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Abstract

Most of mechanical systems and complex structures exhibit plate and shell
components. Therefore, 2D simulation, based on plate and shell theory, appears as an
appealing choice in structural analysis as it allows reducing the computational
complexity. Nevertheless, this 2D framework fails for capturing rich physics
compromising the usual hypotheses considered when deriving standard plate and
shell theories. To circumvent, or at least alleviate this issue, authors proposed in their
former works an in-plane-out-of-plane separated representation able to capture rich 3D
behaviors while keeping the computational complexity of 2D simulations. However,
that procedure it was revealed to be too intrusive for being introduced into existing
commercial softwares. Moreover, experience indicated that such enriched descriptions
are only compulsory locally, in some regions or structure components. In the present
paper we propose an enrichment procedure able to address 3D local behaviors,
preserving the direct minimally-invasive coupling with existing plate and shell
discretizations. The proposed strategy will be extended to inelastic behaviors and
structural dynamics.

Keywords: Plate and shells theories, In-plane-out-of-plane separated representations,
PGD, Dynamics

Introduction
Many mechanical systems and complex structures involve plate and shell parts or com-
ponents whose main particularity is having a characteristic dimension (the one related to
the thickness) much lower than the other ones (in-plane dimensions). In order to analyse
such structures, beam, plate and shell theories have been developed in solid mechan-
ics [1,2] and extended later to many other physics, like flows in narrow gaps, thermal
or electromagnetic problems in laminates, among many others. In these theories the
introduction of appropriate kinematic and mechanic hypotheses on the evolution of the
solution through the thickness of the plate (shell) allows the reduction of the general 3D
mechanical problem to a 2D one involving the in-plane coordinates.
However, in many cases, when addressing complex coupled physics, inelastic behaviors

or any other exhibiting localization, the validity of hypotheses able to reduce models
from 3D to 2D becomes doubtful and consequently in order to ensure accurate results
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3D discretizations seem compulsory. However mesh-based solutions of models defined
in such degenerated domains is a challenging issue because the resulting meshes usually
involve too many degrees of freedom, where the mesh size is almost determined by the
domain thickness and the material and/or solution details to be represented. In order
to alleviate the associated computational complexity in [3] authors proposed computing
the fully 3D solution employing an in-plane-out-of-plane separated representation whose
computational complexity remains the one characteristic of 2D plate or shell simulations,
using the proper generalized decomposition-PGD-method [4].
However the proposed in-plane-out-of-plane separated representation appears to be

too intrusive to be implemented in structural mechanics commercial software that gen-
erally propose different plate and shell finite elements, even in the case of multilayered
composites plates or shells. For this reason in this work we propose a minimally-intrusive
methodwhich allows integrating fully 3D local descriptions in plate or shell models imple-
mented in any software, without affecting its computational complexity that remains the
one related to standard 2D analyses. For that purpose, two different enrichment routes
will be considered, the first based on the use of that separated representation and the sec-
ond on a simple condensation. The former methodology allows for very fine 3D enriched
descriptions while the last is particularly well adapted to address inelastic and dynamical
behaviors.

Elastostatic problem definition
We consider the linear elastostatic problem defined in the plate domain depicted in Fig. 1,
� = �xy × �z , with �xy = [0, Hx] × [0, Hy] and �z = [0, Hz] in which the thickness
(out-of-plane) dimension is much lower than the other ones, i.e. Hz � Hx,Hy.
The linear elastic behavior relating the Cauchy’s stress σ and the strain ε tensors

reads

σ = C ε, (1)

where C is the Hooke’s fourth order tensor. The relation between strain ε and displace-
ment u (with components u = (u, v, w)) writes

ε = ∇su = Gu, (2)

where G = ∇s• = 1
2 (∇ • +∇T•) is the symmetric gradient operator. Considering an

homogeneous and isotropic material and using the Voigt notation, the Hooke’s tensor
can be written as

Fig. 1 Example of a plate domain
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In absence of volumetric body forces, the displacement field evolution u(x) for x ∈ � is
described by the linear momentum balance equation

∇ · σ = 0. (4)

The domain boundary ∂� is partitioned into Dirichlet, �D, and Neumann, �N , bound-
aries, where displacement ug and tractions T are enforced respectively.
The problem weak form associated to the strong form (4) lies in looking for the dis-

placement field u verifying the Dirichlet boundary conditions such that the weak form

∫
�

ε(u∗) · (C ε(u)) dx =
∫

�N

u∗ · T dx (5)

fulfills for any test function u∗, with the trial and test fields defined in appropriate func-
tional spaces.
In this type of domains, plate theory is usually used in order to reduce the general 3D

mechanical problem to a 2D one involving the in-plane coordinates only. Two kinds of
theories exist: the thin plate theory proposed by Kirchoff [5] which establishes that the
normal remains straight and orthogonal to the middle plane after deformation and the
thick plate theory proposed by Reissner [6] and Mindlin [7] which assumes that normals
remain straight, but not necessarily orthogonal to the middle plane after deformation.
In both theories the middle plane is taken as the reference plane (z = 0) for deriving the

plane kinematic equations. In this work, we consider the Reissner–Mindlin theory whose
fundamental hypotheses are the following: (i) on the middle plane (z = 0) the in-plane
displacements vanish, i.e.u(x, y, z = 0) = v(x, y, z = 0) = 0 that implies that points located
in themiddle-plane onlymoves vertically; (iii) the plate thickness remains unchanged; (iv)
the plane stress assumption remains valid, i.e. σzz = 0 and (v) a straight line normal to the
undeformed middle plane remains straight but not necessarily orthogonal to the middle
plane after deformation.
From these assumptions the displacement field can be written as:

⎧⎪⎨
⎪⎩

u(x, y, z) = −zθx(x, y)
v(x, y, z) = −zθy(x, y)
w(x, y, z) = w(x, y)

(6)

where w is the vertical displacement (deflection) of the points on the middle plane and
the rotations θx and θy coincide with the angles followed by the normal vectors contained
in the planes xz and yz respectively in their motions.
We define the generalized displacement vector û

û = [θx, θy, w]T (7)

defined at any point on the middle plane.



Injecting plate theory assumptions into the 3D elastostatic problem weak form, Eq. (5)
reduces to the following 2D formulation [1]

∫
�xy

ε̂(û∗) · (
Ĉε̂(û)

)
dx =

∫
∂N�xy

û∗ · T̂ dx, (8)

whose standard finite element discretization leads to

KU = F (9)

where for notational simplicity the hat symbol (•̂) is omitted. In the previous expression
(9), K is the stiffness matrix and U and F are the vector of the generalized displacements
and forces, the former containing nodal rotations and deflections and the last the dual
quantities: the nodal moments and vertical nodal forces. The 3D displacement field can
be then recovered by using the relations (6).
In many cases, the complexity of the solution makes impossible the introduction of

pertinent hypotheses for reducing the dimensionality of the model from 3D to 2D. In that
case a fully 3D descriptions seems compulsory, and the in-plane-out-of-plane separated
representations become particularly suitable.

In-plane-out-of-plane separated representation
The in-plane-out-of-plane separated representation was proposed in [3] and applied to
efficiently solve 3D elastic problems in plate geometries. The elastic problem was defined
in a plate domain � = �xy × �z with (x, y) ∈ �xy, �xy ⊂ R

2 and z ∈ �z , �z ⊂ R. The
separated representation of the displacement field u = (u, v, w) consists in a finite sum
decomposition on N terms, each one of them consisting in the product of two unknown
functions, one depending on the in-plane coordinates (x, y) and one on the out-of-plane
coordinate z, i.e.:

u(x, y, z) =

⎛
⎜⎜⎜⎝

u(x, y, z)

v(x, y, z)

w(x, y, z)

⎞
⎟⎟⎟⎠ ≈

N∑
i=1

⎛
⎜⎜⎜⎝

uixy(x, y) · uiz(z)
vixy(x, y) · viz(z)
wi
xy(x, y) · wi

z(z)

⎞
⎟⎟⎟⎠. (10)

Expression (10) can be written in a more compact form by using the Hadamard
(component-to-component) product:

u(x, y, z) ≈
N∑
i=1

Ui
xy(x, y) ◦ Ui

z(z). (11)

The separated representation of the displacement field Eq. (10) leads to a separated rep-
resentation of its derivatives and consequently of the strain tensor, as proved in [3]. Then,
using the constitutive equation and the separated representation of both the trial and test
displacements and the corresponding strains, the separated representation constructor
proceeds as described in [3]. The procedure was easily generalized to the case of elastic
problems defined in shell geometries [8] and also extended to dynamics in [9].



Fig. 2 Plate domain � and its associated mesh

Fig. 3 3D mesh of element �e

However the proposed in-plane-out-of-plane separated representation remains too
intrusive to be implemented in structural mechanics commercial softwares that instead,
propose a variety of plate and shell elements.
For this reason in the next sectionwe propose amethodwhich allows enriching standard

plate and shell discretizations while limiting intrusivity.

Enriched formulations

PGD-based enriched elements

Weassume the 2Dmeshdefinedon themiddle plane of a plate geometry�, depicted in Fig.
2. Our goal here is to address one element of the mesh, for example the one whose bound-
ary is highlighted in red and that is noted by�e, by using a fully 3D description in order to
extract its homogenized 9×9 element stiffnessmatrix corresponding to�e, and therefore
fully compatible with the plate kinematics enforced on the element boundary ∂�e.
For that purpose, �e is 3D resolved using the PGD-based in plane-out-of-plane sep-

arated representation while a kinematics compatible with the plate kinematics (6) is
enforced on the element boundary. All the other elements in � depicted in Fig. 2 are
described using the standard plate theory, the only 3D resolved is just the �e whose 3D
mesh is depicted in Fig. 3.
The separated representation of the 3D displacement field in �e is denoted by ue =

(ue, ve, we), whose first mode consists of the standard plate kinematics



Fig. 4 Nodal degrees of freedom defining the kinematics on ∂�e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue,1xy (x, y) = θx1N1(x, y) + θx2N2(x, y) + θx3N3(x, y)

ve,1xy (x, y) = θ
y
1N1(x, y) + θ

y
2N2(x, y) + θ

y
3N3(x, y)

we,1
xy (x, y) = ω1N1(x, y) + ω2N2(x, y) + ω3N3(x, y)

ue,1z (z) = −z

ve,1z (z) = −z

we,1
z (z) = 1

(12)

whereN1(x, y),N2(x, y) andN3(x, y) are the shape functions related to the 2D linear trian-
gular element �e, and

Ue = (ω1, θx1 , θ
y
1 ,ω2, θx2 , θ

y
2 ,ω3, θx3 , θ

y
3 ) (13)

are the nine degrees of freedom associated to its three vertices, depicted in Fig. 4.
Once the firstmode has been imposed the followingmodes are constructed as described

in section while ensuring that they vanish on the element boundary ∂�e. The last condi-
tion can be enforced by using the so-called bubble function that results from the product
of the three triangle shape functions B(x, y) = N1(x, y)N2(x, y)N3(x, y) (even if other alter-
natives exist for that purpose [10]), i.e. ∀i > 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue,ixy(x, y) = B(x, y)Pi
x(x, y)

ve,ixy(x, y) = B(x, y)Pi
y(x, y)

we,i
xy(x, y) = B(x, y)Pi

z(x, y)

ue,iz (z) = Ti
x(z)

ve,iz (z) = Ti
y(z)

we,i
z (z) = Ti

z(z)

(14)

Thus, the solution on the triangle boundary ∂�e is given by the first mode, that is the
standard plate kinematics, whereas inside �e the solution becomes enriched with models
that can describe richer kinematics than the one related to standard plate kinematics.



In order to extract the effective enriched 9 × 9 element stiffness Ke (related to element
�e) to be assembled into the global stiffness matrix involved in the algebraic system (9),
we consider the element average

〈•〉 =
∫

�e
• dx, (15)

from which the element elastic energy U e becomes

U e =
〈
εe

T
σe

〉
=

〈
εe

T
Cεe

〉
. (16)

Now, with the strain defined from (2) we assume the existence of a localization tensor
L such that

ue = LUe, (17)

that using Eq. (2) results

εe = ∇sue = GLUe, (18)

where Ue, as previously indicated, represents the plate generalized displacement degrees
of freedom defined in (13).
Thus, the components of the localization tensor result from the elastic problem solution

in�e by prescribing the canonical boundary displacements, i.e.Ue
1 = (1, 0, 0, 0, 0, 0, 0, 0, 0),

Ue
2 = (0, 1, 0, 0, 0, 0, 0, 0, 0), and so on, with nine associated 3D elastic problems solved by

using the PGD-based in-plane-out-of-plane separated representation.
Then, by definingM = GL we obtain

U e =
〈
UeTMTCMUe

〉
= UeT

〈
MTCM

〉
Ue, (19)

which allows defining the element stiffness matrix Ke as

Ke =
〈
MTCM

〉
. (20)

In order to check the procedure, the stiffness matrixKe obtained using the first mode of
thedisplacement expansion is compared to that one corresponding to theplate kinematics.
In that case, the resulting stiffness matrix was, as expected, the one related to standard
plate theory.
Of course, when considering more modes in the separated representation of the 3D

displacement field ue, the resulting stiffness matrix Ke differs from the one associated
to standard plate theory by including eventual 3D effects ignored in standard plate kine-
matics. However, in that case the expression of the effective enriched stiffness matrix
Ke depends on the element geometry. To avoid the necessity of calculating online stiff-
ness matrices for each triangle, the PGD rationale allows including different parameters
into the separated representation as proved in our former works. The interested reader
can refer to [10], [11] for an intrusive and a non-intrusive approach, respectively. In the
case here addressed, the natural choice consists of considering the triangle geometry as
parameters, and then as extra-coordinates within the PGD rationale.



Static condensation based enrichment

In this section, we consider an alternative procedure for computing the homogenized
element stiffness matrix using static condensation [12].
We consider again the problem defined in the domain �e depicted in Fig. 3. The nodal

degrees of freedom used for discretizing the displacement field ue,Ue, can be decomposed
in the ones related to internal nodesUe

i and the ones related to nodes located on ∂�e,Ue
b.

Thus, the standard 3D finite element formulation

K
e
U
e = F

e, (21)

with

K
e =

(
K

e
ii K

e
ib

K
e
bi K

e
bb

)
, (22)

can be expressed as
(
K

e
ii K

e
ib

K
e
bi K

e
bb

) (
U
e
i

U
e
b

)
=

(
F
e
i

F
e
b

)
. (23)

Now, by developing the first row of the previous system, the internal degrees of freedom
can be expressed from the ones on the element border,

U
e
i = K

e−1
ii

(
F
e
i − K

e
ibU

e
b
)
, (24)

that inserted in the second leads to

Ke
bbU

e
b = F e

b , (25)

with

Ke
bb = K

e
bb − K

e
biK

e−1
ii K

e
ib (26)

F e
b = F

e
b − K

e
biK

e−1
ii F

e
i . (27)

Nowwe enforce on the element border a kinematic compatible with the one of the plate
theory, that is, the border nodal displacementsUe

b are expressed formUe [(the plate theory
degrees of freedom defined at the triangle vertices as expressed in Eq. (13)], according to
Eq. (6), relation that is expressed in matrix form from U

e
b = BUe.

Thus, Eq. (25) can be rewritten as

Ke
bbBU

e = F e
b , (28)

that premultiplying by BT (looking for the Galerkin based discrete system) results

BTKe
bbBU

e = BTF e
b , (29)

that allows extracting the expression of the effective plate element stiffness matrix K̃e and
the effective plate nodal forces F̃e



Fig. 5 Elastic problem defined in a plate domain

Table 1 Problem parameters

Hx : Length in the x direction (mm) 250

Hy : Length in the y direction (mm) 50

Hz : Length in the z direction (mm) 2

E : Young modulus (N/m2) 2 · 1011
ν : Poisson coefficient 0.25

Table 2 Parameters values used in the simulation

Nx (number of elements in the x direction): 25

Ny (number of elements in the y direction): 5

Nz (number of elements in the z direction): 11

K̃e = BTKe
bbB (30)

F̃e = BTF e. (31)

Our numerical simulation allowed proving that the effective plate element stiffness
matrix K̃e obtained using the just described rationale based on the static condensation
coincides with the one previously obtained by using the PGD-based separated represen-
tation Ke.
An additional advantage of this second route is the fact of deriving an expression for

the effective plate nodal forces that will be advantageously considered when addressing
inelastic and dynamic behaviors.

Numerical validation
We solve the elastic problem in the plate domain depicted in Fig. 5 and compare the
solutions obtained using 3DFEM, the standard plate theory and the enriched formulations
considered in the previous section. The domain geometry � = [0, Hx] × [0, Hy] × [0, Hz]
is defined in Table 1 whereas Table 2 specifies the considered mesh.
On the domain right face (blue area in Fig. 5) a vertical traction is applied, T =

(0, 0, 10000)N/m2 whereas the displacement is prevented on the opposite face.
Figure 6 compares the different computed solutions. In that figure “3D solution” refers

to the solution obtained using 3D elements according to the mesh specified in Table 2. As
reference solution we consider a 3D finite element solution using a much finer mesh (the
one defined in Table 3).
The number of elements with enriched behavior (according to the procedures described

in the previous section) can be arbitrarily increased, and it was noted, that as expected, by
increasing it the solution approaches the reference one.
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Fig. 6 Displacement of the plate middle plane using plate theory (a), all plate theory elements except the
homogenized (enriched) element (b), half plate theory elements (the triangles of the mesh in Fig. 2 with the
right angle on the bottom) and half homogenized (enriched) elements (the triangles of the mesh in Fig. 2
with the right angle on the top) (c), all homogenized (enriched) elements (d), fully 3D FEM on a coarse mesh
(e), fully 3D FEM on fine mesh (f)

It is important to note that even when all the element are enriched, the solution exhibits
a gap with respect to the reference solution. This gap can be explained by the fact that
despite of the valuable enrichments introduced at the elements level, at the elements
boundaries standard plate kinematics is enforced with its consequent impact on the
resulting kinematic that continue to be too constrained with respect to a fully 3D kine-
matics.
Thusone could conclude that theproposed technique couldbecomeadvantageouswhen

used for enriching the mechanical description inside an element or patch (as discussed



Table3 Parameters values used in the simulation for the reference solution

Nx (number of elements in the x direction): 60

Ny (number of elements in the y direction): 12

Nz (number of elements in the z direction): 11

Fig. 7 Holed 3D triangular element and its associated mesh

later) but whose effects remain confined in the interior of that element (or patch) and
when approaching to the element border the plate kinematic is accurate enough.
In the case here discussed plate theory and coarse 3D finite element solutions are closer

one to the other, whereas the enriched one is the closest to the reference one (refined 3D
finite element solution).
We consider the same problem as in the previous example but now we suppose that in

the 3D element there is an hole as depicted in Fig. 7 (in the other elements we consider
the enrichment presented before in absence of holes).
Here, there is clearly a double advantage in using the enrichment methodology. First, if

the effect of the hole remains confined inside the element, vanishingwhen approaching the
element boundary, the element enriched suffices and the plate meshing can be alleviated
because the hole only exist for the element that will be accordingly enriched, but remains
invisible at the plate level. On the other hand, its local 3D effects will be described very
accurately.
Once the holed element stiffness matrixKe is computed using the procedure presented

in the previous section, the problem is solved and the generalized displacement field Ue

can be extracted at the vertices of the holed triangle. Then the 3D solution inside the
element can be easily computed by using (17). Figure 8 depicts different solutions. Even
if �e accounts the hole presence (the PGD and static condensation based enrichment
proceed on a mesh that describe the hole presence), the plate mesh becomes unaltered.
As discussed, after solving the problem at the plate level, using the enriched stiffness

matrices for the different elements, 3D fields can be reconstructed. Thus, Figs. 9, 10 and
11 represent the out-of-plane stress tensor components, including the component σzz
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Fig. 8 Displacement of the plate middle plane using plate theory (a), all plate theory elements except the
homogenized (enriched) holed element (b), half plates theory elements (the triangles of the mesh in Fig. 2
with the right angle on the bottom) and half homogenized elements (the triangles of the mesh in Fig. 2 with
the right angle on the top), one of them holed (c), all homogenized elements, one of them holed (d), fully 3D
theory on the fine mesh (e)

that is neglected when using standard plate theory. Moreover, a parabolic evolution of the
components σxz and σyz along the domain thickness can be noticed in Fig. 11.

Extension of themethod to patches
In this section we extend the method previously presented to the construction of an
enriched patch (super-element). In fact a single triangle element is too small for capturing
rich events which can occur on a large area of the domain. Our goal is to select the
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Fig. 10 Out-of-plane components of the stress tensor on the plane z = 0.51 mm
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Fig. 11 Out-of-plane components of the stress tensor through the domain thickness in the hole
neighborhood

solution has been computed using a mesh as fine as the one considered to describe the
enriched solution at the patch level.
The solution involving the nine patches is the closest to the reference solution.However,

because at the border of the patches the usual plate kinematics is enforced, a gap between
the nine-patches solution and the refined 3D FEM solution (reference solution) persists.
In any case, as the patches solution involved less constraints (plate kinematics) than the



Fig. 12 Plate mesh

Fig. 13 3D patch mesh

one related to enriched elements where the kinematic constrains are applied to all the
elements boundaries, its accuracy is superior.
Since it is not pretended that plates should bediscretizedusing enriched super-elements,

ourmain interest is adopting accurate descriptions of rich behaviors that could be assumed
confined inside a region (our patch). This is the route retained for replacing 3D FEM
discretization in regions exhibiting rich behaviors by enriched super-elements keeping its
2D computational complexity.

Extension of themethod to plasticity
In this section we extend the method to problems in which plastic behavior can occur. In
fact localized plasticity phenomena can occur in several situation, as in spot-welds during
crash simulations.
In its general form the infinitesimal relation between the stress increment dσ and the

elastic strain dεe increment reads [13]

dσ = Cdεe = C(dε − dεp), (33)

where C is the Hooke tensor, dε is total strain and dεp is the plastic strain.



Fig. 14 Patch discretization

Table 4 Model parameters

Hx : Length in the x direction (mm) 250

Hy : Length in the y direction (mm) 250

Hz : Length in the z direction (mm) 2

E : Young modulus (N/m2) 2 1011

ν : Poisson coefficient 0.25

In plasticity yielding can occur only if the stresses satisfy a general yield criterion; in
the considered examples, for the sake of simplicity, we use the Von Mises criterion [14],
assuming perfect plasticity. Ignoring volumetric body forces, the weak form of the prob-
lem, in its finite incremental form, associated to the strong form (4) lies in looking for the
displacement field increment 	u verifying the Dirichlet boundary conditions, verifying

∫
�

ε(u∗) · (C(	ε(	u) − 	εp(	u))) dx =
∫

�N

u∗ · 	T dx (34)

for any test function u∗ in an appropriate functional space.
In order to solve the resulting nonlinear problem, various computational procedures

have been proposed and extensively used, among them [15–22].
In this work we consider a simple implicit approach that at the n load step solves

∫
�

ε(u∗) · (
C	1

nε
)
dx =

∫
�N

u∗ · 	nT dx (35)
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Fig. 15 Displacement using plate theory (a), all plate theory elements except the patch super-element (b),
all patches as depicted in Fig. 16 (c), fully 3D refined FEM (d)

Table 5 Coarse 3D FEM

Nx (number of elements in the x direction): 21

Ny (number of elements in the y direction): 21

Nz (number of elements in the z direction): 5

from 	1
nε, the stress increment 	1

nσ results

	1
nσ = C	1

nε (36)

that allows updating the stress

σ1
n = σn−1 + 	1

nσ, (37)

and from it computing the plastic strain increment 	1
nε

p using well known procedures.
Then, the stress is updated according to

σ1
n = σ1

n − C	1
nε

p. (38)

Then, 	2
nε is calculated from

∫
�

ε(u∗) · (
C	2

nε
)
dx =

∫
�

ε(u∗) · (
C	1

nε
p) dx, (39)



Table 6 Refined 3D FEM considered for defining the reference solution

Nx (number of elements in the x direction): 63

Ny (number of elements in the y direction): 63

Nz (number of elements in the z direction): 5

and the stress update from

σ2
n = σ1

n + 	2
nσ, (40)

and from it computing the plastic strain increment 	2
nε

p using well known procedures.
Then, the stress is updated according to

σ2
n = σ2

n − C	2
nε

p. (41)

At iteration j the problem to be solved reads
∫

�

ε(u∗) ·
(
C	

j
nε

)
dx =

∫
�

ε(u∗) ·
(
C	

j−1
n εp

)
dx, (42)

where it can be noticed that the problem structure remains unaltered, with the left-hand
member encountered when addressing elastic behaviors, the inelastic behavior appearing
as a body force. Thus, the enrichment procedure based on the static condensation seems
specially suitable.
For validating the proposed strategy we consider the same problem as in the previous

section, sketched in Fig. 5, with geometrical and mechanical properties specified in Table
4 and the considered mesh defined in Table 5. On the right face of the domain (blue area
in Fig. 5) a vertical traction is applied, T = (0, 0, 1100000)N/m2, and on the opposite face
displacement is prevented. The considered uniaxial stress yield is σ0 = 250 · 106N/m2.
Again, Fig. 17 depicts the usual different solutions. Again “all patch elements” refers to
the case in which the domain is composed by the nine super-elements shown in Fig. 16.
The 3D reference solution has been computed using a mesh as fine as with the one used
in the patch description (Table 6). Again, the nine-patches solution is the most accurate
(when compared with the reference solution).

Extension to structural dynamics
In this section we address structural dynamic, again ignoring body forces without loss
of generality. Thus, the displacement field evolution u(x, t) in the domain � and time
interval t ∈ I = (0, T ] is described by the linear momentum balance equation

ρü(x, t) = div σ, (43)

where ρ is the density (kg/m3).
The boundary ∂� is decomposed according to ∂� = ∂D� ∪ ∂N� where displacement

and tractions are prescribed.



Fig. 16 Super-element discretization
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Fig. 17 Plate theory displacement (a), all patch elements according to Fig. 16 (b) and refined 3D FEM
(reference solution) (c)

In the elastic case the problemweak form associated with the strong form (43) results in
looking for the displacement fieldu verifying the initial andDirichlet boundary conditions,
and fulfilling

ρ

∫
�

u∗ · ü dx +
∫

�

ε(u∗) · (Cε(u)) dx =
∫

�N

u∗ · T(t) dx (44)

for any test function u∗ in an appropriate functional space.



Table 7 Model parameters

Hx : Length in the x direction (m) 3

Hy : Length in the y direction (m) 3

Hz : Length in the z direction (m) 0.1

E : Young modulus (N/m2) 2 1011

ν : Poisson coefficient 0.25

Table 8 Coarse FEMmesh

Nx (number of elements in the x direction): 21

Ny (number of elements in the y direction): 21

Nz (number of elements in the z direction): 5

Table 9 Refined FEMmesh considered for computing the reference solution

Nx (number of elements in the x direction): 63

Ny (number of elements in the y direction): 63

Nz (number of elements in the z direction): 5

The standard FEM space discretization reads

Ma(t) + Ku(t) = F(t), (45)

where a(t) represents the acceleration. The time stepping consists in calculating the accel-
eration and displacement at each time step tj+1 = (j + 1)	t from the ones existing at the
previous time step tj = j	t.
A widely considered choice consists of the Newmark method [23] in which the velocity

and the displacement fields at time tj+1 read

vj+1 = vj + 	t
(
(1 − γ )aj + γ aj+1

)
, (46)

and

uj+1 = uj + 	tvj + 	t2

2
(
(1 − 2β)aj + 2βaj+1

)
, (47)

so that at each time step the acceleration field can be obtained by solving the linear system

K∗aj+1 = p∗
j+1 (48)

where

K∗ = M + β	t2K (49)

and

p∗
j+1 = Fj+1 − Kuj − 	tKvj − 	t2

2
(1 − 2β)Kaj . (50)

According to the values of β and γ the method can be explicit (conditionally stable) or
implicit (unconditionally stable). In our numerical examples we considered β = 1/4 and
γ = 1/2 defining an implicit discretization. As soon as the acceleration is available, the
velocity and displacement field can be computed using Eqs. (46) and (47) respectively.
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Fig. 19 Vertical elastic displacement evolution in time at the right border

An enriched stiffness can be derived at the element or patch levels, where the use of the
the procedure based on the condensation allows properly addressing the forces p∗

j+1, and
therefor combining dynamics and plasticity.
For evaluating the performances of the proposed enrichment procedure, we consider

again the problem defined in Fig. 5 and Table 7.
On the right face (the blue area in Fig. 1) a vertical traction is enforced,T(t) = (0, 0, 4.1 ·

106 sin(2πωt))N/m2, whereas on the opposite face displacement is prevented. Without
loss of generality homogeneous initial conditions u(x, t = 0) = 0 and v(x, t = 0) = 0 are
assumed. Table 8 reports the considered coarse mesh whereas Table 9 defined the refined
one from which the reference solution is calculated.
Figures 18 and 19 depict respectively the solutions computed using the different tech-

niques at four different times and the vertical displacement time evolution at the right
border. Figures 20 and 21 present similar results but in a case where plasticity takes place.
Again the best solutions are the ones related to a nine-patches discretization for the
reasons widely exposed before.

Conclusions
This paper proposed two different procedures to capture 3D behaviors by enriching ele-
ments (or super-elements) connected to plate discretization. This goal is performed by
integrating, in a non-intrusive manner, 3D elements (or patches) in plate or shell based
commercial codes. In order to compute this enriched 2D element, two different tech-
niques were presented: one based on the PGD in-plane-out-of-plane separated represen-
tation and the other on the static condensation. Themethodwas firstly developed in linear
elastic settings and then successfully extended to structures exhibiting inelastic behaviors
or dynamics.
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Fig. 21 Vertical elasto-plastic displacement evolution in time at the right border
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