Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/14195

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverta@ensam.eu
TEAM: a Tool for Eco Additive Manufacturing to optimize environmental impact in early design stages

Laverne Floriane¹; Bottacini. E²; Segonds. F¹; Perry. N³; D’Antonio. G² and Chiabert. P²

¹ LCPI, ENSAM Paris, 151 bd de l’Hôpital, 75013 Paris, France
² DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
³ I2M, ENSAM Bordeaux, Esplanade des Arts & Métiers 33405 Talence, France

1. Literature Review

2. TEAM: Tool for Eco Additive Manufacturing
 A. Requirements specifications
 B. TEAM development

3. Experiment
 A. Protocol
 B. Results
1. Literature Review

AM & Sustainability

AM is promising for sustainable manufacturing and sustainable design
(Despeisse & Ford, 2015)

AM & Product design

Using AM to produce near net shape workpieces can substantially reduce lead time, cost, and material waste.
(Thompson, Moroni, Vaneker, Fadel, Campbell, Gibson, Bernard, Schutz, Graf, Ahuja, & Martina, 2016)

AM upsets the design paradigm and offers wide possibilities for product innovation
(Laverne, Segonds, Anwer, & Le Coq, 2015)

AM offers a high design freedom due to four possible complexities available in a same product
(Gibson, Rosen, & Stucker, 2015)

The production phase of a product manufactured with AM is the most influential on the environmental impact
(Barros, Mansur, & Zwolinski, 2017)

Designers often waste material due to the multiple trial-and-error iterations required for fixing unqualified feature requirements

AM & Product life-cycle

How to make the environmental impact of AM use for prototyping as low as possible in the life-cycle of a new product?

Dilemma during Early Design Stages!
⇒ Focus on the new product sustainability but no consideration for the prototype’s one!

⇒ Using AM for prototyping has an impact on the new product life-cycle!
1. Literature Review

How to make the environmental impact of AM use for prototyping as low as possible in the life-cycle of a new product?

The **Design to Environment approach** requires:

- Increasing the **eco-efficiency of the product manufacturing**
- Improving the **eco-effectiveness of the design**

Two possibilities for integrating DTE considerations:

- Involving AM experts during the EDS
- Supporting the designer with specific tools

By assisting designers with a Tool for Eco Additive Manufacturing dedicated to an eco-efficient use of AM and an eco-effectiveness of the prototype design

2. TEAM: Tool for Eco Additive Manufacturing

A 3-months study to understand the use of AM machines during the EDS of innovation projects

Default settings are frequently selected whatever the prototype’s use is

TEAM specification:

- **Delivering adequate settings** compatible with a validation of the expected features and with a **sustainable manufacturing**
- **Delivering design rules** for the adaptation of the concept CAD into a feature CAD
2. TEAM: Tool for Eco Additive Manufacturing 2.B. TEAM development

- TEAM Tool START
 1. AM machine selection
 2. Product description
 3. Compatibility of the data
 4. Environmental strategy selection

- TEAM Tool STOP
 AM machine environmental consumptions

TEAM V1 Flowchart

3. Experiment 3.A. Protocol

Objective:
TEAM user experience + Influence of AM and Eco-design knowledge

Panel:
28 participants working in EDS of new product development
Pluridisciplinary profils

Protocol:
TEAM handling (≈ 15min) + Questionnaire

Subjective evaluation:
Nielsen criteria: (Nielsen 1994)
Usability: Learnability + Satisfaction
Utility
Acceptability

6-points Likert scale + Non-mandatory open answers
3. Experiment 3.B. Results

Results:

<table>
<thead>
<tr>
<th></th>
<th>Learnability</th>
<th>Satisfaction</th>
<th>Utility</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean on the 6 points Likert scale</td>
<td>4.14</td>
<td>4.71</td>
<td>4.53</td>
<td>5.05</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.93</td>
<td>0.91</td>
<td>0.92</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Intermediate to high satisfaction level for the 4 criteria

⇒ TEAM is well accepted by users

Mann–Whitney U test for the grouping criterion “AM knowledge level”

<table>
<thead>
<tr>
<th></th>
<th>Usability Learnability</th>
<th>Usability Satisfaction</th>
<th>Utility</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>U de Mann–Whitney</td>
<td>47.5</td>
<td>63</td>
<td>45</td>
<td>75.5</td>
</tr>
<tr>
<td>W de Wilcoxon</td>
<td>257.5</td>
<td>-911</td>
<td>-1.87</td>
<td>-0.245</td>
</tr>
<tr>
<td>Z</td>
<td>-1.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact significance</td>
<td>.029</td>
<td>.049</td>
<td>.079</td>
<td>.223</td>
</tr>
</tbody>
</table>

Mann–Whitney U test for the grouping criterion “Eco-design knowledge level”

<table>
<thead>
<tr>
<th></th>
<th>Usability Learnability</th>
<th>Usability Satisfaction</th>
<th>Utility</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>U de Mann–Whitney</td>
<td>76.5</td>
<td>48.5</td>
<td>80.5</td>
<td>63</td>
</tr>
<tr>
<td>W de Wilcoxon</td>
<td>266.5</td>
<td>93.5</td>
<td>270.5</td>
<td>253</td>
</tr>
<tr>
<td>Z</td>
<td>-1.477</td>
<td>-1.212</td>
<td>-1.186</td>
<td></td>
</tr>
<tr>
<td>Asymptotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact significance</td>
<td>.074</td>
<td>.068</td>
<td>.089</td>
<td>.285</td>
</tr>
</tbody>
</table>

No significant difference between groups (with or without AMK or EDK)

⇒ Skills don’t influence the answers

⇒ TEAM use doesn’t require skills

TEAM: a Tool for Eco Additive Manufacturing to optimize environmental impact in early design stages

Laverne Floriane¹; Bottacini. E²; Segonds. F¹; Perry. N³; D’Antonio. G² and Chiabert. P²

¹ LCPI, ENSAM Paris, 151 bd de l’Hôpital, 75013 Paris, France
² DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
³ I2M, ENSAM Bordeaux, Esplanade des Arts & Métiers 33405 Talence, France