
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/12098

To cite this version :

Cristovao SILVA, Nathalie KLEMENT - Solving a multi-periods job-shop scheduling problem using
a generic decision support tool - 2017

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/12098
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/12098

To cite this version :

Cristovao SILVA, Nathalie KLEMENT - Solving a multi-periods job-shop scheduling problem using
a generic decision support tool - 2017

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/12098
mailto:archiveouverte@ensam.eu


 Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Manufacturing 00 (2017) 000–000 

This copy has been created with permission of Elsevier and is reserved to FAIM2017 conference authors and participants. 

 

2351-9789 © 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 27th International Conference on Flexible Automation and Intelligent 

Manufacturing.  

27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 
27-30 June 2017, Modena, Italy 

Solving a multi-periods job-shop scheduling problem using a 

generic decision support tool 

Cristóvão Silva*
a
, Nathalie Klement

b
 

aCEMUC,  Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788, Coimbra, Portugal  
bLSIS CNR UMR 7296 (équipe INSM). École Nationale Supérieur des Arts et Métiers. 8, boulevard Louis XIV – 59046 Lille Cedex, France 

Abstract 

In this paper a generic and modular decision support tool developed to solve different planning, assignment or scheduling 

problems is presented. The utilization of this tool is illustrated by solving a real world multi-period job-shop scheduling problem 

proposed by a case study company which produces refrigerated foodservice equipment. The case study company problem and a 

list algorithm developed to integrate the proposed tool for this particular problem are presented. Preliminary results show that the 

proposed tool can be effectively used to solve the company problem. Besides the problem described in this paper, the proposed 

tool was used in the past to solve two other problems. Thus, it is demonstrated that the proposed tool can be easily adapted to 

several different planning or scheduling problems variants, overcoming the lack of flexibility generally associated to more 

problem-tailored methods proposed in the literature. 
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1. Introduction 

Research in scheduling theory has evolved over the past forty years and has been the subject of much significant 

literature with techniques ranging from unrefined dispatching rules to highly sophisticated branch and bound 

algorithms and bottleneck based heuristics [1]. Numerous scheduling problems arise in industry and while they are 

relatively simple in their formulation, they typically involve only sequencing and resource constraints, they remain 

extremely challenging to solve [2]. 

The various scheduling problem variants has been widely explored in the literature but most authors still propose 

highly problem-tailored methods that are not applicable to other scheduling variants. As referred in [1], no solution 

approach with a guaranteed performance has been developed so far. The same authors state that for most 

approximation methods there are instances for which they perform badly and it is not completely known under 

which circumstances a given procedure is likely to succeed or fail.  

In this paper a generic decision support tool which was developed to solve many different planning problems is 

presented. The proposed tool consists of a hybridization of a metaheuristic and a list algorithm. The metaheuristic 

can be used without any changes independently of the problem to be solved. The list algorithm must be adapted 

according to the studied problem. 

The described decision support tool was already tested with two different planning/scheduling problems: (1) an 

activities planning and resources assignment problem in a multi-place hospital context [3] and (2) a lot-sizing and 

scheduling problem with setups and due dates, for a plastic injection company [4]. In both cases good results were 

obtained with the proposed tool. 

The main objective of this paper is to explain how the proposed tool was adapted to solve a new problem 

encountered in a case study company which produces refrigerated foodservice equipment. This adaptation consists 

in using the base of the tool developed to the previous solved problems and only develop a list algorithm for the 

current specific problem. Thus, the intent is to demonstrate that the proposed approach is generic, in the sense that it 

can support the decision process for several different planning and scheduling problems with a minimum 

development work. 

The paper is organized as follow: Section 2 starts with a description of the case study company and the problem 

to be solved is characterized. Then, a brief literature review on job-shop scheduling which is the type of problem 

encountered in the case study company is presented. Section 3 describes the tool proposed to solve the case study 

company problem, focusing on the list algorithm developed for the specific production planning case considered in 

this paper. In section 4, based on results obtained using a test instance, the ability of the proposed tool to deal with 

the case study company planning problem is discussed. Finally, section 5 presents some conclusions. 

2. Problem description 

2.1. The case study company 

The case study company is a manufacturer of refrigerated foodservice equipment, like counters, cabinets, blast 

chillers, freezers and cold rooms. The products are mainly composed by an external structure, doors, shelves and a 

refrigeration unit. Some clients will buy company standard products, but the majority will demand a complete 

bespoke unit. Thus, equipment production will be made in small lots or they will be manufactured one of a kind. 

The company shop-floor is composed by two main departments: part production and assembly. The assembly 

department is composed by two assembly lines where the external structure, the doors and the refrigeration unit 

(produced in house) and the internal partition elements, like shelves, drawers and baskets (purchased from suppliers) 

are assembled to obtain the final product. In the part production department, cutting machines and punching systems 

are used to manufacture external structure and door components from stainless steel sheets. 

Based on customer firm orders, the company planner defines a production plan for the two assembly lines. A 

weekly demand file is generated to the part production department, containing the list of metallic parts required to 

feed the assembly lines, see Table 1 for an example. 

Thus, the weekly demand for parts required to feed the assembly lines represents a list of jobs to be produced 

containing the following information: 



 Cristóvão Silva1 and Nathalie Klement / Procedia Manufacturing 00 (2017) 000–000  

• The part to be produced; 

• Their priority: (a) the part must be produced by the required day, (b) the part can suffer a delay of a maximum of 

one day and (c) the part can suffer a delay of a maximum of two days; 

• The quantity to be produced each day of the week; 

The sequence of operations for each job, considering the machine and the tool used for each operation and the 

unit processing time in seconds. 

 

Table 1. Examples of DD assignment rules. 

       Operation 1 Operation 2 Operation 3 

Part Priority Mon. Tue. Wed. Thu. Fri. Mach. Tool PT Mach. Tool PT Mach. Tool PT 

xxx a  6    M1 T11 46       

yyy b 2  7 5  M2 T22 3 M3 T32 2 M4 T43 43 

zzz c  18 20 16 32 M1 T11 9 M4 T42 7    

… … … … … … … … … … … … … … … … 

 

The scheduling problem present in the case study company part production department can, thus, be described as 

follow. Each component has to follow a processing sequence to be produced and each operation in this sequence 

requires a given set of resources (machine and tool). The planning horizon is a week which is divided in five periods 

of one day of 8 working hours. To satisfy the demand from the assembly line, a set of different lots of components is 

to be produced in each day of the planning horizon. Thus, the problem consists in defining the execution of a set of 

N jobs which have to be processed on a set of M machines. Each job is defined by a sequence of operations that are 

associated with a particular pair machine/tool. Each operation has a processing time and there is a setup time 

between the processing of two consecutive operations which is sequence dependent. Each job is to be produced in a 

required period (day). A penalty function, composed by two parts, is considered: (1) a storage cost (earliness) if the 

job is produced in a period prior to the requested one, (2) a tardiness cost if the job is produced in a period after the 

requested one. The objective is to define the operations sequence in each machine in order to minimize the total 

penalty. 

The part production department is composed by 6 cutting/punching machines. The number of operations per job 

varies between one and three. Each operation of a job requires a pair machine/tool to be produced. The tools are not 

shared among different machines, i.e., each machine has its own set of tools. Table 2 presents an example of the 

setup times (in seconds) required in a given machine when producing two consecutive jobs. 

 

          Table 2. ANN based DD assignment rule input data set. 

Machine M1 T11 T12 T13 T14 

T11 72 360 300 300 

T12 360 72 300 300 

T13 300 300 30 240 

T14 300 300 240 30 

 

From Table 2 it is possible to observe two important characteristics of the studied problem. (1) there is always a 

setup time when changing from one operation of a job to a different one, even if they share the same tool and (2) 

The setup times are quite large when compared with the processing times. 

2.2. Literature review 

The problem described in the previous section can be classified as a multi-period job-shop scheduling. The multi-

period job-shop scheduling problem consists in T job-shop scheduling problems which must be solved consecutively 
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trying to access to a makespan less than the available capacity of each period of a given planning horizon. The 

multi-period job-shop scheduling problem is close to the integration of lot sizing and scheduling problems 

formulated by [5]. The job-shop scheduling problem (JSSP) is considered as a particular hard combinatorial 

optimization problem [6]. JSSP has been extensively researched over the last decades since it has several practical 

applications. Nevertheless, to the best of our knowledge, the only multi-period job-shop scheduling problem with 

characteristics (objective and constraints) similar to the one presented in this paper is the one presented in [5]. 

A broad classification of JSSP techniques is presented in [1]. The classification proposed by the authors divides 

the JSSP techniques in two main groups: approximation and optimization techniques. 

Optimization techniques are essentially based on Branch and Bound algorithms, see for example [6, 7], or 

Mathematical optimization based techniques, like linear or mixed integer programming, see for example [8]. Due to 

the complexity of the JSSP, the use of optimization techniques has been limited to small size problems [9].  

Approximation based techniques were also used to solve the JSSP. These techniques can be divided in two 

classes: dispatching rules and heuristics, and general algorithms like local search meta-heuristics [10], genetic 

algorithms [11] or, more recently, artificial neural networks [12]. 

Since JSSP is a hard combinatorial optimization problem, the multi-period JSSP which implies solving 

consecutively a set of JSSP is even more challenging. In [1] an interesting discussion about techniques used to solve 

the JSSP is presented. The main conclusions from this paper can be summarized as follow. Optimal procedures have 

generally appeared to be unsuitable for the JSSP and most researchers have turned their attention to approximation 

techniques. Priority Dispatching rules are very popular due to their ease of implementation and their small 

computational requirements. Nevertheless, they are outperformed by other techniques and, thus, they are usually 

used as an initial solution technique rather than a complete JSSP solution approach. Artificial Intelligence technique, 

like Neural Networks, are only suitable for small instances because they require excessive computing time. Local 

search methods and meta-heuristics have shown to be the most appropriate approximation techniques especially as 

problem dimensionality increases. no solution approach with a guaranteed performance has been developed so far 

and more flexible/generic approaches are required. 

3. The proposed tool 

3.1. concept 

The tool proposed in this paper uses a hybridization of a metaheuristic and of a list algorithm. The principle of 

the method is given in Figure 1. 

The encoding used by the metaheuristic is a list Y of jobs. In this project a single solution based metaheuristic, 

the stochastic descent, is used and, therefore, the neighbourhood system is a permutation of jobs. The list algorithm 

considers the jobs in the list order to schedule and assign them to the required resource, according to the different 

constraints. This builds the solution X. The objective function H evaluates the solution X. According to this 

evaluation, the solution is chosen or not by the metaheuristic. At the end of the running, the solution given by the 

hybridization is the best list of jobs: the one which optimizes the objective function by applying the list algorithm. 

 

 

Fig. 1. Hybridization metaheuristic – list algorithm 
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3.2. The proposed tool: Metaheuristic 

In this project a single solution based metaheuristic, the stochastic descent, was chosen. The stochastic descent is 

one of the oldest metaheuristic. Its principle is to compute a solution Y′ which is a neighbor of the current solution Y, 

according to the neighborhood system V. After having applied the list algorithm L, X = L(Y), if the value of the 

objective function H(X’) is lower or equal to H(X) then the solution X’ so the list Y’ is accepted. The stochastic 

descent converges to a local minimum. This metaheuristic was chosen because it was already implemented in 

previous projects made by the authors and due to it easiness of application, thus, speeding up the tool development 

process. The objective was to be able to rapidly obtain results to evaluate the ability of the proposed tool to solve the 

case study company scheduling problem. The encoding of more efficient metaheuristics is envisaged as a 

development of the current project presented in this paper. 

3.1. The proposed tool: List algorithm 

List scheduling algorithms are one-pass heuristics that are widely used to prescribe schedules. The standard list 

scheduling algorithm constructs a schedule by assigning each job in listed order to the first machine that becomes 

idle [13]. It is important to work with a list algorithm, because the metaheuristic browses the set of solutions by 

using a neighborhood system which is a permutation between two items in a list. So the used algorithm needs to 

consider the order of the list to assign jobs to machines and dates. 

The list algorithm developed for the case study company problem is composed by two steps presented below in 

the form of pseudo code. It is important to note that the list of jobs/parts considered by the proposed algorithm is 

similar to the one presented in Table 1. 

 

First step: 

 

For all jobs in the list 

 For all operations of the selected job (j) 
  Assign the selected operation (i) to the required machine (m) and production day (d) 

  If operation i is the first one of job j 
Start time of operation 1 of job j = release date of machine m for day d 

Finish time of operation 1 of job j = start time of operation 1 of job j + processing time of 

operation 1 of job j + setup time 

Release date of machine m = finish time of operation 1 of job j 
  Else 

Start time of operation i of job j = Max[release date of the machine m for day d; finish 

time of operation i-1 of job j] 
Finish time of operation i of job j = start time of operation i of job j + processing time of 

operation i of job j + setup time 
Release date of machine m = finish time of operation i of job j 

 

It is possible to observe that in this first step the algorithm ignores the capacity constraints. All jobs are assigned 

to the required machine in the day they are expected to be concluded. To solve this problem and repair the schedule 

to respect capacity constraints, after the first step, the algorithm run a second step described below. 

 

Second step: 

 

For all days 

 For all machines 

  While capacity of machine m on day d is violated 

  Identify operation i from job j which leads to the capacity violation 

   For operation 1 to i 
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    For day d-1 to day 1 

     If capacity on selected day is available to process selected operation 

      Move operation to selected day 

      Update schedule of selected day and of day d 
   For operation i to last operation of job j 
    For day d+1 to day 6 

If capacity on selected day is available to process selected operation 

Move operation to selected day 

Update schedule of selected day 

Update schedule of day d 
 

Note that when checking available capacity in a given machine for given day to move a given operation, the 

algorithm considers, not only if the required capacity is available, but also if it can be used by the moving operation 

while respecting precedence constraints. 

In Figure 2 an example of the second step of the proposed list algorithm is presented. After the first step of the 

algorithm, the schedule presented in Figure 2 (a) was obtained. This schedule represents several jobs (in gray scale) 

for which operations can be processed within the capacity limit. Operations 2 and 3 of job j, represented in white, 

violate the capacity constraint for day 3. 

 
 

 

Fig. 2. Example of the application of step 2 from the list algorithm 

Operation 1 of job j, processed in machine 1, can be moved to day 2 where machine 1 has available capacity. 

This move leads to the schedule represented in Figure 2 (b). After this move, the problem associated to operation 2 

of job j is solved, but operation 3 continues to violate the capacity limit. Thus, operation 3 of job j is moved to day 4 

where there is available capacity in machine 3 to process it. 

It is important to note that the algorithm considers a 6 periods planning horizon, but the real planning horizon is 

composed only by 5 periods. Jobs with operations assigned to period 6 will be considered as not produced and will 

be highly penalized. 

The objective function considered for the problem consists in minimizing the total penalty which considers three 

parcels: 

• Tardiness: priority index x nº of job units x nº of days delayed; 

• Earliness: 0,5 x nº of job units x nº of days anticipated; 

• Unproduced jobs: 15 x  nº of job units 
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The priority index is considered equal to 3 to jobs with priority (a); 2 for jobs with priority (b) and 1 for jobs with 

priority (c). As an example, a job with priority (a), representing the production of 5 units of a given part and that is 

delayed two days, will contribute to the objective function with a penalty of 30 units. 

4. Results  

As referred previously, the objective of this work was to adapt and test a generic decision support tool to a new 

problem, a multi-period job-shop scheduling problem proposed by a case study company. Historical company 

production data show that the weekly production scheduling problem faced by the company, as described in section 

2, considers, on average, 300 orders and a total of approximately 450 operations. To avoid unnecessary complexity 

during the development and test of the tool it was decided to generate a smaller instance. 

The instance generated considers 49 jobs, each one having a number of operations ranging between 1 and 3, 

which can be processed in one of the 6 machines that compose the shop-floor.  The total number of operations to be 

processed is 73. Jobs and their respective operations characteristics were generated, taking into account real data 

from the case study company. Since the generated instance is smaller than the real company problem the capacity 

limit for each period was adjusted. The capacity limit was considered constant for the five considered periods and 

was fixed to 5760 seconds. This value was chosen after some pre-test runs of the tool, and it guaranties that there is 

at least one solution where all the jobs may be processed within the five available periods, i.e., no operation is 

delayed until period 6. On the other hand, it is sufficiently tight to guaranty that most lists of jobs generated by the 

metaheuristic permutation process will lead to a solution where one or more operations are delayed until period 6. 

Results obtained by the tool are presented in the form of a list of jobs/operations to process each day of the week, 

indicating: the job number, the operation number, the machine where it will be processed, the tool to be used, the 

start time and the finish time of each operation of the jobs. In this list, anticipated operations (produced before the 

job required day) or delayed (produced after the required day) are highlighted. 

To solve the test instance problem, we run the proposed tool for 1 000 iterations. Results are obtained in less than 

10 minutes. The test was repeated 5 times. Results obtained for each test are presented in Table 3. For all the 

solutions all jobs are processed within the five days planning horizon. The total penalty obtained is on average 210 

units, the number of anticipated operations (5 for the worst case) or delayed operations (3 for the worst case) is low. 

The solution obtained for each iteration was registered. Figure 3 shows the evolution of the solutions obtained for 

the first 500 iterations obtained for test 1. It can be seen that more than 97% of the solutions, all the ones with a 

penalty higher than 250, are not feasible, i.e., they have operations delayed until period 6. This confirm that the 

capacity limit is tight and that the number of feasible solutions is low. Since the tool is always able to find a feasible 

solution it can be concluded that it can be effectively used to solve the problem proposed by the case study 

company. 

 

              Table 3. Results obtained for the considered instance. 

Test Penalty Nº of anticipated operations Nº of delayed operations 

1 207 4 2 

2 214 2 1 

3 211 5 1 

4 203,5 3 3 

5 209,5 3 2 
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Fig. 3. Solutions obtained during the iterative process. 

5. Conclusion 

In this paper a generic decision support tool which can be used to solve several different problems was presented. 

The proposed tool is composed by a generic module, which can be reused for several different problems, and by a 

specific module, consisting on a list algorithm, which must be specified for each problem. The application of this 

tool is illustrated in this paper with a real world multi-period job-shop scheduling problem proposed by a case study 

company. 

In the recent past the proposed tool has been used to solve two different problems: an activities planning and 

resources assignment in a multi-place hospital [1] and a lot-sizing and scheduling problem with setup and due dates, 

for the plastic injection case [2]. The new problem, presented in this paper, solved by the proposed tool shows its 

ability to deal with several different problems. The development work needed to adapt the tool to new problems is 

minimal since the generic part of the tool can be reused. While highly problem tailored-methods might be 

particularly adequate to achieve good performance, they are difficult to adapt to different planning/scheduling 

problems. The approach followed by the tool presented in this paper have the advantage of being more generic, 

allowing to easily adapt it to a large set of planning/scheduling problem variants, without losing sight of the 

performance. 
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