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a b s t r a c t

This paper addresses two issues usually encountered when simulating thermal processes in forming
processes involving tape-type geometries, as is the case of tape or tow placement, surface treatments, /
The first issue concerns the necessity of solving the transient model a huge number of times because the
thermal loads are moving very fast on the surface of the part and the thermal model is usually non-linear.
The second issue concerns the degenerate geometry that we consider in which the thickness is usually
much lower than the in-plane characteristic length. The solution of such 3D models involving fine
meshes in all the directions becomes rapidly intractable despite the huge recent progresses in computer
sciences. In this paper we propose to consider a fully space-time separated representation of the
unknown field. This choice allows circumventing both issues allowing the solution of extremely fine
models very fast, sometimes in real time.

1. Introduction

Industrial processes generally need efficient numerical simula-
tions in order to optimize the process parameters. In the case of
composite materials, even if the thermo-mechanical models are
nowadays well established, efficient simulations need for further
developments.

In this work we are considering some issues, analyzed from
a methodological point of view, without considering its industrial
counterpart that requires the coupling of different numerical
procedures and richer physics.

Thermal models involved in the numerical modeling of
composite tape placement processes introduce, despite its geomet-
rical simplicity, a certain number of numerical difficulties related to:
(i) the very fine mesh required due to the small domain thickness
with respect to the other characteristic dimensions as well as to the
presence of a thermal source moving on the domain surface; and (ii)
the long simulation times induced by the low thermal conductivity
of polymers and the movement of the heat source;

The solution by using standard discretization techniques can be
extremely expensive from the computing time point of view. For
example, if onewants to simulate a thermal problem in a ply whose

thickness is 1000 times lower than its length (which is a quite
common ratio), the use of only 100 nodes in the thickness will lead
to use 105 nodes in the length to ensure the geometrical quality of
the mesh on which standard discretization techniques, like the
finite element method, proceed. The total amount of nodes is then
10 millions even when considering a 2D thermal model. In this
situation solving a 3D model seems a challenge. Indeed, when the
model involves 1012 (that implies a reasonable number of nodes, of
the order of 104 in each coordinate direction of a 3D model)
numerical complexity reaches the current computer capabilities. In
addition, in transient non-linear models the problem must be
solved at least once at each time step, time step that can be
extremely small due to stability constraints.

In order to reduce the computing time needed for solving large
numerical models, different ways have been explored. One consists
in using super high performance computing facilities. Others
strategies consider subdomains, multigrid techniques or the use of
efficient preconditioners. Another efficient way to enhance the
simulation capabilities is to reduce the size of the approximation
basis employed for approximating the unknown field. In the finite
elements method, at least one approximation function is associated
to each node. Thus, the number of degrees of freedom scales with
the number of nodes. Reduced modeling lies in using a reduced
number of “appropriate” approximation functions defined in
general in the whole domain and able to approximate up to
a certain level of accuracy the problem solution at each time. Thus,
the number of approximation functions (and by the way the
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number of degrees of freedom) becomes independent of the mesh
size. The arising issue is how to calculate these “appropriate”
functions defining the reduced approximation basis?

There are several possibilities. A first possibility lies in the use of
the Proper Orthogonal Decomposition e POD e that was employed
in a former work [9] for addressing similar issues to the ones
concerned by the present work. In what follows we are describing
how the POD extracts relevant information for building-up
a reduced approximation basis.

1.1. Extracting relevant information by applying the proper
orthogonal decomposition

We assume that the field of interest u(x,t) is known at the nodes
xi of a spatial mesh for discrete times tm ¼ m$Dt, with i˛½1;/;M�
and m˛½0;/; P�. We use the notation uðxi; tmÞhumðxiÞhumi and
define um as the vector of nodal values umi at time tm. The main
objective of the POD is to obtain the most typical or characteristic
structure X(x) among these um(x), cm. For this purpose, we solve
the following eigenvalue problem [32]:

CX ¼ aX: (1)

Here, the components of vector X are X(xi), and C is the two-
point correlation matrix

Cij ¼
XP
m¼1

umðxiÞ$um
�
xj
�
; (2)

whose matrix form reads:

C ¼
XP
m¼1

um$ðumÞT ; (3)

which is symmetric and positive definite. With the matrix Q
defined as

Q ¼
�
u1;/;uP

�
(4)

We have

C ¼ Q$Q T : (5)

1.2. Building the POD reduced-order model

In order to obtain a reduced model, we first solve the eigenvalue
problem Eq. (1) and select the N eigenvectors Xi, i ¼ 1,/,N, asso-
ciated with the N eigenvalues belonging to the interval defined by
the highest eigenvalue a1 and a1 divided by a large enough number
(e.g. 108). In practice, N is found to be much lower than M. These N
eigenfunctions Xi are then used to approximate the solution um(x),
cm. To this end, let us define the matrix B ¼ (X1/XN).

Now, let us assume for illustrative purposes that an explicit
time-stepping scheme is used to compute the discrete solution
umþ1 at time tmþ1. One must thus solve a linear algebraic system of
the form

Gmumþ1 ¼ Hm: (6)

A reduced-order model is then obtained by approximating umþ1

in the subspace defined by the N eigenvectors Xi, i.e.

umþ1z
XN
i¼1

Xi$T
mþ1
i ¼ B$Tmþ1: (7)

Eq. (6) then reads

Gm$B$Tmþ1 ¼ Hm; (8)

or equivalently

BT$Gm$B$Tmþ1 ¼ BT$Hm: (9)

The coefficients Tmþ1 defining the solution of the reduced-order
model at the time step mþ1 are thus obtained by solving an alge-
braic system of size N instead of M. When N � M, as is the case in
numerous applications, the solution of Eq. (9) is thus preferred
because of its much reduced size.

Remark 1 The reduced-order model Eq. (9) is built a posteriori
by means of the already-computed discrete field evolution. Thus,
one could wonder about the interest of the whole exercise. In fact,
two beneficial approaches are widely considered (see e.g.
[6,8,18,24e26,31,32]). The first approach consists in solving the
large original model over a short time interval, thus allowing for the
extraction of the characteristic structure that defines the reduced
model. The latter is then solved over larger time intervals, with the
associated computing time savings. The other approach consists in
solving the original model over the entire time interval, and then
using the corresponding reduced model to solve very efficiently
similar problems with, for example, slight variations in material
parameters or boundary conditions. We considered some years ago
an adaptive technique for constructing the reduced basis without
an “a priori” knowledge [2,31,32], following the original proposal in
[30].

Remark 2 The construction of the reduced bases is not unique.
There are many alternatives. Some ones introduce some improve-
ments on the POD methodology just described, as is the case of the
Goal Oriented Model Constrained Optimization approach (see [7]
and the references therein) or the modal identification method
(see [13] and the references therein). The Branch Eigenmodes
Reduction Method combined with the amalgam method is another
appealing constructor of reduced bases [34].

Remark 3 The application of the POD allows to express the
unknown function u(x,t) in the reduced space-time separated form

uðx; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ (10)

where Xi(x) are space dependent function (the eigenfunctions
resulting from the application of the POD) and Ti(t) are its coeffi-
cients that only depend on time.

1.3. From POD to PGD

Despite the fact of having proposed techniques able to define
the reduced basis without an “a priori” knowledge, the robustness
of such strategies is not ensured and in some cases these strategies
do not converge. In that case one could consider as starting point
a separated representation of the problem solution u(x,t)

uðx; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ (11)

and then inject it in the weak form of the problem. This procedure
allows computing the functions involved in the separated approx-
imation without any “a priori” knowledge. This strategy was
proposed by Pierre Ladeveze in the 80’s, and he called it radial
approximation [19,20,23].

Inspired by this procedure one could try to generalize this
representation to the multidimensional fields as was proposed
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in [1,3]. This generalized formulationwas called Proper Generalized
Decomposition ePGDe. See [10] for a recent review. In the PGD
framework, when the domain is hexahedral an appealing separated
representation of u(x,t) consists of a full separation, i.e.

uðx; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ$YiðyÞ$ZiðzÞ (12)

In the case of non hexahedral domains, a fully separated
representation is always possible as proved in [16] but it involves
some technical points. Otherwise, a restricted separated repre-
sentation in space and time as in Eq. (11) is always possible and
allows to use unstructured meshes on the whole domain.

The solution computed by applying the PGD method is only
valid for the model parameters and boundary conditions consid-
ered to derive it. So, more than a standard model reduction
technique, the space-time separated representation considered
above can be viewed as a fast and cheap procedure to compute
a sort of “compressed” solution. Obviously as soon as we include
model parameters or the ones describing initial or boundary
conditions as extra-coordinates (as illustrated in the last section of
this paper), the solution of the multi-dimensional resulting
problem allows having access to the solution for any choice of
those parameters, and in that case PGD can be viewed as a model
reduction strategy (if the separated representation is truncated
after having calculated some terms), like the reduced models
obtained by using POD (many references were given previously)
or reduced bases [22,28,33], but it does not need any “a priori”
calculation, the reduced model is calculated on the fly. In what
follows the PGD will be considered as a direct solver and not as
a reduced model, because we are computing all the modes needed
to reach a prescribed level of accuracy. However, the space-time
solution expressed in a separated form can be viewed as a sort
of compressed representation obtained directly during the solu-
tion process.

PGD assumes a separated representation of the problem solu-
tion. So we should address the issue related to the separability of
a problem solution. For the sake of simplicity we are considering
a problem involving a scalar 2D solution u(x,y). If we consider the
polynomial approximation of function u(x,y)

uðx; yÞ ¼ a0;0 þ a1;0$xþ a0;1$yþ a1;1$x$yþ a2;0$x
2 þ/ (13)

we can notice that it writes in a separated form, that is, sums of
products of functions of x multiplied by functions of y.

When the solution can be expressed in a subspace of the full
tensor product space generated by the polynomial bases in both
coordinates x and y, i.e. in a subspace of (13), the PGD constructor
avoids taking into account terms in (13) that not involved in the
solution. Obviously, if the solution is non-separable, i.e. it involves
all the terms resulting from the one dimensional bases tensor
product, the PGD does not present any advantage, because the
enrichment procedure continues until defining the whole tensor
product basis that corresponds to a solution with the same
complexity that the ones computed by using any mesh-based dis-
cretization technique. This situation can be found when solving
hyperbolic equations or advection dominated advection-diffusion
equations. The simplest way for checking the problem solution
separability consists of solving the problem by using a standard
discretization technique in a mesh of moderate complexity, and
then applying the singular value decomposition eSVDe of its
multidimensional counterpart, the high order SVD known as
HOSVD [16].

In the present paper we are applying a fully separated
representation of the temperature field defined in an hexahedral
space-time domain onwhich a thermal source is moving. In the last
section we will come back to the parametric modeling issue.

2. Proper generalized decomposition of a thermal model
defined in rectangular domain

For the sake of simplicity in the description of the technique we
consider the application of the PGD for solving the transient heat
equation in a 2D rectangular spatial domain (3D results will be
presented later) because its generalization for addressing multidi-
mensional problems is straightforward.

The transient thermal model is defined in U� I , U ¼ Ux � Uy

(Ux ¼ (0,L) and Uy ¼ (0,H)) and I ¼ ð0; tmax�. The evolution of the
temperature field u(x,y,t) is governed by the heat equation

r$Cp$
vu
vt

� V$ðK$VuÞ ¼ 0 (14)

where K represents the conductivity tensor, assumed, without loss
of generality, constant. If we proceed in the coordinate system
associated with the principal directions of K, the conductivity
tensor becomes diagonal, being its components kx and ky the
principal thermal conductivities. In that system of coordinates the
previous equation reduced to:

r$Cp$
vu
vt

� kx
v2u
vx2

� ky
v2u
vy2

¼ 0 (15)

We assume, without loss of generality, a constant initial
temperature

uðx; y; t ¼ 0Þ ¼ u0 (16)

and we prescribe the heat flux on the whole boundary G h vU,
G ¼ G1WG2WG3WG4, G1 ¼ ðx ¼ 0; y˛UyÞ;G2 ¼ ðx˛Ux; y ¼ 0Þ;
G3 ¼ ðx ¼ L; y˛UyÞ and G4 ¼ ðx˛Ux; y ¼ HÞ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

du
dx

����
x˛G1

¼ 0

du
dy

����
x˛G2

¼ 0

du
dx

����
x˛G3

¼ 0

�ky$
du
dy

����
x˛G4

¼
� �qðx; tÞ;

h$ðuðy ¼ H; tÞ� uambÞ;
x˛Gs

4
x˛G4 �Gs

4

(17)

where q(x,t) represents the heating source that is moving on the
upper surface, Gs

4 being the region on which it applies, h is
a convection coefficient describing the heat transfer between the
domain U and its environment assumed at temperature uamb.

The weak form related to Eq. (15) reads:

Z
U�I

u�$ r$Cp$
vu
vt

� kx
v2u
vx2

� ky
v2u
vy2

!
dU$dt ¼ 0 (18)

cu� in an appropriate functional space.
In order to transfer the boundary condition into the integral

formulation (18) we perform a spatial integration by parts, which
results in



Z
U�I

u�$r$Cp$
vu
vt
dU$dt þ

Z
U�I

kx
vu�

vx
$
vu
vx

dU$dt

þ
Z

U�I
ky
vu�

vy
$
vu
vy

dU$dt þ
Z
G4

u�$~qðx; tÞdx$dt ¼ 0
(19)

where ~qðx; tÞ represents �ky$
du
dy

jx˛G4
; that is,

~qðx; tÞ ¼
�
�qðx; tÞ; x˛Gs

4
h$ðuðy ¼ H; tÞ � uambÞ; x˛G4 � Gs

4
(20)

Now, we assume a separated representation of the temperature
field

uðx; y; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ$YiðyÞ (21)

In order to construct such representation we proceed itera-
tively, by computing a term of the finite sum at each iteration. If
we assume that at iteration n, functions Xi(x), Yi(y) and Ti(t),
i ¼ 1,/,n, were already computed, the solution at iteration n,
un(x,y,t) writes:

unðx; y; tÞ ¼
Xi¼n

i¼1

TiðtÞ$XiðxÞ$YiðyÞ (22)

Remark 4 In order to ensure the verification of the initial
condition (the Neunman’s boundary ones are implicit in the weak
formulation) we could consider that the first term of the finite sum
decomposition is given by T1(t) ¼ u0 and X1(x) ¼ Y1(y) ¼ 1. In more
complex situations the interested reader can refer to [16].

At iteration n þ 1 we look for the new functions Xnþ1(x), Ynþ1(y)
and Tnþ1(t) that for the sake of clarity will be denoted by R(x), S(y)
and W(t). Thus, we can write:

unþ1ðx; y; tÞ ¼ unðx; y; tÞ þ RðxÞ$SðyÞ$WðtÞ (23)

The associated weighting function u* reads:

u�ðx; y; tÞ ¼ R�ðxÞ$SðyÞ$WðtÞ þ RðxÞ$S�ðyÞ$WðtÞ
þ RðxÞ$SðyÞ$W�ðtÞ (24)

Introducing Eqs. (23) and (24) into Eq. (19) yields a non-linear
integral problem because each unknown function (R(x), S(y) and
W(t)) never appear isolated but is always multiplying several
unknown functions. The test functions R* and S* are approximated
by using the same approximation bases that the ones considered
for approximating the trial functions R and S, as in a classical
Galerkin framework. However, one must proceed carefully when
addressing the time problem because its advective nature. In that
case we considered in our former works either an upwind or
discontinuous Galerkin time discretization operating on the weak
form governing the solution W(t) or a backward finite differences
discretization on the strong form that ca be obtained from theweak
form taking into account the arbitrariness of function W*.

Because the nonlinearity, a linearization strategy is compulsory.
In our earlier papers [1] and [3], we used Newton’s method. Simpler
linearization strategies can also be applied. The simplest one is an
alternating directions fixed-point algorithm, which was found
remarkably robust in the present context. Each iteration consists of
three steps that are repeated until reaching convergence, that is,
until reaching the fixed point. The first step assumes S(y) and W(t)
known from the previous iteration and computes an update for R(x)
(in this case the test function reduces to R*(x)$S(y)$W(t)). From the
just-updated R(x) and the previously-usedW(t), we can update S(y)

(with u* ¼ R(x)$S*(y)$W(t)). Finally, from the just-computed R(x)
and S(y), we update W(t) (with u* ¼ R(x)$S(y)$W*(t)). This iterative
procedure continues until convergence. The converged functions
define the new term in the expansion (21) of u(x,y,t): Xnþ1(x)¼ R(x),
Ynþ1(y) ¼ S(y) and Tnþ1(t) ¼ W(t).

In what follows we come back to the problems to be solved at
each one of these three steps.

(1) Computing R(x) being S(y) and W(t) given.

In the present case the test function reads:

u� ¼ R�ðxÞ$SðyÞ$WðtÞ (25)

that introduced into the integral form (19) results in:

Z
Ux�Uy�I

R�$S$W$r$Cp$R$S$
dW
dt

dx$dy$dt

þ
Z

Ux�Uy�I
kx$

dR�

dx
$S$W$

dR
dx

$S$Wdx$dy$dt

þ
Z

Ux�Uy�I
ky$R�$

dS
dy

$W$R$
dS
dy

$Wdx$dy$dt

þ
Z

Ux�I
R�$Sðy ¼ HÞ$W$~qðx; tÞdx$dt

¼ �
Z

Ux�Uy�I
R�$S$W$r$Cp$

Pi¼n

i¼1

�
Xi$Yi$

dTi
dt

	
dx$dy$dt

�
Z

Ux�Uy�I
kx$

dR�

dx
$S$W$

Xi¼n

i¼1

�
dXi

dx
$Yi$Ti

	
dx$dy$dt

�
Z

Ux�Uy�I
ky$R�$

dS
dy

$W$
Xi¼n

i¼1

�
Xi$

dYi
dy

$Ti

	
dx$dy$dt

(26)

where the dependences of R, S and W on their respective coordi-
nates were omitted for the sake of clarity.

As all the functions involving the y and t coordinates are known,
we can integrate Eq. (26) in Uy � I leading to:

Z
Ux

�
R�$ax$Rþ dR�

dx
$bx$

dR
dx

	
dx ¼

Z
Ux

�
R�$gxðxÞ þ dR�

dx
$dxðxÞ

	
dx

(27)

where ax and bx are two constants and gx(x) and dx(x) are functions
of x. Eq. (27) can be solved by using any standard technique, as for
example a 1D finite element discretization.

Note that an efficient implementation requires a separated
representation of the thermal source

qðx; tÞz
Xi¼Q

i¼1

FiðxÞ$GiðtÞ (28)

decomposition that can be performed as proved later by using the
SVD (singular value decomposition).

Note also that integrating by parts the terms involving the
derivatives of the test function R* and then using its arbitrariness
one could obtain an equivalent strong form that could be then
discretized by using any appropriate technique.



(2) Computing S(y) being R(x) and W(t) given.

In this case and proceeding in a similar way that previously but
integrating in Ux � I it results in

Z
Uy

�
S�$ay$Sþ dS�

dy
$by$

dS
dy

	
dy

¼ S�ðy ¼ HÞ$xy þ
Z
Uy

�
S�$gyðyÞ þ dS�

dy
$dyðyÞ

	
dy

(29)

In the present case the integral on G4 � I results in constant
value xy.

(3) Computing W(t) being R(x) and S(y) given.

Now, the weak form is integrated in Ux � Uy to derive the
equation given W(t). In the present case it is easy to verify that the
resulting equation reads:

Z
I

W�$
�
at$

dW
dt

þ bt$W
	
dt

¼
Z
I

W�$dtðtÞdt
(30)

One could solve this weak form by using a stabilized dis-
cretization technique (e.g. discontinuous Galerkin) or coming back
to its strong form

at$
dW
dt

þ bt$W ¼ dtðtÞ (31)

that can be solved by using any standard finite difference dis-
cretization (e.g. backward Euler, among many others).

In the previous steps functions R(x) and Xi(x), S(y) and Yi(y) and
W(t) and Ti(t) are approximated by using an appropriate mesh.
After computing the solution, its associated error can be evaluated
by using an appropriate error estimator, as the one proposed in [5],
and then different choices exist: (i) computing more terms in the
finite sums decomposition, or (ii) refine the meshes used for
approximating the different trial and test functions involved in the
separated approximation. One could think that when considering
the last strategy the whole solution should be recomputed, but in
fact the coarse solution uN(x,y,z,t) already calculated

uNðt; x; yÞ ¼
Xi¼N

i¼1

TiðtÞ$XiðxÞ$YiðyÞ (32)

can be enriched by introducing ~N additional terms in the sum

uðt; x; yÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ$YiðyÞ þ
Xi¼ ~N

i¼1

~TiðtÞ$~XiðxÞ$~YiðyÞ (33)

whose associated functions ~Xi, ~Yi and ~Ti are approximated by
employing finer meshes. Despite its conceptual simplicity in what
follows we are not considering refinement strategies.

The solution procedure can be summarized as follows:

� n ¼ 0
� While Error1 > 31

∙ Initialize S(0)(y) and W(0)(t)
∙ k ¼ 0
∙ While Error2 > 32

k ) k þ 1
Compute R(k) from Eq. (27)
Compute S(k) from Eq. (29)
Compute W(k) from Eq. (31)
Error22 ¼ kRðkÞ � Rðk�1Þk2þkSðkÞ � Sðk�1Þk2

þkW ðkÞ �Wðk�1Þk2
∙ Error21 ¼ kRðkÞ$SðkÞ$WðkÞk2(other stooping criteria exist)
∙ Xnþ1 ¼ R, Ynþ1 ¼ S and Tnþ1 ¼ W
∙ n ) n þ 1

We have seen that at each enrichment step the construction of
the new functional product in Eq. (21) requires iterations. If mi

denotes the number of iterations needed at enrichment step i for
computing Xi(x), Yi(y) and Ti(t), the total number of iterations
involved in the construction of the PGD approximation is
m ¼ Pi¼N

i¼1mi. In the above example, the entire procedure thus
involves the solution of 2$m (3$m in 3D thermal problems) one-
dimensional boundary values problems for the functions Xi(x)
and Yi(y) and m one-dimensional initial values problems for the
functions Ti(t). In general, mi rarely exceeds ten. The number N of
functional products needed to approximate the solution with
enough accuracy depends on the solution regularity. All numerical
experiments carried to date reveal that N ranges between a few
tens and one hundred. Thus, we can conclude that the complexity
of the PGD procedure to compute the approximation (21) is of few
hundreds of 1D problems. In a classical approach, one must solve
a 2D problem at each time step. In usual applications, this often
implies the computation of several millions of 2D solutions. Clearly,
the CPU time savings by applying the PGD can be of several orders
of magnitude.

Remark 5 The just proposed strategy also applies for solving
non-linear models. In that case many standard linearization strat-
egies can be considered. Thus, one could expect that when looking
for the solution at iteration nþ1, unþ1, all the non-linear terms could
be considered at the previous iteration, by using un for evaluating
all the non-linear contributions. This technique runs, as well as
many other variants [4]. A non-conventional and specially
appealing technique for addressing complex non linearities lies in
the use of the LATIN method [19,20,23].

Remark 6 Because when using the PGD method the computa-
tional complexity scales linearly with the model dimensionality
instead of the exponential growing characteristic of mesh based
discretization techniques, one could introduce new extra-
coordinates in the model, other than the usual space and time,
without a significant impact on the CPU time. Thus, thermal
parameters, initial and/or boundary conditions, geometrical
parameters, / can be considered as extra-coordinates. Then, by
solving once the multidimensional resulting model, we have access
to the space-time evolution for each value of the parameters that
were introduced as extra-coordinates. The interested reader can
refer to [11,14,29] and the references therein. This revisits this issue
in the last section of the present paper.

Remark 7 Because we have decoupled in the solution algorithm
the space and time problems, the meshes used for solving each one
of the problems becomes uncorrelated. Thus, there are not stability
constraints on the time step. Moreover, we could consider
extremely small time steps without affecting the computation cost
significantly, because that choice only affects the solution accuracy
of the one-dimensional initial value problem serving to the calcu-
lation of functions Ti(t).

Remark 8 Because the just argued decoupling, the problems that
must be solved within the PGD framework at each step (the ones
concerning the calculation of R(x), S(y) and W(t)) can be solved,
if desired, by using different discretization methods for each one
of them.



Remark 9 When the diffusivity becomes too small, the non-
symmetry of the time differential operator requires a variant of
the algorithm described above. In that case we should proceed to
the residual minimization [10].

3. Numerical results

Before performing some numerical test in 2D and 3D, we are
focusing in the thermal source that will be considered and the
issues related to its space-time separated representation.

3.1. Thermal source

We consider a thermal source moving along the surface y ¼ H
with a velocity y. Because in many industrial applications such
thermal source consists of a laser beam, we assume that the
thermal flux on the upper surface is modeled from a Gaussian
distribution whose characteristic length will be denoted by l. In the
3D solutions addressed later, we will assume without loss of
generality that this distribution is uniform in the z-direction. Thus,
the thermal flux reads:

qðx; tÞ ¼ A$
1

l
ffiffiffiffiffiffiffi
2p

p $exp � ðx� ytÞ2
2l2

!
(34)

where A represents the thermal flux intensity.
In order to perform a separated representation description of

q(x,t) we compute the matrix q with components qj;r ¼ qð~xj;~tjÞ;
where ð~xj;~tjÞ are related to a corse mesh consisting of ~M nodes on
the upper boundary y ¼ H and ~P time steps.

As soon as matrix q is defined, we can apply a singular value
decomposition e SVD e that allows to define its separated form
representation on the coarse mesh

q
�
~x;~t
�
z
Xi¼Q

i¼1

~Fið~xÞ$~Gi
�
~t
�

(35)

By performing a projection of the functions involved in that
representation on the fine calculation mesh, we obtain finally

qðx; tÞz
Xi¼Q

i¼1

FiðxÞ$GiðtÞ (36)

When applying this procedure on the thermal flux (34) for
y ¼ 0.1, A ¼ 104 and l ¼ 0.05 (all units in the metric system) the
separated representation consisting of the Q ¼ 15 most significant
functions Fi(x) and Gi(t) exhibits an approximation error of 0.03%
when comparing the reconstructed solution (36) depicted in Fig. 1
with its exact expression (34). For the application of the SVD,
a coarse mesh consisting of ~M ¼ 100 nodes in the x-direction and
~P ¼ 100 in the time axis was considered (even if it can be applied
efficiently on the finer mesh). The functions that resulted from the
SVD application were projected on the fine calculation mesh con-
sisting of M ¼ 1000 and P ¼ 1000.

When considering sharper thermal sources the number of
required terms for approximating it up to a certain accuracy
increases in a significant manner. For example when considering
a moving step, all the modes are relevant and no reduction can be
made by applying the SVD. In those cases one could proceed
without performing a space-time separated representation of the
thermal source. If we observe the terms affected by such choice in
the procedure described in the previous sectionwe notice that in its
first step (the one related to the calculation of function R(x)
(Eq. (26))) the boundary integral writes:

Z
Ux�I

R�$Sðy ¼ HÞ$W$qðx; tÞdx$dt (37)

that could be integrated numerically in the time interval I .
In the second step, the one leading to the calculation of S(y) it

results:Z
Ux�I

R$S�ðy ¼ HÞ$W$qðx; tÞdx$dt (38)

to be integrated in Ux � I , and finally in the third step, the one
leading to the calculation of W(t) it resultsZ
Ux�I

R$Sðy ¼ HÞ$W�$qðx; tÞdx$dt (39)

that must be integrated in Ux.
When the thermal sources are localized in space, q(x,t) vanishes

in the most part of the domain Ux � I and in that case previous
integrals can be performed without major difficulties in a reason-
able time. On the other hand it can be noticed that when the
thermal source can be separated, integrations can be carried out
very fast because multidimensional integrals can be computed
from the product of one-dimensional integrals.

In the previous analysis the number of time steps ~P of the coarse
mesh used for separating the source term, q(x,t), can be viewed as
the number of snapshots in a POD construction of the space-time
separated representation of the source term. It is important to
check the convergence of the separated representation obtained
with respect to the value of ~P as well as the separability, ensured if
the number of terms in the finite sum verifies Q � ~P:

3.2. 2D numerical test

In this section we are considering the geometry and the process
conditions sketched in Fig. 2. The calculation mesh consists of 1000
nodes in the length,100 nodes in the thickness and 1000 time steps.
We consider the previous Gaussian flux with again A ¼ 104, y ¼ 0.1
and l ¼ 0.05. The material thermal properties are r ¼ 1000 kg m�3,
Cp¼ 1000 J kg�1 K�1, kx¼ 5WK�1 m�1 and ky¼ 0.5WK�1 m�1. The
initial temperature is set to u0 ¼ 0 �C in the whole domain and the
temperature on the boundary defined by (y ¼ 0) is constrained to

Fig. 1. Reconstructedheatfluxconsistingof a separated representation involving15 terms.



u(x,y ¼ 0,t) ¼ 0 �C during the process. It is also considered in this
test that there is no loss of heat on G4 and then Gs

4 ¼ G4 in Eq. (17).
Fig. 3 depicts the most relevant functions involved in the

separated representation of the temperature field Xi(x), Yi(y) and
Ti(t), i ¼ 1,/,4. The reconstructed solution obtained from these
functions is depicted in Fig. 4 at different times that correspond to
different positions of the thermal source moving on the surface
y ¼ H ¼ 0.001.

When comparing the PGD solution with an equivalent finite
element solution, considering the last one as the reference one, we
noticed that the error (using a space-time L2 norm) was lower than
1%. Thus, we can conclude on the efficiency of the proposed
strategy that proceeds with impressive computing time savings
without compromising the solution accuracy.

3.3. 3D numerical test

The procedure detailed above can be easily extended to 3D
geometries. For that purpose it suffices to consider the space-time
separated representation of the temperature field in a hexahedral
tape.

uðx; y; z; tÞz
XN
i¼1

XiðxÞ$YiðyÞ$ZiðzÞ$TiðtÞ (40)

that is constructed by a simple extension of the iteration procedure
described previously.

To prove the feasibility of such extension to higher dimensional
models we consider the geometry addressed in the previous 2D
example extruded in the z-direction with a depth of 0.2m. Thus,
ðx; y; zÞ˛U,U¼Ux�Uy�Uz,withUx¼ (0,L¼1m),Uy¼ (0,H¼0.001m)
andUz¼ (0,D¼0.2m).Weconsider that the thermalfluxdoesnotvary
in the z-direction such that the expression previously considered
remains valid:

qðx; z; tÞ ¼ A$
1

l
ffiffiffiffiffiffiffi
2p

p $exp � ðx� ytÞ2
2l2

!
(41)

whose separated representation reads again:

qðx; z; tÞz
Xi¼Q

i¼1

FiðxÞ$HiðzÞ$GiðtÞ (42)

with HiðzÞ ¼ 1; ci:
We consider 1000,100 and 1000 nodes for discretizingUx,Uy and

Uz respectively. Due to the uniformity of the solution in the
z-direction, a very coarse discretization in that direction suffices, but
we prefer to consider a mesh fine enough to highlight the capabil-
ities of PGD and the interest of the coordinates separation. We
consider as previously 1000 time steps. Of course, if one wants to
solve the same problem using a standard mesh based discretization
technique, the resulting model contains 1000 � 100 � 1000, i.e. 108

nodes (degrees of freedom), and then, in the general case of non-
linear material models one must solve 1000 times a system of size
108, that is practically intractable.

Fig. 2. Sketch of the geometry and process conditions.
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Fig. 3. Most significant functions involved in the separated representation of the
temperature field.



By using the PGD this solution is computed in around 1 min by
using Matlab on a standard laptop. Instead of solving 1000 times,
a systems of size 108 wemust solve of the order of N 1D problems of
size 1000 (leading to tridiagonal matrices) for computing functions
Xi(x) (i ¼ 1,/,N), of the order of N 1D problems of size 100 for
computing Yi(y), of the order of N 1D problems of size 1000 for
calculating Zi(z) and of the order of N 1D initial value problems for
computing Ti(t). These calculation can be performed incredibly fast
even in the non-linear case [4].

Fig. 5 depicts the reconstructed solution, where for visualization
purposes we represented the temperature field (using a color map)
on different sections along the tap thickness, without respecting
the geometrical scale.

4. Towards an enhanced parametric modeling

Because the computational complexity when using separated
representations increases linearly with the number of dimensions,
instead the exponential increase characteristic of mesh-based dis-
cretization strategies, model parameters or the ones involved in the
definition of the geometry or the initial and boundary conditions
can be considered as extra-coordinates. In [21] a panoply of
parameters where introduced as extra-coordinates in thermal
homogenization. The interested reader can refer to [12] for a recent
complete review. Then, by solving the resulting multi-dimensional
model only once, we have access to the solution for any value of
those parameters. In this circumstances optimization and inverse
identification could be speeded-up many orders of magnitude as
proved in our former works cited below, because for each tentative
value of these parameters the solution is obtained by a simple
particularization of the general parametric solution.

Optimization and inverse analysis were successfully accom-
plished in [14,15,17]. In the context of the applications considered in
the present work we considered the source intensity A in Eq. (34)
and its velocity y as extra-coordinates, because like this one could
optimize the process trying to increase the velocity, implying an
increase of the source intensity in order to ensure the thermal
treatment, while avoiding a degradation of the material because an
overexposure. In order to simplify the problem representation we

Fig. 4. Reconstructed thermal field at different times obtained from the separated representation whose functions are depicted in Fig. 3.

Fig. 5. Reconstructed temperature field at t ¼ 5s.



decided in [27] to consider the reference system moving with the
thermal source, and then an advective term appears in the heat
equation, that now reads:

r$Cp$
�
vu
vt

� y$Vu
	
� V$ðK$VuÞ ¼ 0 (43)

When y is constant, thermal histories can be computed from the
steady state solution of Eq. (43) with8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

du
dx

����
x˛G1

¼ 0

du
dy

����
x˛G2

¼ 0

uðx˛G3Þ ¼ u0

�ky$
du
dy

����
x˛G4

¼
�
�qðx; tÞ; x˛Gs

4
h$ðuðy ¼ H; tÞ � uambÞ; x˛G4 �Gs

4

(44)

with now a fixed thermal source

qðx; tÞ ¼ A$
1

l
ffiffiffiffiffiffiffi
2p

p $exp
�
� x2

2l2

	
(45)

The solution of the previous problem was searched in the
parametric form u(x,y,A,y) by using the separated representation

uðx; y;A; yÞz
Xi¼N

i¼1

XiðxÞ$YiðyÞ$yiðAÞ$ViðyÞ (46)

Now, if we focus in a particular location, the solution can be
computed as a function of the process parameters A and
y:u(A,y;x,y). The interested reader can refer to [15] and [27] for some
interesting applications in control of processes, the last reference
concerning the parametric modeling just described.

5. Conclusion

In this paper we addressed the issue of fully space-time sepa-
rated representations of thermal models defined in tape-type
domains. These degenerate geometries are more and more
considered in composite forming processes justifying the interest
for fast and accurate simulations of processes, especially in the case
of tricky process conditions involving moving thermal sources
applied on the domain boundary.

We proposed a fully separated representation that transforms
a three dimensional transient problem into a sequence of 4 one
dimensional ones. The computing time savings can be simply
spectacular, allowing the solution of models never solved until now
due to the extremely large number of degrees of freedom.

The use of the PGD opens a number of unimaginable possibili-
ties, some of them are being explored, others are waiting for deeper
analysis.

References

[1] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for
some classes of multidimensional partial differential equations encountered
in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid
Mechanics 139 (2006) 153e176.

[2] A. Ammar, D. Ryckelynck, F. Chinesta, R. Keunings, On the reduction of kinetic
theory models related to finitely extensible dumbbells, Journal of Non-
Newtonian Fluid Mechanics 134 (2006) 136e147.

[3] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for
some classes of multidimensional partial differential equations encountered
in kinetic theory modeling of complex fluids. Part II: transient simulation

using space-time separated representation, Journal of Non-Newtonian Fluid
Mechanics 144 (2007) 98e121.

[4] A. Ammar, M. Normandin, F. Daim, D. Gonzalez, E. Cueto, F. Chinesta, Non-incre-
mental strategies based on separated representations: applications in computa-
tional rheology, Communications in Mathematical Sciences 8/3 (2010) 671e695.

[5] A. Ammar, F. Chinesta, P. Diez, A. Huerta, An error estimator for separated
representations of highly multidimensional models, Computer Methods in
Applied Mechanics and Engineering 199 (2010) 1872e1880.

[6] R.A. Bialecki, A.J. Kassab, A. Fic, Proper orthogonal decomposition and modal
analysis for acceleration of transient FEM thermal analysis, International
Journal for Numerical Methods in Engineering 62 (2005) 774e797.

[7] T. Bui-Thanh, K. Willcox, O. Ghattas, B. van Bloemen Waanders, Goal-oriented,
model-constrained optimization for reduction of large-scale systems, Journal
of Computational Physics 224/2 (2007) 880e896.

[8] J. Burkardt, M. Gunzburger, H-Ch. Lee, POD and CVT-based reduced-order
modeling of NaviereStokes flows, Computer Methods in Applied Mechanics
and Engineering 196 (2006) 337e355.

[9] F. Chinesta, A. Ammar, F. Lemarchand, P. Beauchene, F. Boust, Alleviating mesh
constraints: model reduction, parallel time integration and high resolution
homogenization, Computer Methods in Applied Mechanics and Engineering
197/5 (2008) 400e413.

[10] F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use
of the proper generalized decomposition for solving multidimensional models,
Archives of Computational Methods in Engineering 17/4 (2010) 327e350.

[11] F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper
generalized decomposition with applications in computational rheology,
Journal of Non-Newtonian Fluid Mechanics 166 (2011) 578e592.

[12] F. Chinesta, P. Ladeveze, E. Cueto, A short review in model order reduction
based on proper generalized decomposition, Archives of Computational
Methods in Engineering 18 (2011) 395e404.

[13] M. Girault, E. Videcoq, D. Petit, Estimation of time-varying heat sources
through inversion of a low order model built with the Modal Identification
Method from in-situ temperature measurements, International Journal of
Heat and Mass Transfer 53 (2010) 206e219.

[14] Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf, P. Villon, Meth-
odological approach to efficient modeling and optimization of thermal
processes taking place in a die: application to pultrusion, Composites Part A
42 (2011) 1169e1178.

[15] Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue, F. Chinesta, Proper
generalized decomposition based dynamic data-driven control of thermal
processes, Computer Methods in Applied Mechanics and Engineering, in press.

[16] D. Gonzalez, A. Ammar, F. Chinesta, E. Cueto, Advances in the use of separated
representations, International Journal for Numerical Methods in Engineering
81/5 (2010) 637e659.

[17] D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto, F. Chinesta, Proper
generalized decomposition based dynamic data-driven inverse identification,
Mathematics and Computers in Simulation, in press.

[18] M.D. Gunzburger, J.S. Peterson, J.N. Shadid, Reduced-order modeling of time-
dependent PDEs with multiple parameters in the boundary data, Computer
Methods in Applied Mechanics and Engineering 196 (2007) 1030e1047.

[19] P. Ladeveze, Nonlinear Computational Structural Mechanics, Springer, NY, 1999.
[20] P. Ladeveze, J.-C. Passieux, D. Néron, The LATIN multiscale computational

method and the proper generalized decomposition, Computer Methods In
Applied Mechanics and Engineering 199/21e22 (2010) 1287e1296.

[21] H. Lamari, A. Ammar, P. Cartraud, G. Legrain, F. Jacquemin, F. Chinesta, Routes
for efficient computational homogenization of non-linear materials using the
proper generalized decomposition, Archives of Computational Methods in
Engineering 17/4 (2010) 373e391.

[22] Y. Maday, E.M. Ronquist, The reduced basis element method: application to
a thermalfinproblem, SIAM Journal on Scientific Computing 26/1 (2004) 240e258.

[23] D. Néron, P. Ladevèze, Proper generalized decomposition for multiscale and
multiphysics problems, Archives of Computational Methods in Engineering
17/4 (2010) 351e372.

[24] S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real-time deformable models of
non-linear tissues by model reduction techniques, Computer Methods and
Programs in Biomedicine 91 (2008) 223e231.

[25] S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Order Reduction for hyperelastic
materials, International Journal for Numerical Methods in Engineering 81/9
(2010) 1180e1206.

[26] H.M. Park, D.H. Cho, The use of the Karhunen-Loève decomposition for the
modelling of distributed parameter systems, Chemical Engineering Science 51
(1996) 81e98.

[27] F. Poulhaon, Ch. Ghnatios, B. Bogner, A. Barasinski, F. Chinesta, A. Leygue, A
numerical approach for the evaluation of the residual stresses in the auto-
mated tape placement process. In the proceedings of the ASME 2012 11th
Biennial Conference on Engineering Systems Design and Analysis, 2012.

[28] C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera,
G. Turinici, Reliable real-time solution of parametrized partial differential
equations: reduced-basis output bound methods, Journal of Fluids Engi-
neering 124 (2002) 70e80.

[29] E. Pruliere, F. Chinesta, A. Ammar, On the deterministic solution of parametric
models by using the proper generalized decomposition, Mathematics and
Computers in Simulation 81 (2010) 791e810.

[30] D. Ryckelynck, A priori hyper-reduction method: an adaptive approach,
Journal of Computational Physics 202 (2005) 346e366.



[31] D. Ryckelynck, L. Hermanns, F. Chinesta, E. Alarcon, An efficient “a priori”
model reduction for boundary element models, Engineering Analysis with
Boundary Elements 29 (2005) 796e801.

[32] D. Ryckelynck, F. Chinesta, E. Cueto, A. Ammar, On the a priori model
reduction: overview and recent developments, Archives of Computational
Methods in Engineering 13/1 (2006) 91e128.

[33] K. Veroy, A. Patera, Certified real-time solution of the parametrized steady incom-
pressible NaviereStokes equations: rigorous reduced-basis a posteriori error
bounds, International Journal Numerical Methods in Fluids 47 (2005) 773e788.

[34] E. Videcoq, O. Quemener, M. Lazard, A. Neveu, Heat source identification and
on-line temperature control by a branch eigenmodes reduced model, Inter-
national Journal of Heat and Mass Transfer 51 (2008) 4743e4752.


	On the solution of the heat equation in very thin tapes
	1. Introduction
	1.1. Extracting relevant information by applying the proper orthogonal decomposition
	1.2. Building the POD reduced-order model
	1.3. From POD to PGD

	2. Proper generalized decomposition of a thermal model defined in rectangular domain
	3. Numerical results
	3.1. Thermal source
	3.2. 2D numerical test
	3.3. 3D numerical test

	4. Towards an enhanced parametric modeling
	5. Conclusion
	References




