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Abstract -- In this paper, proper orthogonal decomposition 

method is employed to build a reduced-order model from a 

high-order nonlinear permanent magnet synchronous machine 

model with multiple inputs. Three parameters are selected as 

the multiple inputs of the machine. These parameters are 

terminal current, angle of the terminal current, and rotation 

angle. To produce the lower-rank system, snapshots or 

instantaneous system states are projected onto a set of 

orthonormal basis functions with small dimension. The reduced 

model is then validated by comparing the vector potential, flux 

density distribution, and torque results of the original model, 

which indicates the capability of using the proper orthogonal 

decomposition method in the multi-variable input problems. 

The developed methodology can be used for fast simulations of 

the machine. 

 
Index Terms--Electrical machines, Finite element methods, 

Interior permanent magnet machine, Model order reduction, 

Proper orthogonal decomposition. 

I.   INTRODUCTION 

HE finite-element (FE) method (FEM) is a beneficial 

and powerful numerical tool in analyzing static or 

dynamical systems. However, the numerical simulations 

of real-life problems may face difficulties in design 

optimization and control due to the complexity of the system, 

computational high costs, and storage requirement [1]. In 

order to solve this problem, it is pertinent to use model order 

reduction (MOR) method such as proper orthogonal 

decomposition (POD), as one of the most common methods 

[2]. In this paper, the POD method has been employed to 

reduce the order of a nonlinear permanent magnet 

synchronous (PMS) machine with 3 inputs. 

POD, also known as Karhunen-Loeve decomposition, 

principal components analysis, or the empirical 

eigenfunctions method, was originally developed in the field 

of structural dynamics [3]. However, nowadays, POD 

method has a wide range of application in various fields of 

engineering such as FE modelling [4], fault diagnosis [5], 

and modal analysis [6]. Moreover, this method is useful in 

reducing the order of both linear and nonlinear systems [7]-
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[10]. The key feature of POD method, as a projection 

method, is to achieve an optimal approximating subspace to 

a given set of data [11]. The choice of this data set indeed 

affects the reduced model results. Sirovich [12] introduced a 

convenient method, known as method of snapshots, to obtain 

this data set, or snapshots. The snapshots can be selected by 

solving the system via experiment or numerical simulation in 

time domain, frequency domain, or any other configuration. 

Therefore, the POD method is a data dependent method, 

which does not require a priori knowledge of the system 

behavior [13]. 

In this paper, we show that POD method can be used to 

study nonlinear electrical machines with multiple parameters. 

Three parameters are selected as the inputs of the machine: 

terminal current, angle of the terminal current, and rotation 

angle. The reduced model will be valid for any value of input 

into the parameter range. In Section II, we provide the basic 

required background of POD method and an application of 

this method in electrical machine. Section III is dedicated to 

the comparison of the original model and the approximated 

model obtained via the POD method. Finally, in Section IV, 

the conclusion of the work and the future research 

perspectives are presented [14].  

II.   PROPER ORTHOGONAL DECOMPOSITION 

A.   Numerical Concept of POD 

In this section, we provide a brief introduction (see [13] 

for a more detailed discussion) of using POD method to 

reduce the order of a nonlinear system with m degrees of 

freedom (DoF). Assume that this system is defined by the 

following partial differential equation over some domain of 

interest [8]  

( , , ,..., , )t x xx x tY Y Y YF         (1) 

where Y is a state vector, subscripts x and t define partial 

differentiation, and the function F(·) captures the space-

vector of system with predefined initial and boundary 

conditions. Furthermore, assume a scalar quantity y(x, t) to 

be a solution of the system, obtained by eigenfunction 

expansion techniques. 
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where the ϕn(x) is an orthogonal set of eigenfunctions and 

an(t) is the sequence of the configurations functions in 

association with the corresponding ( )n x . 

The basis functions ( )n x  can be generated by different 

methods such as Fourier series, Legendre polynomials, or 

Chebyshev polynomials. In this paper, however, the optimal 

POD basis functions (or POD modes) are built by 

implementing singular value decomposition (SVD) for a 

given data set or snapshots. To get the snapshots, let’s 

assume the mentioned system is solved at n exclusive times, 
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frequencies, or other configurations. These solutions are then 

stored in matrix Sn, called a snapshot matrix, with the size of 

(m×n) and rank of k. The SVD decomposes the snapshot 

matrix as 

 n *S UΣV           (3) 

where * stands for the transpose of a vector or matrix. The 

matrices U with the size of m×m and V with the size of n×n 

are orthonormal matrices containing the left-singular vectors 

and right-singular vectors, respectively. Σ  is a m×n 

rectangular diagonal matrix with singular values i  as the 

diagonal entries. The singular values are ordered in such a 

way that 1 2 ... 0    . According to [3], the POD modes 

are equal to the left-singular vectors of Sn. 

After obtaining the POD modes, the question is how many 

of these modes we should take into account to create a lower-

rank approximation of the snapshot matrix while accurately 

capturing the behavior of the system. The key to this 

question is the oriented energy distribution of the vector set 

of the matrix. The SVD of the snapshot matrix provides 

valuable information regarding this oriented energy 

distribution. The energy of a vector sequence equals to the 

energy in its singular spectrum 
2 2
1 ,..., p   (p=min(m, n)) and 

the whole energy of the system is the sum of the squares of 

all the singular values [3]. Therefore, the POD modes can be 

optimized with respect to energy content in a least squares 

sense. 

Considering the energy of each mode, one can determine 

the required number of modes (l, 1≤ l≤ k) by the following 

criterion to be less than a desired error ε [15] 
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where y is the unique solution to (1) and yr is the POD 

approximation of y, defined as 
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B.   Application of POD in Electrical Machine 

In this section we focus on the application of the POD in 

order reduction of the model of an electrical machine with 

multiple inputs. In this work, the FEM is used to simulate a 

2.2 kW interior magnet PMS machine. Second order 

elements are used for the simulation. Some of the machine 

characteristics and its FE mesh are presented in Table I and 

Fig. 1, respectively. 

 
TABLE I 

PARAMETERS OF THE MACHINE 

Parameter 

Power 2.2 kW 

Connection Delta 

Number of phases 3 

Rated current 4.143 A 

Rated voltage 370 V 

Rated frequency 75 Hz 

Number of pole pairs 3 

Number of stator slots 36 

Stator outer diameter 165 mm 

Stator inner diameter 104 mm 

Air gap 1 mm 

 

 

 
Fig. 1.  Computational domain (in cm) and FE mesh of the test machine. 

 

The behavior of the machine is defined in the 2-D cross 

section of the machine using the magnetic vector-potential 

formulation [16]. The iron losses are neglected and the non-

linearity of the iron is taken into account with nonlinear 

single valued material properties. By means of the Galerkin 

method, one can obtain the matrix format of the discretized 

magnetostatic field equation of the nonlinear machine in the 

form of [17] 

 ( ) S u u f           (6) 

where S is the sparse stiffness matrix of the system, u is the 

vector containing the potentials of the nodes, and f is the 

source vector. In order to solve the system equation (6) for 

any desired u, a Newton-Raphson iteration scheme is 

employed to deal with the nonlinearity of the equation. By 

defining the residual matrix r as r = Su – f, the Newton-

Raphson iteration can be written as in (7). The iteration starts 

from an initial value u0 and continues until the solution ui is 

obtained, under a certain convergence criterion [18]. 

1
1 1( )i i i


  u u J r u        (7) 

where J is the Jacobian matrix 
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i

i






S u
J

u
         (8) 

The aim of this paper is to apply the POD method to the 

model with multiple variables as input. We consider the 

magnitude of the terminal current (i), the angle of the 

terminal current (α), and the electrical rotation angle of the 

machine (θ) as three inputs of the machine. Therefore, (6) 

will be dependent on these three variables. 

To reduce the order of the model, vector u is 

approximated to a lower-rank vector ur, which is to say 

 ru Φu           (9) 

where the matrix Φ is constructed by the method of 

snapshots (as discussed in the previous section). To fulfill the 

purpose of this paper, the snapshot matrix is defined by 

varying the three defined inputs one at a time. The system is 

solved for 11 terminal currents equally distributed between 

zero and the rated current, and the current angle and the 

electrical rotation angle, each, vary from 0 to 180 electrical 

degrees with 10 degree angle step. The 3564 computed 

solutions are stored in the snapshot matrix Sn (1379×3564). 

Using any scientific software packages, such as MATLAB, 

one can easily compute the SVD of Sn. The energy (the 

square of singular values) of the first 100 POD modes are 

plotted in Fig. 2. According to this figure, the energy of the 



  

modes decay exponentially in spite of the nonlinearity of the 

machine. This is due to the fact that the first states contain 

most of the energy of the system [19]. 

 

 
Fig. 2.  The energy spectrum of the first 100 POD modes. 
 

Now we shall determine the required number of the left-

singular vectors to be considered as the POD modes. 

Looking at Fig. 2, it can be observed that the first four POD 

modes have the highest singular values and, therefore, most 

of the system energy. These POD modes are shown in Fig. 3. 

It is worth mentioning that the POD modes do not represent 

the original model, but their combination through a POD 

reconstruction provides the most energetic behavior of the 

system [20], [21]. Moreover, due to the data dependency of 

the POD method, it is not possible to provide a general 

physical interpretation of the POD modes, particularly in 

nonlinear systems [3].  

 

 
Fig. 3.  POD modes of the machine. 
 

The first four POD modes captures a considerable portion 

(about 93%) of the energy of the system. However, 

reconstructing the approximated POD model with only these 

POD modes will not results in a satisfying accuracy (This is 

shown in (Section IV. A)). This suggests that, in the case of a 

nonlinear system with multiple inputs, an additional 

condition is required to select the required number of POD 

modes than predicting this number merely by comparing the 

energy of the POD modes visually. Hence, the criterion 

mentioned in (4) is employed to select the required number 

of POD modes. The value of ε in this equation is chosen with 

respect to the desired accuracy between the original model 

and its approximation; indeed, the smaller the chosen value 

is, the more precise the POD model will be. In this work, for 

an accurate approximation, we set ε to 2×10-5. With this 

consideration, the required number of POD modes is 63. 

Finally, the approximated POD model can be written in 

the form of  

r r rS u f           (10) 

where Sr = Φ*S(Φur)Φ and f r = Φ*f. As mentioned before, 

S is a sparse matrix; whereas, Sr is a full matrix but it has a 

smaller size than S. Therefore, the rank of the POD model in 

(10) is much smaller than the rank of FE model in (6). Here 

also due to the nonlinearity of the system, the reduced system 

equation (10) is solved by applying Newton-Raphson method 

as following 

r r r 1 r
1 1( ) ( )i i i


  u u J r u        (11) 

where in the reduced case the residual (rr) and Jacobian Jr 

matrices would be 

r r r r r S u f         (12) 
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III.   RESULTS AND DISCUSSION 

In this section, the accuracy of the low-rank approximated 

POD model is examined by comparing the field results of the 

original model and the approximated model. The comparison 

is performed at two stages; first, for a local comparison, the 

two models are solved and compared at two randomly 

selected operation points and in the second stage, for an 

average error, the original model and approximated model 

are solved for 150 unique and randomly chosen input 

operation points and a global error formula is applied to 

compute the error of these results. The following sub-

sections present each of these two stages in details. 

A.   Local Error 

The approximated POD model is built in two different 

configurations. In the first configuration, the reduced model 

is reconstructed by taking into account the first 4 POD 

modes (according to the singular values), and in the second 

configuration, the first 63 POD modes (obtained from (4), ε 

= 2×10-5) are considered in building the reduced model. 

Thereafter, the original model and the POD approximation 

model are solved at two operation points, for each of these 

configurations. These two points are randomly chosen from 

the working interval of the PM machine and are assumed to 

be  

 Case 1: terminal current i = 1.3 A, angle of the 

terminal current α = 12.5 º, electrical rotation 

angle of the machine θ = 115º. 

 Case 2: terminal current i = 4.1 A, angle of the 

terminal current α = 35 º, electrical rotation 

angle of the machine θ = 150º. 

The accuracy of the POD reduced model is then examined 

by comparing the vector-potentials of the original model (u) 

with its low-rank approximation (Φur), for each case and 

configuration. The error δ between the vector-potential of the 

two models is measured by the following equation. 



  

Fig. 5.  Flux density distribution of Case 2 obtained from (a) original model, (b) POD approximated model, and (c) their difference 
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In the first configuration, in which the system is retained 

by only 4 POD modes, the percent error is 9.5 % for Case 1 

and 23.88 % for Case 2. However, in the second 

configuration, 63 POD modes are chosen to rebuild the 

system, the value of δ is 13×10-3 % for Case 1 and this error 

in Case 2 is 2.2×10-3 %. By comparing the figures from these 

two configurations, we can conclude that in predicting the 

required number of POD modes, a better accuracy is 

guaranteed when using (4). Therefore, we select the first 63 

left-singular vectors as the POD modes in the rest of the 

evaluations in this paper. 

Furthermore, the flux density distribution and the airgap 

torque of the original model and its approximation are 

computed. The results of flux density distribution of both 

models for Case 1 are shown in Fig. 4 (a), (b) and the results 

of Case 2 are shown in Fig. 5 (a), (b). Since the flux 

distribution of the original and POD models are highly 

similar and no vivid difference can be observed visually, the 

difference between the flux density distributions of two 

models are plotted in Fig. 4. (c) and Fig. 5. (c) for each case. 

According to Fig. 4. (c) and Fig. 5. (c), the maximum flux 

density difference between the original model and the low-

ranked approximated model is less than 100 mT for Case 1 

and less than 30 mT for Case 2, which indicate the accuracy 

of the approximated model. 

Fig. 6 presents the torque results of the original model and 

the POD approximated models. The torque is computed by 

considering the input current of 4.1 A, the current angle of 

25º, and varying the rotational angle from zero to 360 

electrical degree. The reason of choosing the mentioned 

value of input current and its angle is to compare the results 

of the reduced model at operating points, which are not 

included in the snapshot matrix. 

 

 

 

 
Fig. 4.  Flux density distribution of Case 1 obtained from (a) original model, (b) POD approximated model, and (c) their difference 



  

 
 
Fig. 6.  Air-gap torque computed by the original model and the reduced 
POD model at different angular positions of the rotor. 
 

The similarity between the torque results of the two 

models shows the POD model capability to approximate the 

original model. It should be noted that the snapshot matrix 

was selected for rotation angle from the interval [0, 180] 

degree. However, the torque results (Fig. 6) are plotted for 

the interval [0, 360]. This suggests that POD based models 

often have the ability of estimating the system outside of the 

interval where the snapshots are defined [8]. 

B.   Average Relative Error 

Previously, the original model and its approximation have 

been compared at specific input values. In order to test how 

well the reduced model can represent the original model at 

any desired input operation point, an average relative error is 

defined as [22] 

 

r
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0

1 N
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U U
E

N U


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where N is the number of input operating points. Ui and Ui
r 

are the output quantities associated with the i-th input, 

obtained from the original model and the POD approximated 

model, respectively.  

In this work, the average relative error is calculated for 

vector potentials results of the original model and its 

approximation. For this purpose the vector potential is 

solved for 150 different samples of the input operating points 

(N = 150). Each of these N samples are unique and randomly 

chosen from the working interval of the machine (i ϵ [0, 

4.14] A, α ϵ [0, 180] º, θ ϵ [0, 180] º). These samples are 

then substituted in (10) to obtain Eav-rel. The obtained error 

for the vector potential is 2.5 %. 

The two models are also compared in term of 

computational time. The average time required to solve the 

system equation is about 0.18 s for the original model and 

0.09 s for the POD approximated model, which implies the 

capability of POD in reducing the size and the computational 

time of a high order system. 

IV.   CONCLUSION 

The POD projection method, combined with the Galerkin 

method, is one of the most efficient methods in reducing the 

complexity and the computational costs of high-dimensional 

systems of equations. This work presented a successful 

attempt to implement the POD method to reduce the model 

order of a PMS machine with multiple inputs. The achieved 

accuracy of the vector potential, flux density distribution, 

and torque results of the POD reduced model is an indicator 

that the reduced model presents the original model well on 

all the operating range of the machine. This accuracy, 

however, depends on various factors such as the size and the 

selection of snapshot matrix or the number of POD modes. 

It is shown that the POD based model can predict the 

system even outside of the working domain where the 

snapshot matrix is defined. Moreover, comparing this work 

with [19], one can conclude that the number of input 

variables affects the size of snapshot matrix and the required 

POD modes. A system with more input variables requires a 

larger snapshot matrix as well as a greater number of POD 

modes. 

The main advantage of POD is reducing the size and the 

computational time of a high order model. POD can be 

performed in two stages, at offline and online operation. In 

the offline operation, the method of snapshots is applied to 

construct the POD reduced model; in the online operation, 

the output results of the system is estimated via POD model 

for any input of interest. This ability can be of great help in 

real-time control of electrical machine by decreasing the 

online-required computational time and memory allocation in 

the microcontrollers. Therefore, POD can be as a 

replacement to time-step analyses or applied to reduce the 

computational burden of real-time problems. The possibility 

of applying the method in analyzing the real-time system will 

be investigated in future papers. 
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