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Abstract

In this paper, a two scale Finite Element method (FE2), is presented to predict the non-linear

macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-

dependent response. The sensitivity to the strain rate requires an homogenization scheme to bridge

the scales between the macroscopic boundary conditions applied and the local evaluation of the

strain rate. In the present work, the effective response of composite materials where the matrix

has a local elasto-viscoplastic behavior with ductile damage are analyzed using periodic homog-

enization, solving simultaneously finite element problems at the microscopic scale (unit cell) and

at the macroscopic scale. This approach can integrate any kind of periodic microstructure with

any type of non-linear behavior for the constituents (without the consideration of non-linear geo-

metric effects), allowing to treat complex mechanisms that can occur in every phase and at their

interface. The numerical implementation of this simulation strategy has been performed with a

parallel computational technique in ABAQUS/Standard,with the implementation of a set of dedi-

cated scripts. The homogenization process is performed using a user-defined constitutive law that

solve a set full-field non-linear simulations of a Unit Cell and perform the necessary homoge-

nization of the mechanical quantities. The effectiveness of the method is demonstrated with three

examples of 3D composite structures with plastic or viscoplastic and ductile damage matrix. In

the first example, the numerical results obtained by this full field approach are compared with

a semi-analytical solution on elastoplastic multilayer composite structure. The second example

investigates the macroscopic response of a complex viscoplastic composite structure with ductile

damage and is compared with the mean field Mori-Tanaka method. Finally, 3D corner structure



consisting of periodically aligned short fibres composite is analysed under complex loading path.

These numerical simulations illustrate the capabilities of the FE2 strategy under non-linear regime.

when time dependent constitutive models describe the response of the constituents
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1. Introduction

Polymer based composite materials are considered to be a good technological solution for au-

tomotive and aeronautic industries, thanks to their structural durability and their lightness. A major

preoccupation of these industries is to predict the response of such structures with in-service load-

ings. This requires the development of predictive models that are able to capture the microstructure

impact on the mechanical response, and the proper identification of the mechanical properties of

the constituents. In this purpose, advanced modelling and simulation methods that integrate the

effect of the microstructure is an active area of research. According to the bibliography, several

numerical approaches have been proposed for the numerical simulation of the non-linear response

of polymer based composite structures including:

i) Phenomenological models, which predict the overall response of the composite materials

without taking into account the effect of the different constituents observed at the micro-

scopic scale. Several authors have proposed constitutive models that integrate various rhe-

ologies and deformation mechanisms, i.e. viscoelasticity [1, 2], viscoplasticity [3, 4, 5],

coupled viscoelasticity and viscoplasticity [6, 7], or even both coupled viscoelasticity, vis-

coplasticity and damage [8, 9, 10, 11];

ii) Multi-scale methods, that can be classified into two main categories: mean-field and full

field approaches. The mean-field approaches are used to describe the behavior of compos-

ites for certain categories of microstructures through the Mori-Tanaka Method [12, 13] or the

self-consistent scheme [14, 15, 16, 17]. These methodologies have been developed in order

to estimate the overall behavior of the composite using average stress and strain quantities

for each material phase [18, 19, 20]. These methods have been proved to be accurate for the

linear cases. However, for non-linear constitutive laws, especially when the matrix phase

exhibits a non-linear behavior, the response of these approaches is inaccurate. It is com-

monly observed in the literature that the response of the composite obtained by mean-field

methods appears to be stiffer than the reality especially when the matrix is ductile and the

reinforcements are stiffer [21, 22, 23]. The numerical simulation of these composite systems

has necessitated the development of full-field approaches. To determine the response of a



composite structure, accounting for the description of the microstructure, the so-called FE2

method, appear to be an adequate solution. The major benefit of the FE2 method is the ability

to analyse complex mechanical problems with heterogeneous phases that present a variety

of behavior at different scales. This idea was originally introduced by Feyel [24], then this

method was used and developed by several authors, for example [25, 26, 27, 28, 29, 30, 31].

The majority of these works consider two-dimensional structures, which if they provide

a good study case for the analysis of the capabilities of the method, is of limited interest

for practical use for the prediction of the overall response of heterogeneous materials and

composites, since the spatial arrangement of the phases is mostly three-dimensional.

In this paper, a two-level FE2 method, based on the concept of periodic homogenization under

the small strain assumption is implemented in a commercial FE code (ABAQUS/Standard). The

method predicts the 3D non-linear macroscopic behavior of a composite with periodic microstruc-

ture by considering that each macroscopic integration point is a material point where the charac-

teristics at the macroscopic scale are represented by its own unit cell, which includes the material

and geometrical characteristics of the constituents (fibre, matrix) in the microstructure. Therefore,

a multilevel finite element analysis has been developed using an implicit resolution scheme, with

the use of a Newton-Raphson algorithm to solve simultaneously the non-linear system of equa-

tions on the two scales (macroscopic and microscopic).

The main advantage of this methodology is that it can account for any type of non-linear behav-

ior of the constituents (plasticity, viscoelasticity, viscoplasticity and damage), as well as any type

of periodic microstructure. The proposed FE2 approach is implemented through a parallelization

technique, leading to a significant reduction of the computational time.

The layout of this paper is as follows: in section 2, the theoretical formulation of the homoge-

nization theory is described as well as the principle of scale transition between the local and the

global fields. The section also presents the rate dependent constitutive law considered for the ma-

trix phase. In section 3, details of the numerical implementation of the FE2 method is given for a

3D non-linear problem in ABAQUS/Standard with the parallel implementation. In section 4, the

approach is validated by comparing the FE2 results with semi-analytical method on 3D multilayer



composite structure. Afterwards, an example of 3D composite structure exhibiting non-uniform

strain fields, in which the microstructure consists of an elastoviscoplastic polymer matrix with

ductile damage, reinforced by short glass fibres is presented. The numerical results of the sim-

ulation are compared with the Mori-Tanaka method. Finally, the capabilities of this method are

shown by simulating the mechanical response of a more complex structure under complex loading

path with different strain rate.

2. Theoretical background and Scale transition

In this section, the periodic homogenization principle, as well as the transition between the

two scales (microscopic and macroscopic) are presented. The principal objective is to determine

the macroscopic quantities (stress and tangent modulus) that are obtained through periodic ho-

mogenization by accounting for the different mechanisms that exist in the microscopic level, as

non-linear plastic/viscoplastic behavior with ductile damage of the matrix. After that, the local

constitutive law of each constituent is presented, where a linear elastic law is chosen for the re-

inforcement and a constitutive model that incorporate elastoviscoplasticity coupled with ductile

damage for the matrix.

2.1. Theoretical background for periodic homogenization

The objective of the periodic homogenization theory is to define a fictitious homogenized

medium having an equivalent response of the heterogeneous medium that is representative of the

microstructure. A periodic medium is characterized by a repeated unit cell in the three spatial

directions, which forms an unit cell. The theory of periodic homogenization is valid as long as

the separation between the scales exists, i.e. the sizes of the unit cell are much smaller than the

macroscopic sizes of the medium (x >> x) (Fig.1). In this paper, the notation (•) will be used to

denote macroscopic quantities. The motion of any macroscopic and microscopic material points

M(x) and M(x, x) respectively, are governed by the macroscopic and the microscopic equations

(Tab.1).

In Tab.1 σ, ε, σ and ε represent the microscopic and the macroscopic stress and strain tensors

respectively, bv is the body forces, V and V are the volumes of the micro and the macro structure.



Figure 1: Schematic representation of the homogenization computational.

Table 1: Macroscopic and microscopic scale transition [32]

Equations Macro-scale Micro-scale

∀ x ∈ V ∀ x ∈ V , ∀ x ∈ V

Equilibrium divx
(
σ
)

+ bv = 0 divx(σ) = 0

Kinematics ε = 1
2 (Gradx(u) + Gradᵀx (u)) ε = 1

2 (Gradx(u) + Gradᵀx (u))

Constitutive law σ = F(x, ε) σ = F(x, x, ε)

Strain energy rate Ẇε = σ : ε̇ Ẇε = σ : ε̇

Moreover, x, x, u and u are the microscopic and the macroscopic positions and displacement

vectors, while F and F are operators that define the micro and macro relationships between the

stress and strain. Both F and F are considered non-linear operators in this work.

The homogenization theory attempts to define the F operator, which characterizes the macroscopic

behavior, from the local behaviors defined by the F operator. In order to make this possible, it is

necessary to introduce the concept of scale transition between the macro and the micro scales.

According to the average stress and strain theorems, it can be demonstrated that the stress and

strain averages within the unit cell are equal to the stress and strains corresponding to uniform



tractions and linear displacements respectively that are applied at its boundaries. These averages

represent the macroscopic stress and strain tensors respectively. The relationships between the two

scales are given by the following equations:

σ = 〈σ〉 =
1
V

∫
V
σ dV =

1
V

∫
∂V
σ.n⊗ x dS (1)

ε = 〈ε〉 =
1
V

∫
V
ε dV =

1
2V

∫
∂V

(u ⊗ n + n⊗ u) dS (2)

where n is the outgoing normal of the unit cell boundary ∂V . 〈•〉 is the mean operator and ⊗ the

dyadic product.

2.1.1. Non-linear scale transition: incremental approach

Since the homogenization is based on the separation between the different scales, the connec-

tion between these scales (microscopic and macroscopic problems) should be defined in order to

be able to predict the overall behavior of the structure.

Microscopic problem

The periodicity condition implies that, the displacement field u of any material point located

in x can be described by an affine part, in which a periodic fluctuation u′ is added as is presented

in Fig. 2:

u(x, x, t) = ε(x, t) · x + u′(x, x, t) (3)

Figure 2: Definition of the displacement field as the sum of an affine part and a periodic fluctuation



The periodic fluctuating quantity u′ takes the same value on each pair of opposite parallel

sides of the unit cell and the strain average produced by u′ is null [Eq. 5]. Therefore, the full strain

average is well equal to the macroscopic strain [Eq. 6].

ε (u) = ε + ε (u′) (4)

〈ε (u′)〉 =
1
V

∫
V
ε (u′) dV = 0, (5)

〈ε (u)〉 = ε + 〈ε (u′)〉 = ε (6)

The traction vector σ. n is anti periodic and satisfies the conditions of equilibrium within the

unit cell. The micro problem is formulated as follows:
σ = F (x, ε (u (x))) ∀x ∈ V ,

divx (σ (x)) = 0 ∀x ∈ V ,

ui − u j = ε .
(
xi − x j

)
∀x ∈ V

(7)

where ui , u j , xi and x j are the displacements and the positions of each pair of opposite parallel

material point of the unit cell boundary respectively, while ε is the macroscopic strain. The

relationship between the microscopic stress and the microscopic strain in incremental approaches

is provided by the linearised expression [Eq. 8]:

∆σ(x) = Ct (x) : ∆ε (x) ∀x ∈ V , (8)

where Ct is the local tangent operator tensor defined as the numerical differentiation of the stress

with respect to the total strain.

Macroscopic problem

The relationship between macroscopic stress and strain cannot be explicitly provided by a stiff-

ness tensor. Nevertheless, for a given macroscopic strain, the macroscopic stress response can be

computed using an implicit resolution scheme, where the local behavior is linearized and corrected

at each strain increment [Eq. 8]. Then, using the same incremental methodology, the macroscopic



behavior can also be linearized in order to predict the next increment.This linearization requires

to write the macroscopic constitutive law in the non-linear form of Eq. 9. The equilibrium at the

macroscopic level in the absence of body forces is given by the Eq. 10.

∆σ
(
x
)

= 〈Ct (x) : ∆ε (x)〉 ∀x ∈ V , (9)

divx
(
∆σ

(
x
))

= 0 ∀x ∈ V , (10)

where ∆σ(x) is the macroscopic stress tensor associated with the point x of the macrostructure at

each macroscopic strain increment.

The relationship between the macroscopic stress and strain is given in Voigt notation in Eq. 11.

The macroscopic tangent operator Ct is recovered by computing the macroscopic stress resulting

from the six elementary strain states written in Eq. 12 (also in Voigt notation) at each macroscopic

strain increment:



∆σ1

∆σ2

∆σ3

∆σ4

∆σ5

∆σ6


=



Ct, 11 Ct, 12 Ct, 13 Ct, 14 Ct, 15 Ct, 16

Ct, 22 Ct, 23 Ct, 24 Ct, 25 Ct, 26

Ct, 33 Ct, 34 Ct, 35 Ct, 36

Ct, 44 Ct, 45 Ct, 46

Ct, 55 Ct, 56

Sym Ct, 66


×



∆ε1

∆ε2

∆ε3

2 ∆ε4

2 ∆ε5

2 ∆ε6


(11)



∆ε(1)
= (K 0 0 0 0 0)T

∆ε(2)
= (0 K 0 0 0 0)T

∆ε(3)
= (0 0 K 0 0 0)T

∆ε(4)
= (0 0 0 K 0 0)T

∆ε(5)
= (0 0 0 0 K 0)T

∆ε(6)
= (0 0 0 0 0 K)T

(12)

Then, the ij component of the tangent operator is given by the ith component of the stress vector

calculated with the jth elementary strain state, divided by the jth component of the strain vector of



the elementary strain state:

Ct, i j =
∆σ( j)

i

K
, i, j = 1, 2, 3, 4, 5, 6. (13)

Usually, K is chosen to be equal to 1.

2.2. Local elasto-viscoplastic behavior with ductile damage for the matrix

The constitutive law of the matrix material is defined through a thermodynamically based

phenomenological model for viscoplasticity and ductile damage in semi-crystalline polymers [33,

34, 11]. These materials exhibit a dissipative behavior that combines solid and fluid properties

with some apparent stiffness reduction. The model is described by the rheological scheme given

in the Fig. 3. It is composed of: one single linear spring, subjected to an elastic strain εe, and

a viscoplastic branch, subjected to a viscoplastic strain εp which consists of a frictional element,

a non-linear spring and a non-linear dash-pot. The linear spring and the viscoplastic branch are

positioned in series.

Figure 3: Rheological scheme of the viscoplastic behavior and ductile damage [11].

The model is formulated within the thermodynamics framework [33, 11]. The state laws are

obtained by differentiation of the Helmholtz potential with respect to the state variables. This



potential is formulated as the sum of the stored energies of the spring and the viscoplastic branch.

ρψ
(
ε, r, εp,D

)
=

1
2

(
ε − εp

)
: (1 − D)Ce :

(
ε − εp

)
+

∫ r

0
R(ξ) dξ (14)

The internal state variables εp, r and D represent the viscoplastic strain, effective equivalent vis-

coplastic strain variable and the damage variable respectively. Ce is the initial fourth order stiff-

ness tensor of the single spring, classically defined for bulk isotropic materials. R is the hardening

function, chosen under the form of the power law function, that must be increasing, positive and

vanishes at r = 0:

R (r) = Kr n, (15)

where K and n are the viscoplastic material parameters. According to the second principle of

thermodynamics, dissipation is always positive or null (Clausius Duhem inequality). Assuming

that the mechanical and thermal dissipations are uncoupled, the rate of the mechanical dissipated

energy Φ̇ is positive or zero and is given by the difference between the strain energy rate Ẇε and

the stored energy rate ρψ̇ (Eq. 16).

Φ̇ = Ẇε − ρψ̇

= σ : ε̇ − ρ
(
∂ψ

∂ε
: ε̇ +

∂ψ

∂ε p
: ε̇p +

∂ψ

∂r
: ṙ +

∂ψ

∂D
: Ḋ

)
= σ : ε̇p − Rṙ + YḊ ≥ 0. (16)

The viscoplasticity and damage are considered to be coupled phenomena [35, 34]. Conse-

quently, the evolution of εp, r and D are described by the normality of a convex indicative func-

tion that satisfies the above inequality:

F (σ,R,Y; D) =
eq(σ)
1 − D

− R − R0︸             ︷︷             ︸
f (σ,R; D)

+
S

(β + 1) (1 − D)

(Y
S

)β+1

︸                       ︷︷                       ︸
fD(Y;D)

(17)

In the last expression, the term f (σ,R; D) denotes the yield criterion function which activates

the mechanism (ṙ > 0 if f > 0, else ṙ = 0). The function f is expressed in the effective stress

space. fD is an additive term that takes into account the evolution of the damage at the same

time as the viscoplasticity. eq(σ) denotes the von Mises equivalent stress, R0 denotes the yield



threshold, while S and β are damage related material parameters. The viscous effect is introduced

by considering a relation between the positive part of f and ṙ through a function Q. This function

is chosen under the form of the power law:

〈 f 〉+ = Q (ṙ) , Q (ṙ) = Hṙm (18)

where H and m are the material parameters. The function Q (ṙ) must be increasing, positive and

null at ṙ = 0.

This type of model allows to capture some well known effects of thermoplastic polymers, namely

the rate effect through the creep and relaxation phenomena, as well as the stiffness reduction due

to the ductile damage. Tab. 2 summarizes the thermodynamic variables, the evolution laws and

the von Mises type viscoplastic criterion of the model. In the table, Dev(σ) denotes the deviatoric

part of the stress.

Table 2: State and evolution laws

Observable state variable Associated variable

ε σ = ρ
∂ψ

∂ε
= (1 − D)Ce :

(
ε − εp

)
State variables Associated variables Evolution laws

r R = ρ
∂ψ

∂r
= R (r) ṙ = −

∂F
∂R

λ̇ = λ̇

εp −σ = ρ
∂ψ

∂εp
ε̇p =

∂F
∂σ

λ̇ =
3
2

Dev(σ)
eq(σ)

ṙ
1 − D

D Y = ρ
∂ψ

∂D
Ḋ =

∂F
∂Y

λ̇ =

(Y
S

)β ṙ
1 − D

Multiplier Criterion Active (λ̇ > 0 if f > 0)

λ = r f (σ,R; D) =
eq(σ)
1 − D

− R − R0 〈 f 〉+ = Q (ṙ)



3. Multi scale FE computation and numerical implementation

To predict the macroscopic behavior of a composite structure, taking into account the effect

of the microstructure, homogenization scheme within the framework of a FE2 is an accurate so-

lution. According to Feyel [24], this approach considers that the macroscopic problem and the

microscopic heterogeneous unit cell are solved simultaneously. On the macroscopic scale, the ma-

terial is assumed as a homogenized medium with non-linear behavior. The macroscopic response

is calculated by solving an appropriate periodic boundary value problem at the microscopic level

within a homogenization scheme. The important macroscopic information (strain) passes to the

unit cell through the constraint drivers. The concept of constraint drivers is explained in the next

subsection.

It is pointed out that the response at the macroscopic scale is obtained by the homogenization pro-

cess and is frequently called "homogenized". The macroscopic fields and tangent moduli depend

on the microscopic response at each unit cell. Since the macroscopic strains are heterogeneous

in the structure, the homogenized response varies at every macroscopic point, providing a type of

spatial heterogeneity.

3.1. Unit cell computations for periodic homogenization using the concept of constraint drivers

The method of constraint drivers is a numerical technique which allows to apply any state of

macroscopic stress, strain or even mixed stress/strain on a periodic finite element unit cell. More

detailed exposition about this concept is given in [36, 37, 38].

In the finite element framework a unit cell for periodic media should be associated with peri-

odic mesh. This means that for each border node, there must be another node at the same relative

position on the opposite side of the unit cell. The aim of the constraint drivers in a periodic ho-

mogenization approach is to apply a macroscopic strain ε on the unit cell, taking into account the

periodic boundary conditions. In practice, a displacement gradient is applied between each pair of

opposite parallel border nodes (denoted by the indices i and j). This gradient is directly related to

the macroscopic strain tensor εi j by the following general kinematic relationship:

u′i = u′j ⇐⇒ ui − u j = ε . (xi − x j) ∀x ∈ V (19)



The proposed method introduces the six components of the macroscopic strain tensor as ad-

ditional degrees of freedom (constraint drivers) that are linked to the mesh of the unit cell using

the kinematic equation 19. The displacements of these additional degrees of freedom, noted as

ucd
11 , ucd

22 , ucd
33 , ucd

12 , ucd
13 and ucd

23, take the values of each component of the macroscopic strain ten-

sor ε11 , ε22 , ε33 , 2ε12 , 2ε13 and 2ε23, respectively. The dual forces of the constrain drivers are

noted as Fcd
11 , Fcd

22 , Fcd
33 , Fcd

12 , Fcd
13 and Fcd

23, respectively, and they permit to recover directly the

corresponding components of the macroscopic stress tensor (Fig. 4) at the end of the unit cell cal-

culations. Dividing the dual force by the unit cell volume leads to the corresponding macroscopic

stresses.

Figure 4: Connection of the constraint drivers with the unit cell.

3.2. Concept and numerical algorithm of FE2 method

After defining the concept of constraint drivers, the implementation of a two-scale finite ele-

ment approach is the next step in the computational homogenization framework. The proposed

method lies within the general category of multi-scale models. In this method the macroscopic

constitutive behavior is calculated directly from the unit cell, providing the geometry and the phe-

nomenological constitutive equations of each constituent. The FE2 method consists of three main

steps according to [24]:

(1) A geometrical description and a FE model of the unit cell.



(2) The local constitutive laws expressing the response of each component of the composite

within the unit cell.

(3) Scale transition relationships that define the connection between the microscopic and the

macroscopic fields (stress and strain).

The scale transition is provided by the concept of homogenization theory, using volume av-

eraging of microscopic quantities of the unit cell, which is solved thanks to periodic boundary

conditions. The macroscopic fields (stress and strain) are introduced in a unit cell by using the six

additional degrees of freedom (constraint drivers), that are linked with the boundaries through the

kinematic equations [Eq. 19]. The macroscopic behavior of a 3D composite structure is computed

by considering that the material response of each macroscopic integration point is established from

the homogenization of a unit cell that is connected to each macroscopic integration point. Each

unit cell contains the local constitutive laws of different phases and the geometrical characteristics

of the microstructure.

The FE2 approach presented here has been developed using an implicit resolution scheme, with

the use of a Newton-Raphson algorithm, that solves the non-linear problems at the two scales. At

each macroscopic integration point, the macroscopic stress and the macroscopic tangent operator

are computed for the calculated macroscopic strain at each time increment, by solving iteratively

a FE problem at the microscopic scale.

3.2.1. Concept of transition between scales in FE2 computations

In the framework of FE2 modelling the global resolution step is performed at each time incre-

ment by solving a local equilibrium problem at each macroscopic integration point. At each step,

the microscopic problem is solved by applying the macroscopic strain increment to the unit cell

through the periodic boundary conditions. The system of equations in the linearized incremental



form is given as follows:


∆σ (x) = Ct (x) : ∆ε (x) ∀x ∈ V ,

divx (∆σ (x)) = 0 ∀x ∈ V ,

∆ui − ∆u j = ∆ε .
(
xi − x j

)
∀x ∈ V

(20)

By using the developed user subroutine at the microscopic scale which contains the non-linear lo-

cal behavior of the constituents, the microscopic stress, tangent operator and internal state variables

Vk are computed at every microscopic point. The macroscopic stress σ is then computed through

volume averaging of the microscopic stresses, and the local tangent operators of all microscopic

points are utilized to obtain the macroscopic tangent operatorCt by solving six elastic-type loading

cases with the elementary strain states described in subsection 2.1.2. The internal state variables

and the local stress are saved as initial conditions for the next time increment. Once the macro-

scopic quantities σ andCt are computed, the analysis at the macroscopic level is then performed

and the macroscopic strain increment ∆ε is provided by the Finite Element Analyses Package

ABAQUS at every macroscopic point through the global equilibrium resolution. This informa-

tion is passed to the macroscopic scale by using a user defined constitutive model (denoted here as

Meta-UMAT) that represent the behavior of a macroscopic material point and contains the unit cell

equations and hence the process returns to the local problem. The iterative procedure inside the

Meta-UMAT is depicted in Fig. 5. The loop is repeated until numerical convergence is achieved

in both micro and macro-scales numerical problems. After the convergence, the analysis proceeds

to the next time step. Both the Meta-UMAT and the structural analysis in the macroscopic level

define the FE2 approach.

3.2.2. Algorithm of FE2 and parallel calculation

The algorithm of the FE2 computational strategy for the non-linear case in ABAQUS/Standard

is presented in Fig. 6.

As shown in Figures 5 and 6, the macroscopic problem is solved at each increment in a linearized

manner, considering the homogenized tangentmod modulus Ct. The elastic prediction – inelastic

correction is performed at the scale of the constituents laws (Micro-UMAT) using the well-known



Figure 5: Meta-UMAT for the overall response computation of the composite using FE2 approach at time

increment n+1.

"return mapping algorithm – convex cutting plane" scheme [39].

The aim of the FE2 approach is to perform structural numerical simulations, thus reduction of

the computational time is of outmost importance. Since the FE2 homogenization requires very

costly computations, parallel calculation procedures for running the analysis on multiple CPUs

are unavoidable.

Parallel implementation of the FE2 code in ABAQUS/Standard

It is known that the FE2 computation is expensive in terms of CPU time, caused by the transi-

tion between the two scales and the degree of freedom number of the microscopic and the macro-

scopic models. To reduce this computational time, a parallel implementation of the FE2 procedure

is set-up in ABAQUS/Standard. All the Finite Element Analyses of the unit cells within a sin-



initialisation

- Apply the PBCs on the unit cell.

- Compute the initial macroscopic

tangent modulus Ct.

Macro-level

- Solve the macro problem.

- Get the macroscopic strain

increment ∆εn+1.

Micro-level

- Python script for the micro

problem.

- Compute the local fields

σ, ε,Ct.

- Compute the macroscopic

stress σ.

- Compute the macroscopic

tangent modulus Ct.

Global check

convergence

Next increment
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Update all fields:
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Ct

∆εn+1

Ct, σ

non

yes

Figure 6: The flow chart of the two scales FE2 algorithm in ABAQUS/Standard for non-linear case.

gle macroscopic element (one per integration point) is sent on a single computation node (a set

of processors) and their are solved iteratively. The computations that correspond to each macro-

scopic element are solved in different computations nodes. Thus, theoretically the parallelization

can be performed simultaneously on every element. In practice the parallel computation is limited

to the number of available calculation nodes. Note that the computations of every microscopic



Finite Element Analysis can also be computed in parallel within the computation node if it pos-

sess several processors (which is often the case) and this parallelization process is governed by

the Finite Element Analyses Package ABAQUS. In practice, the Meta-UMAT calls an appropriate

python script that solves the local problem (including the computation of the macroscopic tangent

modulus) at each macroscopic integration point, with the use of the microscopic UMAT, which

contains the local non-linear behavior of the constituents (Fig. 7). Afterwards, the global solver of

ABAQUS checks that all calculations at different processors are completed before proceeding to

the resolution of the macroscopic problem, before passing to the next time increment, or the next

macroscopic iteration.

3.3. Implementation of the microscopic problem in ABAQUS

With regard to the microscopic problem, as mentioned previously, the Meta-UMAT executes a

properly designed python script in each macroscopic integration point of the composite structure

with the first macroscopic strain increment given by ABAQUS.

The periodic boundary conditions (PBCs) and the macroscopic strain are applied on the unit cell

by means of the python script at each time increment, since this last information is given at each

integration point from the prediction of the strain increment that should satisfy the global equilib-

rium. The script also calls the solver ABAQUS to solve the microscopic Finite Element Analyses,

which utilize the microscopic user subroutines that contains the local constitutive laws of the con-

stituents, in order to obtain the microscopic response through a return mapping iterative process.

Once the local equilibrium is achieved, the local response (σ andCt) are computed. Then, the

macroscopic stress is recovered as a reaction force divided by the unit cell volume on the con-

straint drivers (section 3.1). The macroscopic tangent modulus is calculated by mapping the local

tangent moduli on the unit cell through the six elementary strain states. Through the python script,

the macroscopic quantities (σ and Ct) are calculated and transferred to in the Meta-UMAT. At this

point, the global equilibrium is checked, if the convergence is reached, we proceed to the next time

increment n+1.



Figure 7: Parallelization steps of the FE2 code.

4. Applications and Capabilities of the FE2 framework

In order to validate the two-scale computational approach within the framework of 3D non-

linear composite structures, two test cases have been addressed: the first one is a periodic multi-

layer composite structure with non-linear, elastoplastic phases. It has been demonstrated that the



use of an incremental linearized temporal integration approach, there exist a semi-analytical solu-

tion for this problem [40]. This test case is utilized as a validation of the implementation of the

FE2 framework. The second one is the simulation of three-dimensional composite structure, with

a two-phase microstructure: A matrix phase that exhibits a coupled elastoviscoplastic with ductile

damage response, reinforced by short glass fibres. The results of such multi-scale simulation are

compared with a legacy modelling approach, i.e. the use of an incremental Mori-Tanaka scheme

[22].

4.1. Comparison with semi-analytical homogenization method for elastoplastic multilayer com-

posites

The multi-scale structure simulated is presented in Fig. 8 and is composed at the microscopic

scale of a periodic stack of two different layers, one with an elastic response (superscript e) and

the second one with an elastic-plastic response (superscript p). The volume fraction of the two

phases is equal, i.e. ce = cp = 0.5. The macroscopic shape of the structure is a cuboid. For the

elastic-plastic phase, the plastic yield criterion is given by:

fp(σ, p) = eq(σ) − R(p) − R0 ≤ 0. (21)

where eq(σ) is the equivalent Von Mises stress and R0 is the yield threshold. The hardening

function R(p) is chosen under the form of a power law [33]:

R(p) = K.pn (22)

where K and n are material parameters. p is the accumulated plastic strain. The material param-

eters of the two phases are given in Tab. 3. As discussed in the Section 3.1, periodic boundary

conditions are applied to the unit cell of the multilayer material. The macroscopic boundary con-

ditions imposed correspond to a pure shear loading and are such that the relationship between

the displacement at the boundary is u0 = ε0n, n being the outward normal of the surface and all

the components of the tensor ε0 are zero except ε12 = ε21, see Fig. 9-b. Note that under such

conditions, the numerical results of the two Finite Element Analyses should be mesh-independent,

since homogeneous fields are considered in all the phases. The results of the two approaches,



the FE2 and the semi-analytical are identical (Fig. 10), which demonstrates the capability of the

computational method to predict the response of 3D non-linear multi-scale composite structures.

Table 3: Material parameters for the two phases

Elastic-plastic phase

Parameter value unit

Ep 2000 MPa

νp 0.3 -

R0 10 MPa

K 60.0 MPa

n 0.15 -

Elastic phase

Ee 6000 MPa

νe 0.2 -

Figure 8: Multilayer composite structure with their microstructure associated with each macroscopic inte-

gration point.



(a) 3D Multilayer composite structure.
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(b) Applied loading path.

Figure 9: Multilayer composite structure under shear loading path.
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Figure 10: Comparison of the numerical result of FE2 approach with semi-analytical solution on multilayer

witch elastoplastic phases in term of macroscopic stress-strain response.

4.2. 3D structure (Meuwissen) with short fibre reinforced composite

To demonstrate the capabilities of the FE2 approach to identify the overall behavior of 3D com-

posite structures close to parts that are commonly manufactured, the second test case is performed

on structure where heterogeneous strain and stress fields are observed during a tensile load field.

the composite material is considered as an elastoviscoplastic polymer matrix with ductile damage,



reinforced by aligned glass short fibres arranged in a periodic hexagonal array (Fig. 11). The

volume fractions of the matrix and the fibres are Vm = 0.925 and V f = 0.075 respectively, while

the aspect ratio for the elliptic fibre is (4, 1, 1). The fibres elastic properties are the following:

a Young’s modulus E f = 72000 MPa and a Poisson’s ratio ν f = 0.26. The material properties

of the matrix phase are listed in Tab. 4. It should be mentioned that these material parameters

are motivated by the work of [11], but they do not consider the viscoelastic response, which is

taken into account in that article. Thus, the material properties are related to viscoplastic behavior

coupled to damage in polymeric media.

(a) Mesh of the entire unit cell. (b) Short fibres reinforcement.

Figure 11: Composite microstructure.

The structure presented in the Fig. 12-a is clamped at the left side and subjected to the loading

path of Fig. 12-b at the right side. The displacement controlled path consists in three loading steps

with different velocities (u̇(1)
x = 1 mm.s−1, u̇(2)

x = 0.2 mm.s−1, u̇(3)
x = 0.8 mm.s−1) followed by an un-

loading stage at a displacement rate of (u̇(4)
x = 2 mm.s−1). The results of the full-field FE2 method

are compared with those obtained by using the incremental mean-field Mori-Tanaka method. This

method has been widely utilized for the simulation of composites [13] as well as smart struc-

tures [41]. Such homogenization scheme is however considered valid under specific cases [22],

and some specific corrections might be required [23, 42]. Since the proposed corrections are

not unique and depends on the type of composites, the regular incremental method is employed,



Table 4: Material parameters for polymer matrix

Parameter value unit

Em 1680 MPa

νm 0.3 -

R0 10 MPa

K 365.0 MPa

n 0.39 -

H 180.0 MPa.s

m 0.3 -

S 6.0 MPa

β -1.70 -

where the linearized problem is written in term of the anisotropic algorithmic tangent modulus

of the non-linear phases [22]. The advantage of the Mori-Tanaka scheme relies in its computa-

tional efficiency, since it is a semi-analytical method and accounts for the material non-linearities

only on an average sense and not at every local microscopic point in the unit cell. The overall

load-displacement response computed using FE2 approach is shown in Fig. 13 and compared to

the global response predicted by the mean-field Mori-Tanaka approach. As expected the both ap-

proaches predict comparable responses notably in the elastic regime. However, for the viscoplastic

regime, the mean-field based simulation does not capture well the strain rate change of the applied

loading path and provides stiffer response than the full-field FE2. This aspect is known and oc-

curs when one phase exhibits a non-linear behavior. Similar observations have been reported to

the literature especially when the matrix phase behaves as viscoelastic-viscoplastic media [7, 23].

The authors proposed specific numerical formulations to address this limit of mean-field based

methods. Fig. 14 demonstrates stress-strain curves at the macroscopic point A (Fig. 15-a). Due



to the semi-analytical form of the Mori-Tanaka method, the computations are faster than in the

FE2 method but it requires a smaller time increment. The results indicate that the response of the

two approaches describe the changing of the rate loading caused by the viscous behavior of poly-

mer matrix, but it is clearly shown that the Mori-Tanaka response misdescribed this phenomena

because it is more rigid with a considerable loss of plasticity as expected, compared to the FE2.

The results illustrate that the response of the composite is highly influenced by the presence of the

matrix, exhibiting both viscoplastic response through relaxation phenomena, as well as stiffness

reduction during unloading due to the ductile damage.

It is worth noticing that the inelastic characteristics of the different phases are mainly taken into

account in the microscale and, accordingly, the unit cell is adequately meshed (6857 elements).

The authors have performed several analyses at different meshes of the macroscopic structure and

have confirmed that the chosen meshing of 100 elements was sufficient for the purposes of the

manuscript.

At a characteristic critical point of the structure (centre of one notch), the deformed macro-scale

structure and the microscopic stress response (component 11) of the unit cell that represent a

macroscopic integration point A are shown in Fig. 15. It is clear that at such critical material

point, the adopted incremental Mori-Tanaka scheme do not predict the local response with a suffi-

cient accuracy to be able to utilize such results for the computation of damage evolution of fatigue

life predictions, which are unavoidable in the case of most load-bearing application of composite

structures. Even if the mesh convergence is difficult to reach to obtain exact results, the FE2 frame-

work could provide a standard of predictability that is much higher than the mean-fields methods

when a composite is simulated, where the matrix present a strongly non-linear response. It de-

serves to be mentioned that the periodic homogenization gives excellent results for 3D structures,

and the numerical accuracy depends on that of the FE calculations. However, when addressing

plate or shell structures, the periodic homogenization requires proper modifications, as described

in [43], due to the loss of periodicity in the thickness direction (out of plane). This results in less

accurate prediction for the out of plane Poisson ratio. Nevertheless, the out of plane periodicity

can be reasonably assumed when the microstructure contains high number of fibers or layers in

the thickness direction.



(a) Mesh of the entire 3D composite structure. (b) Applied loading path.

Figure 12: Tensile and compression test on the 3D Meuwissen test tube.
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Figure 13: The overall load-displacement response of the structure in the directions 11. Comparison between

the FE2 and the Mori-Tanaka solution.
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Figure 14: Macroscopic response of the composite at point A in term of stress-strain in the directions 11, 22,

33 and shear 12 (comparison between the FE2 and the Mori-Tanaka solution).

(a) Macroscopic stress field of the composite struc-

ture.

(b) Microscopic stress field of the microstructure at

point A.

Figure 15: FE2 solution with ABAQUS/Standard (component 11).



4.3. Complex 3D structure with corner shape

In this section, a second 3D composite structure is simulated in order to illustrate the capability

and the flexibility of the approach, when more complex boundary conditions are applied to the

macroscopic structure. The modelled structure consists of a 3D part having a corner shape (Fig.

16-a). It is made of a thermoplastic aligned short fibre reinforced composite in which the matrix

and reinforcement phases exhibit the same behavior as in Section 4.2. The structure is clamped

at the bottom side and subjected to a normal uniform displacement path at left side (Fig. 16-b).

The displacement controlled path consists in two loading steps with different displacement rates

(u̇(1)
x = 2.1875 mm.s−1, u̇(2)

x = 0.15625 mm.s−1) and an unloading step at a displacement rate of

(u̇(3)
x = 0.9375 mm.s−1).

In Figs. 17 and 18, the whole response of the composite in terms of macroscopic stress vs strain

are depicted at two distinct points A and B (Fig. 19-c). The approach is able to reproduce the

effect of such microstructure on the overall response of the composite, as on the most stressed

point shown in Fig. 19. Indeed, on the clamped part (point A), it is clear that the structure is

subjected to a tensile load according to the 22 direction, and a shear load in the direction 12.

These results are attributable primarily by the macroscopic boundary conditions. Furthermore, for

the point B, a high stress value in the direction of loading was noticed. Fig. 19-c shows the stress

response (component 11) of the macroscopic structure and the resulting microscopic stress in the

two unit cells situated at two different macroscopic integration points A and B (Figs. 19-a and 19-b

respectively). The response of the composite is highly affected by the matrix behavior through the

relaxation phenomena caused by the change of the loading rate. The apparent stiffness reduction

during the unloading caused by the ductile damage in the matrix is clearly observed.

For the parallelization procedure and with the same number of increments (42 increments), the

computation becomes 18 times faster than the non parallel solution. The actual computational time

of the analysis performed on 18 processors was approximately 72h for a macroscopic structure

containing 90 elements of type C3D8 with 6857 microscopic elements of type C3D4.



(a) Macroscopic mesh of the 3D composite structure. (b) Applied loading path.

Figure 16: Tensile and compression test on the 3D composite structure with corner.
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Figure 17: Macroscopic response of the composite at point A in term of stress-strain in the directions 11, 22,

33 and shear 12.
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Figure 18: Macroscopic response of the composite at point B in term of stress-strain in the directions 11, 22,

33 and shear 12.



(a) Microscopic stress field of the microstructure at

point A.

(b) Microscopic stress field of the microstructure at

point B.

(c) Macroscopic stress field of the 3D composite

structure (component 11).

Figure 19: FE2 solution with ABAQUS/Standard (component 11).

5. Conclusions and further work

This work presents a non-linear three-dimensional two-scale finite element (FE2) framework

fully integrated in the Finite Element Analysis Package ABAQUS/Standard, using parallel com-

putation. The main advantage of the method is that it does not require an analytical form for the

constitutive law at the macro-scale, while accounting for the microstructural effects and the local

behaviors. It can integrate any kind of periodic microstucture with any type of non-linear behavior

of the reinforcement (fibres and/or particles) and the matrix (plastic, viscoelastic, viscoplastic and



damage).

The multi-scale strategy has been tested on three independent numerical examples: In the first

example, a 3D multilayer composite structure with elastoplastic phases is simulated and compared

with semi analytical solution, to validate the numerical implementation. In the second example,

a short glass fibre reinforced composite with elastoviscoplastic-damageable matrix under com-

plex loading is examined through the FE2 strategy and the results are compared to those obtained

by the Mori-Tanaka method. The obtained responses were in agreement with those presented in

the literature in similar cases, and highlight the importance of utilizing full-field method for a

generic modelling strategy with high predictability capabilities. In the third example, 3D a com-

plex composite structure with corner shape is simulated in which the microstucture is made of an

elastoviscoplastic matrix with ductile damage reinforced by short glass fibre. The capabilities of

such approach to reproduce the effect of such microstructure on the macrostructure response at

each macroscopic integration point has been demonstrated. The response of the structure clearly

highlights creep and relaxation phenomena, which are characteristic for rate dependent responses.

This viscous behavior and the stiffness reduction observed during unloading have been induced

by the viscoplastic nature of the polymer matrix. It worth noticing that for composites where the

matrix is viscoplastic material, the Mori-Tanaka method under proper modifications can provide

quite accurate results [44, 7] compared to the full-field based approach.

A last advantage of this approach is that it can be extended to predict the overall fully coupled

thermomechanical response of 3D composite structures [45, 40] with more complex mechanisms

between fibres-matrix as interfacial damage mechanisms. Such fully-coupled analyses on multi-

scale structures should be of a high interest for industrial applications that are usually computed

with commercial finite element analyses packages.
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