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Abstract

In this paper, we develop new governing equations for thermo-gradient-dependent theory of plasticity.

They include the coupled effects of thermal elastic-plastic theory, including balance and constitutive equa-

tions. To demonstrate the salient feature of the gradient-dependent model of plasticity, particular attention

is addressed to isotropic hardening with second sound effects to eliminate the paradox of infinite speed

of thermal signals. The resulting system of partial differential equations formally describes the coupled

thermomechanical behavior of the gradient-dependent elasto-plastic system. Then, we develop an appropri-

ate state-space form and, by using the semigroup theory, we prove the well-posedness and the exponential

stability of the thermo-gradient-dependent elasto-plastic one-dimensional problem. Finally, we perform

numerical simulations to validate the proposed model and to show its capability.

1 Introduction

Since classical plasticity usually ignores the effect of the microstructure and its evolution in the course of plastic

deformation, consequently, it cannot be used to adequately address the problems related to localization of

deformation. On the other hand, discontinuous deformation processes, which cannot be described with classical

continuum models, are caused by microstructural phenomena that occur in a localization zone. This gives
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rise to a large variety of generalized continuum models based on well-established continua [1, 2], as well as on

more recent plastic strain gradient approaches, to avoid the difficulties in localization simulation of single phase

materials. In this context, gradient-dependent models have been recognized by several authors to provide a

satisfactory framework for the analytical and numerical analysis of strain localization in single phase solids. In

the approach followed in this paper, we include the second-order strain gradient terms in the stress-strain law.

The use of a higher-order gradient model results in a well-posed set of partial differential equations.

One of the main objectives of this paper is to derive the thermomechanical theory for gradient-dependent

plastic materials. One can find many propositions in the literature for the introduction of thermodynamics into

plasticity (see e.g. [3, 4, 5, 6, 7]). A thermodynamics based higher-order gradient theory for size de-

pendent plasticity was proposed in [3], but the thermal effects were not addressed. More recently,

the thermal effects have been introduced in relevant strain gradient plasticity models within the

thermodynamically consistent framework ([4, 5, 6, 7]). In [5, 6], Voyiadjis et al. developed a

coupled thermo-mechanical gradient enhanced continuum plasticity theory. In these works, the

higher-order thermo-mechanical gradient plasticity theory is developed within the thermodynam-

ically consistent framework based on the concept of thermal activation energy and dislocations

interaction mechanisms, and the decomposition of the thermodynamic microforces into energetic

and dissipative counterparts. The effect of the passivation on the higher order gradient plasticity

models for the non-proportional loading condition is then examined in terms of some specific

phenomenon, which is called as Stress jump. In this paper, a coupled thermo-mechanical gradi-

ent enhanced continuum plasticity theory is built. The proposed model is developed in the same

spirit as the models presented in ([5, 6, 7]), and its thermodynamic consistency is checked.

The usual theory of heat conduction based on Fourier’s law (see Eq. (3.20)) allows thermal waves to

propagate with infinite speed, which is not well accepted from a physical point of view. This is referred to as

the paradox of heat conduction. In contrast to conventional Fourier’s law, generalized laws came into existence

during the last decades to overcome this paradox, and, at the same time, to well describe phenomena arising

at very low temperatures, such as the “second sound”. These models are based on hyperbolic-type equations

for temperature and are closely connected with the theories of second sound, which view heat propagation

as a wave-like phenomenon. In an idealized solid, for example, the thermal energy can be transported by

quantized electronic excitations, which are called free electrons, and by the quanta of lattice vibrations, which

are called phonons. These quanta undergo collisions of a dissipative nature, causing a thermal resistance in the

medium. A relaxation time is associated with the average communication time between these collisions for the

commencement of resistive flow. Among the various propositions, two are studied in this paper (apart from the

classical law). The first model, described by Cattaneo’s law [8] instead of classical Fourier’s law of conduction,

was developed by Lord and Shulman [9]. This law (see Eq. (3.22)) is based on using only one relaxation time by

modifying Fourier’s law of heat conduction. But Cattaneo’s law is unable to account for memory effect, which

may prevail in some materials, particularly at low temperatures. This leads to believe that for materials with
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memory, we have to look for another more general constitutive assumption relating the heat flux to the material

thermal history. Gurtin and Pipkin [10] first established a general nonlinear theory of heat conduction in rigid

materials with memory, for which thermal disturbances propagate with finite speed. They assumed that the

response functional, such as entropy, free energy and heat flux, depends on the present value of the temperature

and the integrated histories of the temperature and the temperature gradient. The other heat conduction law

proposed in this paper is the Gurtin-Pipkin’s law [10] (see Eq. (3.24)).

Under both generalized models, thermal disturbances propagate with finite speed, so that the corresponding

equations are of hyperbolic types. These generalized theories are more realistic as they consider the second

sound effect, that is, the actual occurrence of wave-like heat propagation with finite speed, and they have

practical importance, especially in problems involving high heat fluxes and/or small time intervals.

The purpose of the present work is to extend the gradient-dependent plasticity model to include thermal

effects through three models of heat conduction. The derivation of the governing equations is done through

continuum mechanics and classical plasticity theory, including balance laws and constitutive equations. The

second sound phenomenon is introduced into the governing equations to overcome the paradox of infinite speed.

This work is organized as follows. In Section 2, we develop the thermomechanical coupling that represents

the model of the workpiece. To demonstrate the salient feature of the gradient-dependent model of plasticity,

we consider in Section 3 the one-dimensional counterpart of the thermoplastic model detailed in Section 2.

Thus, linear theory is applicable. In Section 4, using the C0−semigroup theory, we prove the well-posedness

of the thermo-gradient-dependent one-dimensional problem derived in the framework of classical Fourier’s law.

In Section 5, we show that the corresponding semigroup is exponentially stable. Section 6 is devoted to

the presentation of an implicit finite element tool, specifically developed to integrate the derived

constitutive equations and to achieve the corresponding numerical simulations.

Notations and conventions

The list of notations and conventions used in this paper are clarified in the box bellow. Additional notations

will be provided when needed.

fx partial derivative of f with respect to x.

fxx second-order partial derivative of f with respect to x.

ḟ derivative of f with respect to time.

f · g inner product.

f : g double contraction product.

δf virtual field of f .

gradf gradient of f .

divf divergence of f .

∆f Laplacian of f .
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2 Thermodynamic framework

The thermodynamic formulation of the generalized continuum mechanics is a necessary step to establish the well-

suited thermomechanical coupling required for realistic structural computations, which represent the ultimate

objective of the approach. Few attempts to derive such thermomechanical effects exist in the literature.

For example, in recently developed strain-gradient and gradient-independent theories [3], a thermodynamic

framework for gradient models was proposed, but the thermal effects were not addressed. In this regard,

this section is devoted to deriving a thermodynamic consistent formulation to address the thermomechanical

behavior of materials utilizing the thermodynamic principles.

The principle of virtual power is used to derive the governing micro-force balance equation which, when

augmented by the constitutive relations, results in the yield criterion or the plasticity loading surface. Therefore,

the principle of virtual power, which is the assertion that given any sub-body V , the virtual power expended

on V by materials or bodies exterior to V (i.e. external power) be equal to the virtual power expended within

V (i.e. internal power), can be expressed as follows:∫
V

σ : δε̇ dv=
∫

V

b · δu̇ dv+
∫

∂V

t · δu̇ da−
∫

V

ρ ü · δu̇ dv, (2.1)

where σ is the Cauchy stress tensor, ε is the strain tensor, b is the volume force vector, u is the displacement

vector, t is the surface traction vector and ρ is the mass density.

Within the framework of small displacements, the strain tensor ε is related to the displacement vector u by

the following equation:

ε=
1
2
(grad u + (grad u)T ). (2.2)

Using Eq. (2.2) and the divergence theorem, Eq. (2.1) can be rewritten in the following form:∫
V

(div σ + b− ρ ü) · δu̇ dv+
∫

∂V

(t− σ ·n) · δu̇ da =0, (2.3)

where n is the outward unit normal to ∂V .

The virtual velocity field δu̇ may be arbitrarily specified if and only if

div σ + b=ρ ü ,

t =σ ·n .
(2.4)

Eq.(2.4)1 expresses the local static (ρ ü=0) or dynamic (ρ ü 6= 0) equilibrium or balance force; while Eq.(2.4)2

defines the traction boundary condition.

As explained before, a thermodynamic consistent framework is taken into account here in order to define the

constitutive model counterparts, including temperature effect. In this regard, the second law of thermodynamics

is used in order to derive the constitutive equations and the first law is considered to derive the generalized heat

equation. The two principles of thermodynamics are postulated respectively as follows:

(i) Conservation of energy:

ρ ė=σ : ε̇−divq + ρ r. (2.5)
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(ii) Entropy production (Clausius-Duhem) inequality:

ρ Ṡ T+T div
q
T
−ρ r ≥ 0, (2.6)

where e is the specific internal energy, T is the absolute temperature, r is the heat supply, S is the specific

entropy and q is the heat flux vector.

By introducing the Helmholtz free energy Ψ, such that Ψ =e− T S, followed by taking the time derivative

of this relation and substituting in (2.5) and (2.6), we get the energy equation

ρ r−ρ (Ψ̇+Ṫ S + T Ṡ)−divq + σ : ε̇=0, (2.7)

and the Clausius-Duhem inequality:

σ : ε̇−ρ Ψ̇−ρ S Ṫ − q · gradT

T
≥ 0. (2.8)

The mechanical behavior is assumed to be elasto-plastic. Consequently, the total strain tensor ε can be additively

decomposed in its elastic (thermoelastic) part εe and plastic part εp:

ε= εe+εp. (2.9)

Note that the tensors εe and εp cannot be directly expressed in terms of displacement u, unlike the total strain

tensor ε (see Eq. (2.2)). In the present work, attention is restricted to isotropic hardening in the modeling of

the mechanical behavior. Consequently, the plastic flow can be defined by the following form of consistency

condition (see Naghdi and Trapp [11]):
f= (σeq−σs) < 0 ⇒ elastic loading (ε̇p=0),

f = (σeq−σs) = 0 and ḟ= (σ̇eq−σ̇s) < 0 ⇒ elastic unloading (ε̇p= 0),

f = (σeq−σs) = 0 and ḟ= (σ̇eq−σ̇s) = 0 ⇒ plastic loading (ε̇p 6= 0),

(2.10)

where σeq is the equivalent stress, which is function of the Cauchy stress tensor σ, while σs is the yield stress,

which can be viewed as a measure of isotropic hardening. In the present contribution, a thermo-gradient-

dependent formulation of plasticity is used to express the yield stress function σs. Within this formulation, σs is

assumed to depend on the equivalent plastic strain measure χ, its Laplacian ∆ χ, and the absolute temperature

T :

σs := σs(χ,∆ χ, T ). (2.11)

The equivalent plastic strain rate χ̇ is related to the plastic strain rate ε̇p through the normality law:

ε̇p=χ̇
∂ f

∂ σ
. (2.12)

In the current study, elastic, plastic as well as thermal contributions to the material behavior are considered.

Consequently, the constitutive variables are functions of the elastic strain tensor εe, the absolute temperature

T , and the hardening components χ and ∆ χ. Hence, within this thermodynamic framework, the Helmholtz

free energy Ψ can be expressed as:

Ψ := Ψ( εe, χ,∆ χ, T ). (2.13)
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According to the expression given above for Ψ, the time differentiation of Eq. (2.13) can be expanded in terms

of its derivatives with respect to the internal state variables, as follows:

Ψ̇=
∂ Ψ
∂ εe

: ε̇e +
∂ Ψ
∂ T

Ṫ +
∂ Ψ
∂ χ

χ̇ +
∂ Ψ

∂ ∆ χ
∆χ̇ . (2.14)

By substituting Eq. (2.14) into Eq. (2.8) and using Eq. (2.9), one obtains the following thermodynamic

constraint:

(σ−ρ
∂ Ψ
∂ εe

) : ε̇e+σ : ε̇p − ρ (S+
∂ Ψ
∂ T

)Ṫ−ρ
∂ Ψ
∂ χ

χ̇− ρ
∂ Ψ

∂ ∆ χ
∆ χ̇− q · gradT

T
≥ 0 . (2.15)

Classical reasoning, starting from the above inequality, leads to the expression of some state equations. Indeed,

one may observe that inequality (2.15) holds for all values of time derivatives, while its coefficients are not

functions of time derivatives. From this, it comes that the constitutive equations are compatible with the

energy equation if they satisfy the following relations:

σ=ρ
∂ Ψ
∂ εe

, S = −∂ Ψ
∂ T

. (2.16)

Also, we define the thermodynamic forces R and Rg associated with the internal variables χ and ∆χ, respectively,

by the following relations:

R= ρ
∂ Ψ
∂ χ

; Rg= ρ
∂ Ψ

∂ ∆χ
. (2.17)

The yield stress σs may be expressed in terms of its initial value σy and the thermodynamic forces R and Rg

by the following relation:

σs= σy + R + Rg . (2.18)

The introduction of Eqs. (2.16) and (2.17) reduces Eq. (2.15) to:

σ : ε̇p−R χ̇−Rg ∆χ̇− q · gradT

T
≥ 0 . (2.19)

Using Eq. (2.16) again, ρ Ψ̇ may be reduced to the following expression:

ρ Ψ̇=σ : ε̇e − ρ S Ṫ + R χ̇ + Rg ∆ χ̇. (2.20)

Then the energy equation (2.7) becomes:

ρ r+σ : ε̇p −R χ̇−Rg ∆ χ̇− ρ T Ṡ−divq =0. (2.21)

We consider a reference configuration, which is in thermal equilibrium and free from stresses. By expanding Ψ

as a power series of the independent variables εe, T , χ, and ∆χ, in which only terms of second order or less are

kept, we propose the free energy function in the following quadratic form:

ρ Ψ=
1
2

εe: C : εe − θ K : εe − ρ

2
Cv

T0
θ2 +

1
2

h χ2 − 1
2

hg (∆χ)2−ξiso χ θ − ξg
iso ∆χ θ, (2.22)

where T0 is the initial temperature and θ the difference between the absolute temperature T and T0, i.e.,

θ = T − T0. (2.23)
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We assume that |θ/T0| << 1. Cv is the specific heat, h and hg stand for the local hardening/softening modulus

and the second-order non-local gradient, respectively. ξiso and ξg
iso are parameters related to the coupling

between isotropic hardening and temperature effects, C is the fourth-order elasticity tensor, K is a second-

order tensor defined by the following relation:

K=αC : I, (2.24)

where α is the thermal expansion parameter and I is the second-order identity tensor.

Making use of the quadratic form (2.22), we have:

ρ
∂2Ψ

∂θ ∂εe
= −K, ρ

∂2Ψ
∂θ ∂χ

= −ξiso, ρ
∂2Ψ

∂θ ∂∆χ
= −ξg

iso,

∂2Ψ
∂θ2

= −Cv

T0
, R = ρ

∂ Ψ
∂χ

= h χ− ξiso θ, Rg = ρ
∂ Ψ
∂∆χ

= −hg ∆χ−ξg
iso θ.

(2.25)

Using again the expression (2.22) of ρ Ψ, the constitutive equations (2.16) take the following form:

σ= C : (εe−α θ I) ,

ρ S = K : εe + ρ
Cv

T0
θ + ξiso χ + ξg

iso ∆χ .
(2.26)

By using Eqs. (2.17), (2.18), (2.22) and Eq.(2.25), the yield stress σs can be expressed as follows:

σs= σy + h χ− hg ∆χ− ξ θ , (2.27)

where ξ = ξiso+ξg
iso reflects the thermo-mechanical coupling (i.e., the effect of the variation of

temperature θ on the evolution of the yield stress σs). The material length scale is taken into

account in the present model and the corresponding parameter is dependent on the ratio hg/h.

To illustrate this, let us consider a one-dimensional bar of length ` that is loaded in pure tension.

To simplify the analysis, let us set parameter ξ to 0 (i.e. there is no effect of the variation of

temperature on the evolution of the yield stress σs). Under this assumption, Eq. (2.27) reduces

to the following form:

σs= σy + h χ− hg ∆χ, (2.28)

which admits the following solution:

χ = A cos(
x

`
) +

σs − σy

h
, (2.29)

where A is an integration constant, x is the position of the studied point (0 < x < `), and

` =

√
−hg

h
. (2.30)

Parameters h and hg must have opposite signs in order that equations (2.29) and (2.30) make sense.

Furthermore, ` has a dimension of length.

By using Eq. (2.16)2 and (2.23), the energy balance equation (2.21) can be rewritten as:

−ρ (θ + T0)
d

dt

(
∂ Ψ
∂ θ

)
= ρ r+σ : ε̇p −R χ̇−Rg ∆ χ̇−divq. (2.31)
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The left-hand side term in the above equation can be expanded by the chain rule as:

−ρ (θ + T0) (
∂2Ψ

∂θ ∂εe
: ε̇e+

∂2Ψ
∂θ ∂χ

χ̇+
∂2Ψ

∂θ ∂∆χ
∆χ̇ +

∂2Ψ
∂θ2

θ̇) = ρ r + σ : ε̇p −R χ̇−Rg ∆ χ̇−divq . (2.32)

By using Eqs. (2.25), Eq. (2.32) reduces to:

(θ + T0) (K : ε̇e+
ρ Cv

T0
θ̇+ξiso χ̇+ξg

iso ∆χ̇) = ρ r + σ : ε̇p − h χ χ̇+ξiso θ χ̇+hg ∆χ∆χ̇+ξg
iso θ ∆χ̇−divq. (2.33)

The studied material is assumed to be plastically incompressible and, hence, the trace of the plastic strain rate

ε̇p is equal to 0. Consequently, the double contraction product K : ε̇p is equal to 0 and the term K : ε̇e may be

replaced by K : ε̇. Thus, Eq. (2.33) becomes

(θ + T0) (K : ε̇+
ρ Cv

T0
θ̇+ξiso χ̇+ξg

iso ∆χ̇) = ρ r + σ : ε̇p − h χ χ̇+ξiso θ χ̇+hg ∆χ∆χ̇+ξg
iso θ ∆χ̇−divq. (2.34)

In summary, the thermomechanical problem under study is defined by the strain-displacement relationship (2.2),

the equilibrium equation (2.4)1, the traction boundary condition (2.4)2, the consistency condition (2.10), the

normality law (2.12), the stress-strain relationship (2.26)1 and the heat equation (2.34).

3 Application to the one-dimensional thermo-gradient-dependent

plasticity

To demonstrate the salient feature of the gradient-dependent model of plasticity, we consider the one-dimensional

counterpart of the thermoplasticity model detailed in Section 2. All field variables (tensors such as ε and σ

or vectors such as u and q) have one-dimensional spatial dependence on the coordinate x. Consequently, the

equations governing the thermomechanical problem reduces to the following scalar equations:

1. The strain-displacement relationship:

ε =
∂ u

∂ x
= ux, (3.1)

which is equivalent to

ε̇=
∂ u̇

∂ x
=u̇x. (3.2)

2. The equilibrium equation in the absence of external and body forces:

∂ σ

∂ x
= ρ ü. (3.3)

3. The consistency condition:
f= (σ − σs(χ, χxx, θ)) < 0 ⇒ χ̇= 0,

f = (σ − σs(χ, χxx, θ)) = 0 and ḟ= (σ̇−σ̇s(χ, χxx, θ)) < 0 ⇒ χ̇= 0,

f = (σ − σs(χ, χxx, θ)) = 0 and ḟ= (σ̇−σ̇s(χ, χxx, θ)) = 0 ⇒ χ̇> 0,

(3.4)

where χxx =
∂2χ

∂ x2
.
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4. The normality law:

ε̇p=χ̇
∂ f

∂ σ
. (3.5)

Taking into account the fact that ∂ f/∂ σ is equal to 1 for this particular one-dimensional case, we get:

ε̇p=χ̇. (3.6)

5. The stress-strain relationship:

σ = E(ε− εp − αθ), (3.7)

where E is the Young modulus. Elasticity and thermal expansion are assumed to be linear during the

loading. Consequently, the scalars E and α remain constant.

6. The heat equation:

(θ + T0)(α E ε̇+
ρ Cv

T0
θ̇+ξiso χ̇+ξg

iso χ̇xx) =σ ε̇p − h χ χ̇+ξiso θ χ̇+hg χxx χ̇xx+ξg
iso θ χ̇xx−qx, (3.8)

where we have neglected the external heat sources (i.e., ρr = 0) to simplify the thermomechanical model.

As stated in Eq. (3.4)3, plastic flow occurs when ḟ is equal to 0. As function f depends on σ, χ, χxx and

θ, (3.4)3 becomes equivalent to:

ḟ=
∂ f

∂ σ
σ̇+

∂ f

∂ χ
χ̇+

∂ f

∂ χxx
χ̇xx+

∂ f

∂ θ
θ̇= 0. (3.9)

By using Eq. (3.4) and expression (2.27) of σs, we can easily obtain the following relations:

∂ f

∂ σ
= 1,

∂ f

∂ χ
= −∂ σs

∂ χ
= −h,

∂ f

∂ χxx
= − ∂ σs

∂ χxx
= hg,

∂ f

∂ θ
= −∂ σs

∂ θ
= ξ.

(3.10)

The insertion of relations (3.10) into Eq. (3.9) leads to the following expression of σ̇:

σ̇= h χ̇−hg χ̇xx−ξ θ̇. (3.11)

Using Eq. (3.6), Eq. (3.11) becomes:

σ̇= h ε̇p−hg ε̇p
xx−ξ θ̇. (3.12)

The medium is assumed to be initially stress and plastic strain free. We assume also that h, hg and ξ are

constant during the loading. Then, Eq. (3.12) can be equivalently written as:

σ= h εp−hg εp
xx−ξ θ. (3.13)

By combining Eqs. (3.1) and (3.7), we can easily derive the expression of the plastic strain εp:

εp=
∂ u

∂ x
− 1

E
σ − αθ. (3.14)
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Substituting Eq. (3.14) into Eq. (3.13) and using Eq. (3.3), we get:

(E+h) σ = E h
∂ u

∂ x
−Ehg ∂3 u

∂ x3
+ρhg ∂ ü

∂ x
+αEhg ∂2 θ

∂ x2
−E( ξ + h α)θ. (3.15)

Now inserting Eq. (3.15) into Eq. (3.3), we obtain the equation of motion of a thermo-gradient-dependent

strain-softening material in one dimensional setting:

%ü=h
∂2 u

∂ x2
−hg ∂4 u

∂ x4
+

ρhg

E

∂2 ü

∂ x2
+αhg ∂3 θ

∂ x3
−( ξ + h α)

∂ θ

∂ x
, (3.16)

where % =
ρ(E + h)

E
. By using Eq. (3.6), the heat equation (3.8) can be expressed as:

(θ + T0)(α E ε̇+
ρ Cv

T0
θ̇+ξiso ε̇p+ξg

iso ε̇p
xx) = σ ε̇p − h εpε̇p+ξiso θ ε̇p+hg εp

xx ε̇p
xx+ξg

iso θ ε̇p
xx−qx. (3.17)

The linear form of (3.17) reduces to

T0(α E ε̇+
ρCv

T0
θ̇ + ξiso ε̇p + ξg

iso ε̇p
xx) = −qx. (3.18)

Limiting ourselves to the second order partial derivatives of u and of θ, the heat equation (3.18) takes the form

E (α +
ξiso

E + h
)
∂u̇

∂x
+

(
ρCv

T0
+

ξiso(ξ − αE)
E + h

)
θ̇ = − 1

T0
qx. (3.19)

To avoid that the coupled thermomechanical equations (3.16) and (3.19) be an ill-posed problem, one must

ensure that the coefficient
ρCv

T0
+

ξiso(ξ − αE)
E + h

be positive. For this, the condition
ρCv

T0
+

ξisoξ

E + h
>

Eξisoα

E + h
or

just ξ > αE must be set.

In the following, we complete (3.16) and (3.19) by three different laws of heat conduction.

(i) Classical Fourier’s law: we write the heat conduction equation according to the classical Fourier’s law,

q = −κ
∂θ

∂x
, (3.20)

where κ is the coefficient of thermal conductivity. Substituting the divergence of (3.20) into (3.19), we obtain

the classical linear governing equations for thermo-gradient-dependent plasticity:

%ü− h
∂2u

∂x2
+ hg ∂4u

∂x4
− ρhg

E

∂2ü

∂x2
− αhg ∂3θ

∂x3
+ (ξ + hα)

∂θ

∂x
= 0,

(α +
ξiso

E + h
)E

∂u̇

∂x
+

(
ρCv

T0
+

ξiso(ξ − αE)
E + h

)
θ̇ − κ

T0

∂2θ

∂x2
= 0.

(3.21)

(ii) Cattaneo’s law: in this case, a modified law of heat conduction, Cattaneo’s law [8], i.e.,

τ0
∂q

∂t
+ q = −κ

∂θ

∂x
, (3.22)

replaces the classical Fourier’s law (3.20). The positive parameter τ0 is the relaxation time describing the time

lag in the response of the heat flux to a gradient in the temperature.
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Substituting the divergence of (3.22) into (3.19), we obtain the linear governing equations for thermo-

gradient-dependent plasticity under Cattaneo’s law (called also with one relaxation time):

%ü− h
∂2u

∂x2
+ hg ∂4u

∂x4
− ρhg

E

∂2ü

∂x2
− αhg ∂3θ

∂x3
+ (ξ + hα)

∂θ

∂x
= 0,

(α +
ξiso

E + h
)E(τ0

∂ü

∂x
+

∂u̇

∂x
) +

(
ρCv

T0
+

ξiso(ξ − αE)
E + h

)
(τ0θ̈ + θ̇)− κ

T0

∂2θ

∂x2
= 0.

(3.23)

By using Cattaneo’s law for heat conduction, the heat equation (3.23)2 becomes hyperbolic and automatically

eliminates the paradox of infinite speed. It is easy to see that (3.23)2 can be reduced to the classical heat

equation (3.21)2 by taking τ0 = 0.

(iii) Gurtin-Pipkin’s law: According to Gurtin-Pipkin’s theory [10], the linearized constitutive equation

of q is given by

q = −
∫ ∞

0

κ(s)∇θ(t− s)ds, (3.24)

where κ(s) is the heat conductivity relaxation kernel.

Substituting the divergence of (3.24) into Eq. (3.19), we obtain the linear governing equations for thermo-

gradient-dependent plasticity under Gurtin-Pipkin’s law (called also with memory):

%ü− h
∂2u

∂x2
+ hg ∂4u

∂x4
− ρhg

E

∂2ü

∂x2
− αhg ∂3θ

∂x3
+ (ξ + hα)

∂θ

∂x
= 0,

(α +
ξiso

E + h
)E

∂u̇

∂x
+

(
ρCv

T0
+

ξiso(ξ − αE)
E + h

)
θ̇ − 1

T0

∫ ∞

0

κ(s)
∂2θ

∂x2
(t− s)ds = 0.

(3.25)

The convolution terms, appearing in (3.25)2, introduced by Gurtin-Pipkin’s law entail finite propagation speed

for thermal disturbances. Eq. (3.24) can be reduced to classical Fourier’s law by taking κ(s) = δ(s) (the Dirac

distribution at zero). Besides, if we take

κ(s) =
1
σ

e−
s
σ , σ > 0,

and differentiate (3.24) with respect to t, one can easily arrive (formally) at (3.22).

To the field of equations (3.21), (3.23) or (3.25), we add appropriate boundary and initial conditions.

4 Well-posedness of the classical model

In this section, we shall study the well-posedness of the classical system (3.21). Without loss of generality, we

assume that the coefficient
ρCv

T0
+

ξiso(ξ − αE)
E + h

is positive and the term αhg ∂3θ

∂x3
in (3.21)1 is negligible to make

the calculations easier. Then, we consider the following system:

%ü−$
∂2ü

∂x2
+ hg ∂4u

∂x4
− h

∂2u

∂x2
+ β

∂θ

∂x
= 0, (x, t) ∈ (0, `)× R+

cθ̇ − k
∂2θ

∂x2
+ β

∂u̇

∂x
= 0, (x, t) ∈ (0, `)× R+

(4.1)
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where

% =
ρ(E + h)

E
, $ =

ρhg

E
, β = ξ + hα, c =

β(ρCv

T0
+ ξiso(ξ−αE)

E+h )

(α + ξiso

E+h )E
, k =

βκ

(α + ξiso

E+h )ET0

.

The variable u = u(x, t) represents the vertical deflection of the bar of length ` with respect to its reference

configuration, and θ = θ(x, t), accounting for the variation of temperature with respect to its reference value.

We study the well-posedness of system (4.1) subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x), x ∈ (0, `). (4.2)

We consider clamped boundary conditions for u and Dirichlet boundary condition for θ, that is:

u(x, t) = ux(x, t) = θ(x, t) = 0, on x = 0, `, t > 0. (4.3)

We now transform the initial-boundary-value problem given by equations (4.1)-(4.3) to an abstract problem

on a suitable Hilbert space. Well-posedness is then obtained by using semigroup theory. Putting u̇ = v, (4.1)

becomes


1 0 0

0 %−$D2 0

0 0 c

 d

dt


u

v

θ

 =


0 1 0

(h− hgD2)D2 0 −βD

0 −βD kD2




u

v

θ

 , (4.4)

where Dk =
∂k

∂xk
. Set

A =


1 0 0

0 %−$D2 0

0 0 c

 , B =


0 1 0

(h− hgD2)D2 0 −βD

0 −βD kD2

 . (4.5)

Then Eqs. (4.4) can be written into Sobolev equation

A
dU(t)

dt
= BU(t), U(0) = U0, (4.6)

where

U = (u, v, θ), U0 = (u0, v0, θ0). (4.7)

Put

H = H2
0 (Ω)× L2(Ω)× L2(Ω),

D(A ) = H2
0 (Ω)× (H2(Ω) ∩H1

0 (Ω))× L2(Ω),

D(A 1/2) = H2
0 (Ω)×H1

0 (Ω)× L2(Ω) = K ,

D(B) = (H4(Ω) ∩H2
0 (Ω))×H2

0 (Ω)× (H2(Ω) ∩H1
0 (Ω)),

where Ω = (0, `) and H and K are Hilbert spaces.
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We define the inner products of H and K as follows:




u

v

θ

 ,


u′

v′

θ′




H

= hg(D2u, D2u′)L2(Ω) + h(Du,Du′)L2(Ω) + (v, v′)L2(Ω) + (θ, θ′)L2(Ω),




u

v

θ

 ,


u′

v′

θ′




K

= hg(D2u, D2u′)L2(Ω) + h(Du,Du′)L2(Ω) + (Dv, Dv′)L2(Ω) + (v, v′)L2(Ω) + (θ, θ′)L2(Ω).

The following theorem is proved by using the same argument used in [12] in the proof of Theorem 11.11.

Theorem 4.1. The problem (4.6) is well-posed and is governed by a C0−contraction semigroup on K .

Proof. According to Goldstein [12] (see Theorem 11.11), it is sufficient to prove that A is a positive and

self-adjoint operator on H , that 0 belongs to the resolvent set of A , i.e., 0 ∈ ρ(A ), that D(A ) ⊃ D(B)

and that B in a maximal dissipative operator on H . Since it is easy and classic to prove that 0 ∈ ρ(A )

and that D(A ) ⊃ D(B), we will only prove that A is a positive and self-adjoint operator on H . For all

U = (u, v, θ) ∈ D(A ), we have

(A U ,U)H =




u

(%−$D2)v

cθ

 ,


u

v

θ




H

= hg‖D2u‖2L2(Ω) + h‖Du‖2L2(Ω) + %‖v‖2L2(Ω) + $‖Dv‖2L2(Ω) + c‖θ‖2L2(Ω) ≥ 0,

(4.8)

which shows that A is a positive operator on H . To obtain

(A U ,U ′)H = (U ,A U ′)H

we observe that

((%−$D2)v, v′) = %(v, v′)L2(Ω) −$(D2v, v′)L2(Ω)

= %(v, v′)L2(Ω) −$(v,D2v′)L2(Ω)

= (v, (%−$D2)v′)L2(Ω).

Hence the operator A is self adjoint on H .
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To prove that B is a maximal dissipative operator on H , we have for all U = (u, v, θ) ∈ D(B)

(BU ,U)H =




v

(h− hgD2)D2u− βDθ

−βDv + kD2θ

 ,


u

v

θ




H

= hg(D2v,D2u) + h(Dv, Du) + ((h− hgD2)D2u− βDθ, v) + (−βDv + kD2θ, θ)

= hg(D2v,D2u) + h(Dv, Du)− h(Du, Dv)− hg(D2u, D2v)− β(Dθ, v) + β(v,Dθ)− k(Dθ,Dθ)

= 2i=m
(
hg(D2v,D2u) + h(Dv, Du) + β(v,Dθ)

)
− k‖Dθ‖2

(4.9)

from which it follows that

<e(BU ,U)H = −k‖Dθ‖2, (4.10)

which proves that B is a dissipative operator on H .

To show that Range(I − B) = H , we will prove the existence of a vector of functions (u, v, θ) ∈ D(B)

satisfying 
u

v

θ

−B


u

v

θ

 =


f1

f2

f3

 ∈ H (4.11)

which in terms of the components gives

u− v = f1,

v − (h− hgD2)D2u + βDθ = f2,

θ + βDv − kD2θ = f3.

Inserting the first equation into the others, we have

u− (h− hgD2)D2u + βDθ = f1 + f2,

θ + βDu− kD2θ = f3 + βDf1,

u = Du = θ = 0 on x = 0, `.

(4.12)

To solve (4.12), we consider the following bilinear form defined on H2
0 (Ω)×H1

0 (Ω)×H1
0 (Ω) by

F

 u

θ

 ,

 φ

ϕ

 = (u, φ) + h(Du, Dφ) + hg(D2u, D2φ) + β(Dθ, φ) + (θ, ϕ) + k(Dθ,Dϕ)

+ β(Du, ϕ).

We will show that the following variational equation

F

 u

θ

 ,

 φ

ϕ

 = (f1 + f2, φ) + (f3 + βDf1, ϕ), (4.13)
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has a unique solution (u, θ) ∈ H2
0 (Ω)×H1

0 (Ω) for any (φ, ϕ) ∈ H2
0 (Ω)×H1

0 (Ω). The bilinear form F is coercive,

because

F

 u

θ

 ,

 u

θ

 = ‖u‖2 + h‖Du‖2 + hg‖D2u‖2 + β(Dθ, u) + ‖θ‖2 + k‖Dθ‖2 − β(u, Dθ)

≥ C(‖u‖2 + ‖Du‖2 + ‖D2u‖2 + ‖θ‖2 + ‖Dθ‖2).

According to Lax–Milgram theorem, there exists a unique solution of (4.13) satisfying

(u, θ) ∈ H2
0 (Ω)×H1

0 (Ω).

If we put φ = 0 in (4.13), then

(θ, ϕ) + k(Dθ,Dϕ) + β(Du, ϕ) = (f3 + βDf1, ϕ), ∀ϕ ∈ H1
0 (Ω)

which implies that θ is a weak solution of the equation

θ − kD2θ = f3 + βDf1 − βDu, in Ω

θ = 0, at x = 0, `.

Therefore, θ ∈ H2(Ω)×H1
0 (Ω).

If we put ϕ = 0 in (4.13) then

(u, φ) + h(Du, Dφ) + hg(D2u, D2φ) + β(Dθ, φ) = (f1 + f2, φ), ∀φ ∈ H1
0 (Ω)

which also implies that u is a weak solution to the problem

u− hD2u + hgD4u = f1 + f2 − βDθ, in Ω

u = Du = 0, at x = 0, `.

Therefore u ∈ H4(Ω)×H2
0 (Ω). Combining these facts, we conclude that Range(I −B) = H . 2

5 Exponential decay of the weak solution

In this section we study the exponential stability of the solution to problem (4.1)-(4.3). It is certainly an

interesting problem to determine whether the thermal dissipation under Fourier’s law is strong enough by itself

to induce exponential stability of this kind of system. We shall prove this in the affirmative. Our main tools

are Prüss [13] and Huang [14] results on the stability of semigroups. We can find them in the book by Liu and

Zheng [15]. We will use the following result:

Theorem 5.1. Let T (t) = etA a C0-semigroup of contractions on a Hilbert space K , with infinitesimal gener-

ator A with resolvent set ρ(A). T (t) is exponentially stable if and only if ,

ρ(A) ⊇ {iλ; λ ∈ R} ≡ iR (5.1)
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and

lim sup
|λ|→∞

‖(iλI −A)−1‖L (K ) < ∞, (5.2)

where the expression ‖ · ‖L (K ) denotes the norm in the space of continuous linear functions in K .

In view of Theorem 5.1, we prove the following Lemmas.

Lemma 5.1. The operator A B−1 : K → K is compact.

Proof. Since (%−$D2)−1 is a surjective map from L2(Ω) into H1
0 (Ω); D(A −1B) = D(B). Let us consider

(Fn) a bounded sequence in K and (Un) the sequence in D(A −1B) such that Fn = A −1BUn, Un = (un, vn, θn).

Since A B−1 ∈ L (K ), there exists a positive constant C such that

‖Un‖K + ‖A −1BUn‖K ≤ C, for all n ∈ N. (5.3)

From (5.3), we conclude that (un, vn, θn) is bounded in D(A −1B). Since the embedding of Hm(0, π) in

Hj(0, π), m > j, is compact, there exists a subsequence (uν , vν , θν) and functions (u, v, θ) such that

(uν , vν , θν) → (u, v, θ) in K ,

that is, the subsequence (A B−1Fν) converges in K . 2

Lemma 5.2. The operator A −1B satisfies (5.1).

Proof. We only need to show that there is no point spectrum on the imaginary axis, i.e., iR∩σp(A −1B) = ∅.

Suppose that there exists λ ∈ R, λ 6= 0, such that iλ is in the spectrum of A −1B. Since A B−1 is compact,

then iλ must be an eigenvalue of A −1B. Therefore, there is a vector U ∈ D(A −1B), U 6= 0, such that

(iλA −B)U = 0 in K or equivalently

iλu− v = 0,

iλ(%−$D2)v + hgD4u− hD2u + βDθ = 0,

iλcθ − kD2θ + βDv = 0. (5.4)

Since < (iλA −B)U ,U >K = 0, we have

k

∫ `

0

|Dθ|2dx = 0,

and then θ = 0. By (5.4)1,3 we get u = v = 0. Thus, we have a contradiction and the proof is complete. 2

Lemma 5.3. The operator A −1B satisfies (5.2).

Proof. It suffices to show that there exists a positive constant C such that for λ ∈ R,

‖(iλI −A −1B)−1U‖K ≤ C‖F‖K , for all F ∈ K . (5.5)
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Since C∞0 (Ω) is dense in K , we may assume that F = (f1, f2, f3) ∈ C∞0 (Ω). Put

(iλI −A −1B)−1F = U ∈ D(A −1B),

then

(iλI −A −1B)U = F

which implies that

(iλA −B)U = A F. (5.6)

To prove (5.5), it is sufficient to show that

‖U‖H2(Ω)×H1(Ω)×H1(Ω) ≤ C‖F‖K . (5.7)

We can write (5.6) componentwise as follows:

iλu− v = f1,

iλ(%−$D2)v + hgD4u− hD2u + βDθ = (%−$D2)f2,

iλcθ − kD2θ + βDv = cf3. (5.8)

From Eqs. (4.8) and (4.9), we infer that

<e < (iλA −B)U ,U >K = k

∫ `

0

|Dθ|2dx

and then from (5.6), we conclude that ∫ `

0

|Dθ|2dx ≤ C‖F‖K ‖U‖K , (5.9)

for a positive constant C. Multiplying (5.8)2 by u and using (5.8)1 we obtain

hg

∫ `

0

|D2u|2dx + h

∫ `

0

|Du|2dx = %

∫ `

0

|v|2dx + $

∫ `

0

|Dv|2dx + β

∫ `

0

θDūdx + %

∫ `

0

vf̄1dx

− $

∫ `

0

vD2f1dx + %

∫ `

0

f2ūdx−$

∫ `

0

D2f2ūdx, (5.10)

which, using (5.9) implies that

hg

∫ `

0

|D2u|2dx +
h

2

∫ `

0

|Du|2dx ≤ $

∫ `

0

|Dv|2dx + %

∫ `

0

|v|2dx + C‖F‖K ‖U‖K , (5.11)

for a positive constant C. Multiplying now (5.8)2 by v and using (5.8)1 we obtain

iλ
(
%

∫ `

0

|v|2dx + $

∫ `

0

|Dv|2dx + hg

∫ `

0

|D2u|2dx + h

∫ `

0

|Du|2dx
)

= −β

∫ `

0

Dθv̄dx + %

∫ `

0

f2v̄dx + $

∫ `

0

Df2Dv̄dx + hg

∫ `

0

D2uD2f̄1dx + h

∫ `

0

DuDf̄1dx. (5.12)
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Taking the imaginary part of (5.12), we have

hg

∫ `

0

|D2u|2dx + h

∫ `

0

|Du|2dx + $

∫ `

0

|Dv|2dx +
%

2

∫ `

0

|v|2dx ≤ C‖F‖K ‖U‖K , (5.13)

for a positive constant C. Multiplying (5.13) by 3 and summing up with (5.11), we get

4hg

∫ `

0

|D2u|2dx +
7h

2

∫ `

0

|Du|2dx + 2$

∫ `

0

|Dv|2dx +
%

2

∫ `

0

|v|2dx ≤ C‖F‖K ‖U‖K . (5.14)

Therefore, combining (5.9) and (5.14), there exists a constant C > 0 independent of λ and F ∈ K such that

(5.7) holds, which implies condition (5.2). Thus, the proof is complete. 2

6 Numerical experiments

In this section, we present the numerical scheme that we have implemented in MATLAB in order to obtain a

numerical solution to the problem (4.1)-(4.3). Without loss of generality, the numerical approach is developed

here for a bar, which is considered as one-dimensional body. To clearly present our numerical approach, let us

start our numerical development from (4.1) complemented by the consistency condition (when the loading is

elastic-plastic):

σ − σs = 0 ⇐⇒ E(ε− εp)− σy − hεp + hgεp
xx + ξθ = 0. (6.1)

The weak form of (4.1) together with (6.1) can be written as:∫ `

0

δu
(
%ü−$

∂2ü

∂x2
+ hg ∂4u

∂x4
− h

∂2u

∂x2
+ β

∂θ

∂x

)
dx = 0,∫ `

0

δθ
(
cθ̇ − k

∂2θ

∂x2
+ β

∂u̇

∂x

)
dx = 0,∫ `

0

δεp
(
E(ε− εp)− σy − hεp + hgεp

xx + ξθ
)
dx = 0,

(6.2)

where the δ-symbol denotes the variation of the corresponding quantity. With aid of the divergence theorem

and taking into account the boundary conditions (4.3), Eqs. (6.2) can be transformed as:

%

∫ `

0

δuüdx +
∫ `

0

δε
(
$

∂ü

∂x
− hg ∂3u

∂x3
+ h

∂u

∂x
− βθ

)
dx = 0,

k

∫ `

0

δ(
∂θ

∂x
)2dx +

∫ `

0

δθ
(
cθ̇ + β

∂u̇

∂x

)
dx = 0,∫ `

0

δεp
(
E(ε− εp)− σy − hεp + hgεp

xx + ξθ
)
dx = 0.

(6.3)

The main unknowns of the problem (6.3) are the displacement u, the plastic deformation εp, its Laplacian

εp
xx and the temperature variation θ. The studied bar is discretized into n finite elements. Each element is

defined by two nodes (one at each end). In this case, a linear interpolation is used for fields u and θ and a

Hermitian interpolation is employed for εp. The continuous displacement field u and temperature variation θ

are discretized as follows:

u = Ha, θ = Hb (6.4)
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where H is a matrix containing the linear interpolation polynomials and a (resp. b) is the nodal displacement

(resp. temperature variation) vector defined as follows:

a = {a1, a2, · · · , an, an+1} with a1 = an+1 = 0,

b = {b1, b2, · · · , bn, bn+1} with b1 = bn+1 = 0.
(6.5)

The strain field ε is related to the nodal displacement vector a by the following expression:

ε = Hxa. (6.6)

Similarly, the plastic deformation εp can be discretized as follows:

εp = hd (6.7)

with h is a matrix containing the Hermitian interpolation polynomials and Ψ is defined as follows:

d = {d1, d2, · · · , dn, dn+1} with d1 = dn+1 = 0.

By following the same approach developed in [20], Eq. (6.3) can be transformed to the following matrix form

(after some mathematical developments):

Kaaa + Kadd + Mä = 0,

Kbbb + Caȧ + Cbḃ = 0,

KT
ada + Kddd + Kdbb + Fd = 0,

(6.8)

where

Kaa = E

∫ `

0

HT
x Hxdx, Kad = −E

∫ `

0

HT
x hT dx, M = %

∫ `

0

HT Hdx,

Kbb = k

∫ `

0

HT
x Hxdx, Ca = β

∫ `

0

HT
x Hdx, Cb = c

∫ `

0

HT Hdx,

Kdd =
∫ `

0

[(h + E)hhT − hghhT
xx]dx, Kdb = −ξ

∫ `

0

hHT dx, Fd = σy

∫ `

0

hdx.

(6.9)

To determine the evolution of the different unknowns (namely a, b and d) during the loading history, the time

interval is subdivided into several time increments which are typically noted Ij = [tj , tj+1]. Over each time

increment, we assume that a(tj), b(tj) and d(tj) are known and the goal is to compute a(tj+1), b(tj+1) and

d(tj+1). Velocities ȧ, ä and ḃ are approximated as follows:

ȧ =
1

∆t
(a(tj)− a(tj−1)),

ä =
1

(∆t)2
(a(tj)− 2a(tj−1) + a(tj−2)),

ḃ =
1

∆t
(b(tj)− b(tj−1)),

(6.10)

where ∆t = tj − tj−1 = tj−1 − tj−2. By using Eqs. (6.10), (6.8) can be transformed in the following form:

a(tj) = (Kaa +
M

(∆t)2
)−1[−Kadd(tj)−

M
(∆t)2

(−2a(tj−1) + a(tj−2))],

b(tj) = −(Kbb +
Cb

∆t
)−1 Ca

∆t
(a(tj)− a(tj−1)) + (Kbb +

Cb

∆t
)−1 Cb

∆t
b(tj−1),

d(tj) = −K−1
ddKT

ada(tj)−K−1
ddKdbb(tj)−K−1

ddFd.

(6.11)
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System (6.11) is strongly nonlinear and we have used an implicit iterative scheme to solve it. This iterative

scheme is based on the fixed point method. At each iteration k, the following linear system of algebraic equations

should be solved:

a(tj,k) = (Kaa +
M

(∆t)2
)−1[−Kadd(tj,k−1)−

M
(∆t)2

(−2a(tj−1) + a(tj−2))],

b(tj,k) = −(Kbb +
Cb

∆t
)−1 Ca

∆t
(a(tj,k)− a(tj−1)) + (Kbb +

Cb

∆t
)−1 Cb

∆t
b(tj−1),

d(tj,k) = −K−1
ddKT

ada(tj,k)−K−1
ddKdbb(tj,k)−K−1

ddFd.

where

a(tj,0) = a(tj−1), b(tj,0) = b(tj−1), d(tj,0) = d(tj−1).

The last linear system has a unique solution, since the coefficient matrices have non-zero determinant. The

iterative procedure converges when the following conditions are fulfilled:

‖a(tj,k)− a(tj,k−1)‖ ≤ 10−7, ‖b(tj,k)− b(tj,k−1)‖ ≤ 10−7, ‖d(tj,k)− d(tj,k−1)‖ ≤ 10−7.

We describe in what follows the results of some numerical simulations. The length ` of this bar is set to 1 m. In

all simulations, the bar is discretized into 100 elements which have exactly the same initial length (0.01 m). The

adopted time increment ∆t is set to 10−4s. The material parameters corresponding to AK steel 321 material

are given below [21]:

Table 1: The values of material parameters.

ρ = 9010 Kg/m3 E = 193 GPa h = 592 MPa

κ = 386 W/(m K) hg = −1 MPa m2 α = 16× 10−16 K−1

ξ = 2 MPa K ξiso = 1 MPa K Cv = 500 J/kg K

T0 = 293 K σy = 0 MPa $ = 4.668× 10−9 kg/(N.m2)

The initial temperature and the initial displacement are given by the following equations:

u0(x) = 0.01x(`− x), u1(x) = 0, θ0(x) = 0, for all x ∈ [0, `].

The evolutions of temperature θ and displacement u for the node at the middle of the bar are given in Figures

1 and 2. These results show that both θ and u oscillate at the beginning of the loading and tend to zero very

quickly. This result is expectable considering the constitutive equations of the model and the adopted boundary

conditions.

In Figures 3 and 4, the temperature and displacement fields are plotted at different times. The results of

these Figures confirm and generalize the trends obtained in Figures 1 and 2. Indeed, we observe from these

Figures the fast decay of the evolution, which confirms the results obtained in Section 5 about the exponential

decay of the solution.
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Figure 1: The time evolution of the displacement at the middle of the bar.
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Figure 2: The time evolution of the temperature at the middle of the bar.
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Figure 3: The displacement as a function of x at different times.
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Figure 4: The temperature as a function of x at different times.
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7 Conclusion

We summarize the obtained results as follows:

(i) The model presented in this paper can be considered as a feasible thermodynamic approach that enables

one to derive various coupled thermo-gradient-dependent theories of plasticity, within different realistic heat

conduction laws by introducing simplifying assumptions. By comparison with other gradient-dependent plas-

ticity models [16, 17, 18, 19], the model proposed in this paper is more reasonable in predicting the propagation

of thermal and elastic-plastic waves. It can be seen in the above equations (see e.g. Eq. (4.10)) that the only

dissipative counterpart is due to the presence of temperature in the model. This work, which has not been

obtained in any reference yet, represents a first step towards understanding the fundamental limits of intrinsic

thermal dissipations in gradient-dependent plastic materials.

(ii) By means of semigroup theory, the well-posedness of the thermo-gradient-dependent plastic one-

dimensional problem was proved and its exponential stability was derived. The well-posedness result proves that

in the motion following any sufficiently small change in the external system, the solution of the initial-boundary

value problem is everywhere arbitrarily small in magnitude. The exponential stability result, from a mathe-

matical point of view, means that there exist positive constants M and ω such that ‖U(t)‖ ≤ Me−ωt‖U(0)‖,

where U(t) and U(0) are defined by (4.7). This means that the dissipation induced by the thermal effect (see

Eq. (4.10)) is strong enough to produce a uniform decay of the solution. From a mechanical point of view, it

implies that if we consider a thermoelastic perturbation, then after a small period of time, the perturbations

are so small that they can be neglected.

(iii) The one-dimensional problem of the basic equations has been solved numerically for a

particular material and for special initial and boundary conditions involving a periodic mechanical

regime and an exponentially decreasing regime. Functions of practical interest have been obtained

and the numerical results have been plotted and discussed. In particular, we show the fast decay

of the solution, which confirms the results obtained in Section 5. We remark from Figures 1

and 2, that the studied functions have non-zero value (although it may be very small). This is

due to the fact that our model is based on the classical Fourier’s law, where an infinite speed of

propagation is inherent. We expect that under a second sound law, such as Cattaneo’s law or

Gurtin-Pipkin’s law, the corresponding functions vanish identically outside a bounded region of

space surrounding the heating source at a distance from it. This may be studied in some future

paper.

The results presented in this paper should prove useful for researchers in materials science,

designers of new materials, low-temperature physicists, as well as for those working on the devel-

opment of higher-order gradient theories. In particular, the numerical schemes will be useful in

simulation and identification studies to predict and better understand the structural and thermal

responses of such systems.
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