging over a long time, the
following Reynolds-averaged NS equations are obtained:

U · ∇U=−∇P+ 1
Re
1U−∇ · ũũ, (A 2)

• denoting long-time averaging. Subtracting the time-averaged equations (A 2) from
the NS equations provides the following final formulation for the dynamics of the
disturbances:

∂ũ
∂t
+ ũ · ∇ũ+U · ∇ũ+ ũ · ∇U=−∇p̃+ 1

Re
1ũ+∇ · ũũ,

∇ · ũ= 0,

 (A 3)
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FIGURE 13. (Colour online) (a) Mean velocity profile U+ versus the wall-normal
coordinate y+ (blue thick lines) obtained by the present DNS (solid) compared with the
results of Kim et al. (1987) (dashed). The black thin lines are the linear (solid) and
logarithmic (dashed) profiles. (b) Root-mean-square of ũ (red), ṽ (blue), w̃ (green) and
Reynolds shear stress ũṽ (black) normalized by the wall shear velocity, versus y+ obtained
by the present DNS (solid) compared with the results of Kim et al. (1987) (dashed).

where Re=Uch/ν, Uc indicating the steady centreline velocity magnitude in the plane
channel. The last term of the momentum equation is the divergence of the Reynolds
stress tensor τ = ũũ forcing the mean turbulent velocity profile (see (A 2)).

This term appears when the perturbative formulation employs a base flow U
which is not a solution of the steady Navier–Stokes equations. Reynolds stresses
need to be known or modelled for closing the governing equations: in this work
we compute them a priori by a DNS of the fully developed turbulent flow. For
this purpose, firstly, the mean flow velocity U is computed by DNS averaging the
instantaneous velocity over a long time interval and over the two homogeneous
directions, obtaining the velocity profile shown in figure 13(a) (solid thick line),
which is compared to the mean flow computed by Kim et al. (1987) (dashed thick
line). Then, subtracting the computed mean flow from the instantaneous velocity field,
we obtain the perturbation ũ, which contains both coherent and fluctuating parts of
the disturbances. The product ũũ is averaged in time and over the two homogeneous
directions. Figure 13(b) provides the root-mean-square of ũ, ṽ, w̃, as well as the
Reynolds shear stress ũṽ (solid lines) extracted from the DNS, showing an excellent
agreement with the same quantities computed by Kim et al. (1987) (dashed line).
Based on these data, we achieve a direct evaluation of the Reynolds stress tensor
τ = ũũ, whose divergence is shown in figure 14(a) (the three solid lines showing the
x, y and z components of ∇ · τ versus the wall-normal coordinate y+). The computed
Reynolds stress tensor is employed as a forcing term in (2.1) for the optimization
process, providing the inner and outer optimal perturbations. As a consistency check,
it is also worth verifying that the computed optimal perturbations satisfy the long-time
constraint implicitly imposed by forcing the NS equations with the Reynolds stress
tensor. In figure 14(b) one can observe the time evolution of the energy of ∇ · [ũũ],
ũ being the inner (green line) or the outer (red line) optimal perturbation, and [·]
denoting the spatial average in the y-constant planes. It appears that, after a short
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FIGURE 14. (Colour online) (a) Streamwise (red), wall-normal (blue) and spanwise
(green) components of the divergence of the Reynolds stress tensor τ versus y+ obtained
by the present DNS. (b) Energy of ∇ · [ũũ] (where [•] denotes the spatial average in
the y-constant planes) for the outer (red line) and inner (green line) optimal perturbations
versus time; the dashed line indicates the energy of ∇ · τ .

transient, the energy of this term oscillates around the energy of ∇ · τ , confirming
the consistency of the proposed approach.

It is noteworthy that these equations are not suitable for a linear stability analysis; in
fact, ũ cannot be considered infinitesimal, since it contains both the coherent (û) and
fluctuating (u′) part of the disturbances, the latter being non-zero in a turbulent flow.
Whereas, previous linear instability approaches such as those used by Pujals et al.
(2009), Cossu et al. (2009) and Hwang & Cossu (2010a) used a triple decomposition
approach (see Reynolds & Hussain 1972) where u=U+ û+ u′, optimizing only the
coherent part of the perturbation. However, the model used in these works cannot be
easily extended to a nonlinear framework, since it neglects the long-time average of
the nonlinear coherent perturbation term ûû, an hypothesis that cannot be extended to
the case of finite-amplitude perturbations, where this term should be large (see also
Viola et al. 2014).

Finally, it is worth pointing out that, using a triple decomposition approach, an
equation formally equivalent to (A 3) for the coherent part of the perturbation can be
derived under the assumption that the variance of the probability distribution of the
fluctuating part of the perturbation is small with respect to the Reynolds stress tensor
τ , so that the phase average of the fluctuating nonlinear term 〈u′u′〉 can be neglected.
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