Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/14040

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Dealing with the right of way in advanced traffic simulation. A characterization of drivers’ behaviours in a multi-agent approach.

Reffet B¹,², Mathieu P², Kemeny A¹,³, Vailleau B¹, Nongaillard A² and Mohellebi H¹

(1) Renault, France, e-mail : {berenice.reffet, andras.kemeny, benjamin.vailleau, hakim.mohellebi}@renault.com
(2) Université de Lille 1, France, e-mail : {philippe.mathieu, antoine.nongaillard}@univ-lille1.fr
(3) Arts et Metiers ParisTech, France

Abstract - With the emergence of ADAS and autonomous vehicle, the need of simulation software to test advanced systems and models is unavoidable. The objective of this work is to characterize, in a multi-agent approach, the traffic vehicles behaviours, and to model them in a versatile traffic simulator, serving as a testing tool for integration in the traffic module of the SCANeR Studio² TM simulation software. The algorithm will bring more natural interactions between vehicles in simulation and allow the emergence of new relevant situations for autonomous vehicles, observable in real, such as collision risk situations or even accidents, which have for now to be scripted in scenarios and do not occur naturally.

Keywords: Drivers’ behaviour, multi-agent systems, traffic, artificial intelligence, simulation.

Introduction

With an increasing number of ADAS systems and incoming Autonomous Vehicles (AV), a huge amount of physical driving tests is needed (hundreds of millions of km) [Koo16] to validate systems. The use of numerical simulation is then crucial to reduce this amount of real tests, by covering a range of situations as large as required [Mas12].

Most of current simulation softwares : PTV Vissim¹, ARCHISIM [Esp07], AIMSUN², TrafficGen [Bon14] etc., do not yet include sufficiently fine microscopic traffic modules for AV testing in terms of driver behaviour modelling and cooperative driving [Baz14, Mic85]. It is then difficult to confront simulated AV to real like situations, especially critical situations in which behaviour of the automated systems is expected to achieve customer performance with the necessary safety requirements [Baz13].

Drivers’ behaviours are various and changing, and they are at the origin of a great variability in road traffic situations. This disparity is generally related both to the human perception system (inter-individual differences), and to decision making mechanisms, as well as the actions and manoeuvres resulting from them [Wri02]. In our approach, we introduced this variability in perception and decision to our traffic agents’ models, in order to have more natural and realistic behaviours.

Methodology

Model of driving mechanisms can be schematized as in Figure 4.

The driver receives information from the environment and uses it to decide the action to do on the vehicle by acting on speed, acceleration/deceleration and steering wheel.

This mechanism is implemented in a multi-agent simulation tool, Netlogo, where the agents represent vehicles and infrastructure elements.

Tree main behaviours can be found in the literature. [Wri02] :

The first one, is what usually can be considered as cautious behaviour. It can be described by a strict respect of the traffic code and a tendency to drive slowly as the other drivers and with an increased safety distance.

The second one, corresponding to a more aggressive behaviour, can be described by a no respect of the traffic code and a tendency to drive faster as the other drivers and with a decreased safety distance.

The third one, would be a standard behaviour, described by a complete respect of the traffic code, neither more, neither less.

In our work, we propose to add one more we call the normal driver. It may vary in function of his or her

Figure 1: Scheme of main driving mechanisms.
organisation, or driving spirit. It can be considered of a mixed of the three lasts described.

Our model is based on three main components: perception, anticipation, and decision rules. - Each agent of the traffic has a perception perimeter, with speed, position and time to collision (TTC) with other vehicles inside this perimeter, as well as position and state of static agents such as traffic light or traffic signs for example. - Anticipation is characterized by an estimation of perception state at a given temporal horizon. - Decision rules are condition that have to be satisfied in order to trigger a manoeuvre.

Variability across traffic agents is provided by a variability on perception parameters. Moreover, an error is pseudo-randomly (distribution on traffic population) introduced in perception and anticipation to provide more realistic non-perfect behaviours.

To validate our approach on a manoeuvre, we first chose to prototype the methodology in the case of overtake on a 2 lanes highway.

In this case, perception parameters are following:

With:
- D_S: the safety distance
- V_E: the speed of the ego car
- (v_f, v_b, v_l): the speed of other vehicles (f for front, b for back, l for the lateral lane)
- (t_f, t_b, t_l): the time to vehicle i (in front, back, on the lateral lane)
- $((\alpha_f, d_f), (\alpha_b, d_b), (\alpha_l, d_l))$: the field of view of the ego car
- r_O: the overtake risks
- r_S: the speed risk
- $S_L = [20; 30; 40; 50; 70; 90; 110; 130]$: the speed limit
- T_R: the respect of traffic code
- t_l: the reaction time/latency

These parameters are then correlated to the following overtaking decision rules:

For the implementation we choose the Netlogo language, and our algorithm takes into account the overtaking on a road with two lanes. A crossing in T is under development.

1 http://vision-traffic.ptvgroup.com/fr/produits/ptv-vissim/
2 http://www.aimsun.com/