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4416, Université Paris-Ouest, 50 Rue de Sèvres, 92410, Ville d’Avray, France. *Correspondence e-mail:

olivier.castelnau@ensam.eu

A new method of determining the deviatoric elastic strain and lattice orientation

from Laue microdiffraction images is presented. Standard data treatment

methods can suffer from the difficulty of precisely pinpointing the positions of

diffraction peaks on two-dimensional Laue images. In a previous article, digital

image correlation (DIC) was introduced for the treatment of Laue images,

leading to the so-called Laue-DIC method. This performed better than the

standard method in terms of the deviatoric elastic strain increment and relative

rotation from one lattice to another, particularly when the shape of the Laue

spots departs from regular ellipsoids. The present work intends to push forward

the Laue-DIC method, aiming to determine the deviatoric elastic strain and

lattice orientation, as well as the calibration parameters. The performance of this

new method, named enhanced Laue-DIC, is assessed by modeling the spot

displacements and accounting for random fluctuations relevant for typical

experimental conditions. When the enhanced Laue-DIC method is applied to

the case of an in situ deformed Si crystal, the obtained standard deviation of

local stress is of the order of 1–2 MPa, while the calibration parameters are

optimized to high accuracy.

1. Introduction

X-ray Laue microdiffraction is a powerful technique to

investigate intragranular orientation and elastic deformation

at a fine scale thanks to its sub-micrometre focal size. At

present, beamline BM32 at the European Synchrotron

Radiation Facility (ESRF) can provide a beam of �0.5 �
0.7 mm2, with a spectral bandwidth of 5–25 keV (Ulrich et al.,

2011; Robach et al., 2014). In contrast to other X-ray diffrac-

tion techniques using a monochromatic beam, for example the

sin2  method (Macherauch, 1966), Laue microdiffraction,

using a polychromatic beam, requires no rotation of the

sample or detector. This is an important point when one wants

to reach submicrometre spatial resolution. To orient a single

crystal in a monochromatic beam, three sample rotations are

needed. Although recent air-bearing systems allow the sphere

of confusion of one rotation to be smaller than a fraction of a

micrometre (see e.g. Xu et al., 2014; Waltersperger et al., 2015),

the authors are not aware of three-axis goniometers with a

sphere of confusion smaller than a few micrometres, i.e. an

order of magnitude larger than the actual beam size. Any

sample rotation would then move the measurement point out

of the beam (Castelnau et al., 2001). Rotation would also lead

to the ambiguity of the illuminated volume, owing to the beam# 2015 International Union of Crystallography



penetration, an ambiguity not present with Laue micro-

diffraction.

Given these advantages, Laue microdiffraction finds its

widespread application in measuring strain/stress at the sub-

micrometre scale, such as in thin films (Tamura et al., 2003), in

metallic micropillars (Maaß et al., 2009), at bi-crystal bound-

aries (Ohashi et al., 2009) and at tri-crystal boundaries

(Daveau, 2012). Although high-resolution electron back-

scattered diffraction (HR-EBSD) allows for even finer spatial

resolution (�10 nm) (Villert et al., 2009), Laue microdiffrac-

tion allows the additional capability of through-thickness

spatial resolution of elastic strain using the differential aper-

ture X-ray microscopy method (Yang et al., 2004). A

comparison between HR-EBSD and Laue microdiffraction in

plastically deformed single crystals can be found in the article

by Plancher et al. (2015).

Laue diffraction patterns are usually recorded on an area

detector, and codes for deducing lattice orientation and elastic

strain from recorded images are already available, such as

XMAS (Tamura, 2014) and LaueTools (http://sourceforge.net/

projects/lauetools/). The method used in these codes is largely

based on the algorithm presented by Chung & Ice (1999) and

allows for a rapid indexing of Laue spots and the estimation of

the lattice matrix. Conventionally, peak positions are

pinpointed by fitting spots with some analytical functions.

However, the commonly used analytical functions, usually

Gaussian or Lorentz functions, implicitly assume an elliptical

spot shape, limiting potential applications. Indeed, there are

many situations for which spots depart from ellipticity, for

example when the crystal has undergone plastic strain and

contains geometrically necessary dislocations (see, for

instance, Ohashi et al., 2009), or when a strain gradient is

present within a pure crystals and produces mirage spots due

to dynamic effects (Yan & Noyan, 2006).

Another difficulty with the standard method is that the

calibration of the experimental setup must be given very

accurately, as it is necessary to transform the rectangular

coordinates of the peak position into angular coordinates. Any

error in the calibration will ultimately contribute to the error

of elastic strain assessment (Hofmann et al., 2011).

This paper is a continuation of the work of Petit et al.

(2015), in which a method called Laue-DIC (referred to as

original Laue-DIC hereinafter) was proposed: unlike the

standard method, the peak positions were no longer fitted by

any analytical function, but their displacements from one Laue

image to another were measured by a well established tech-

nique – digital image correlation (referred to as DIC herein-

after) – in light of its high sub-pixel accuracy (Bornert et al.,

2009; Amiot et al., 2013). It was shown that Laue-DIC reached

an accuracy of the order of 10�5 for measuring elastic strain

increment (more specifically, the deviatoric components of

elastic strain). In this paper, we present an enhanced version

of Laue-DIC (referred to as enhanced Laue-DIC hereinafter).

By using the term ‘enhanced’, we mean that the enhanced

version is no longer limited to seeking elastic strain increments

between two lattices, as in the original version, but can be used

to find the deviatoric lattice matrices and calibration para-

meters as an ensemble. For a full determination of all

components of lattice matrices, and in particular their traces,

some additional information is required, such as photon

energies (Robach et al., 2011).

The paper is structured as follows. We will introduce the

context and the standard procedure in x2. Then, we will briefly

review original Laue-DIC and present its enhanced version in

x3. The efficiency of enhanced Laue-DIC will be assessed by

numerical tests in x4. Finally, in x5, we will compare the

performance of the standard method, original Laue-DIC and

enhanced Laue-DIC through the processing of experimental

images, and comment on their differences.

2. Context and brief review of the standard procedure

In Laue microdiffraction experiments, the distribution of Laue

spots on an area detector is determined by two factors: the

lattice that diffracts the X-rays, and the setup of the area

detector. In this paper, the term ‘configuration’ is used to refer

to both of these factors combined. First, let us introduce the

setup of the area detector in Laue microdiffraction.

The relative spatial relation between the incident beam and

the area detector can be characterized by two angles. Let us

first establish an absolute coordinate system (referred to as <)

upon which our calculation will be based (see Fig. 1). The y

axis of < is along the incident beam. The origin O is the

illuminated point on the sample surface, and P is the projec-

tion of O onto the area detector, which is modeled as a plane.

Then the x axis is defined as

ex ¼:
ey �OP

key �OPk ; ð1Þ

and the z axis is defined as

ez ¼: ex � ey: ð2Þ
The setup of the area detector can be characterized by five

parameters: xc, yc, �, � and d (Robach et al., 2011), where d is

the distance between the illuminated site and the area

detector, i.e. d ¼ kOPk, � is the angle between the z axis and

OP, � is the rotation angle of the area detector around OP,

which determines the direction of rows and columns of pixels

on the detector with respect to the overall frame, and xc, yc are

Figure 1
Calibration parameters of the setup of the area detector.



the distances of P from the two perpendicular edges of the

area detector. Pixels on the detector are assumed to be

arranged in a perfect square array with a known step.

With these calibration parameters, the rectangular pixel

coordinates of a peak on the area detector can be readily

transformed into its angular coordinates in <. These para-

meters are usually obtained using a well known stress-free

single crystal (e.g. Ge) by adjusting the calibration parameters

to minimize the discrepancy between the simulated and

measured peak positions (Robach et al., 2011). Then, the

experimenter carefully handles the sample to keep the cali-

bration parameters constant when shifting the region of

interest of the sample into the beam, so that the illumination

point remains at the same position. Once peaks are pinpointed

and transformed into their angular positions, the indexing of

peaks and the lattice matrix of the illuminated volume can be

determined (Chung & Ice, 1999).

However, the procedure described above (denoted here-

after as the ‘standard method’) is prone to two sources of

uncertainty (Poshadel et al., 2012):

(a) Peak positions. Locating the peak position is usually

accomplished by fitting the gray level intensity distribution on

the Laue image with an analytical function including a small

number of parameters (such as a two-dimensional Gaussian

function). Such a procedure is not appropriate when the spots

exhibit irregular shapes. Examples include diffraction from

plastically deformed crystals (Barabash et al., 2001) and from a

bent perfect crystal (Yan & Noyan, 2006).

(b) Calibration parameters. The calibration is performed

with a crystal with known lattice parameters as mentioned

before. When the illumination site is shifted to the region of

interest, small perturbations of calibration parameters are

inevitable. The calibration may also be modified by a slight

beam displacement (micrometre range), which may be caused

by many possible factors. Moreover, the difference in pene-

tration depth between the calibration crystal and the sample

will contribute to the uncertainty of the results as well

(Hofmann et al., 2011).

3. Enhanced Laue-DIC

3.1. Brief review of original Laue-DIC

In order to tackle some of the aforementioned sources of

uncertainty, Petit et al. (2015) proposed the original Laue-DIC

method, in which one no longer needs to determine peak

positions very accurately (e.g. by analytical fitting), but rather

the accurate peak displacement between two images

(measured by DIC) is of interest (see Fig. 2). This preference

to measure displacements by DIC is supported by the

following reasons:

(1) DIC measures peak displacements by taking advantage

of the resemblance of spots in two diffraction images. The

spots’ resemblance can be easily guaranteed as long as the

substructures within the diffraction volumes of the two images

differ little, while analytical fitting requires the regularity of

spots, which is more difficult to guarantee.

(2) The displacements obtained by DIC have better accu-

racy than the absolute positions of peaks obtained by analy-

tical fitting. It is reported that the accuracy of DIC can be of

the order of a few hundredths of a pixel or even less (Bornert

et al., 2009; Amiot et al., 2013) when applied on a pair of

images with good quality, while the uncertainty of the peak

position obtained by analytical fitting is usually 0.1 pixel, even

for spots of good quality (Poshadel et al., 2012).

In the original Laue-DIC procedure, two images are

compared using DIC. The first image refers to a reference

mechanical configuration, and the second image to the current

configuration. The method then consists of the following steps

(Petit et al., 2015):

(1) First, the LaueTools software (for example) is used to

obtain a guess value of the crystal orientation and the devia-

toric elastic strain of the initial configuration.

(2) Next, DIC is used to measure the spot motion field on

the area detector between the two images (or equivalently,

between the two mechanical configurations).

(3) Finally, a cost function minimization is run to evaluate

the deviatoric components of the incremental elastic strain

and relative rotation of the lattice between the two config-

urations that best match the measured evolution of the Laue

pattern.

Whilst original Laue-DIC has been shown to improve the

resolution of the measurement of the elastic strain increment

(hence stress increment) between two configurations, this

paper will extend Laue-DIC to the evaluation not only of the

deviatoric components but also of lattice matrices and the

calibration parameters, leading to an enhanced version of

Laue-DIC. Before presenting enhanced Laue-DIC, let us first

briefly introduce the principle of DIC.

Figure 2
Simulated displacements of Laue spots. Laue spots were collected from
an Si crystal undergoing bending and labeled with their Miller indexes.
Their displacements on the detector screen are as depicted by the arrows
(magnified by a factor 50).



3.2. DIC

DIC is an optical technique to acquire the displacement/

strain field of an object’s surface. Its history can be traced to

the beginning of the 1980s (Peters & Ranson, 1982). The

practitioner of DIC needs to designate a set of sub-images as a

‘zone of interest’ (ZOI) on the acquired image of the object’s

surface. Then the aim of DIC is to seek the displacement field

within the ZOI by matching images captured at intervals of

the object’s motion. The motion of the ZOI is characterized by

a polynomial expression (the so-called shape function). The

simplest form of shape function is a zero-order polynomial

associated with rigid translation. DIC does the matching by

minimizing the so-called correlation coefficient, a scalar

quantification of image resemblance. Various forms of corre-

lation coefficient are available (Amiot et al., 2013). The

simplest form of correlation coefficient is the sum of squared

difference (SSD):

CSSD ¼: Pð fi � giÞ2; ð3Þ
where fi is the gray level at the ith pixel of the so-called

reference image, while gi is the interpolated gray level in the

so-called deformed image, at the position associated with this

pixel according to the shape function.

In this work, DIC was performed using the in-house soft-

ware CMV (Doumalin & Bornert, 2000; Bornert et al., 2010).

The CMV code adopts the zero-mean normalized cross-

correlation (ZNCC) coefficient:

CZNCC ¼: 1 �
Pð fi � f Þðgi � gÞPðfi � f Þ2 Pðgi � gÞ2

� �1=2
; ð4Þ

where f and g are the averages of fi and gi, respectively.

Though ZNCC is much more complex than SSD, it is insen-

sitive to the offset and scale changes in the gray level of images

and gives the best results compared to other correlation

coefficients in terms of displacement measurement (Tong,

2005). This property is especially useful when the illumination

conditions cannot guarantee the strict conservation of gray

levels, as for instance in scanning electron microscopy images

(Doumalin & Bornert, 2000).

A great benefit of DIC for Laue images lies in the fact that

the detection of spot motion is basically insensitive to the spot

shape. Therefore, we anticipate that the technique presented

below should work for crystals having undergone plastic strain

and containing geometrically necessary dislocations, for which

spot shapes are complex; the important point is that spot

shapes do not evolve during the considered deformation

increment. Wang et al. (2009) derived complex formulas to

estimate the errors of DIC given the gray level distribution

and noise of images. According to these formulas, the error of

DIC could be of the order of 10�3 pixels for our images.

3.3. Principle of enhanced Laue-DIC

In the following, Einstein’s summation convention (implicit

summation over repeated indices) will be employed for the

sake of brevity. The lattice cell of the crystal of interest is

defined by its three lattice vectors, a, b and c. These vectors are

grouped into a lattice matrix, whose columns correspond to

the lattice vectors:

l ¼ ½a; b; c�: ð5Þ
With the lattice matrix l, we can define its reciprocal lattice

matrix l� ¼ ½a�; b�; c��, whose columns are the reciprocal

lattice vectors of a, b and c:

a�¼: b� c

a � ðb� cÞ ; b�¼: c� a

a � ðb� cÞ ; c�¼: a� b

a � ðb� cÞ : ð6Þ

In Laue microdiffraction, we do not directly obtain the lattice

matrix l. Rather, we obtain its reciprocal lattice matrix l� ¼ l�T

(the superscript �T denotes the transposed inverse matrix),

since the diffraction condition can be more conveniently

expressed in reciprocal space:

kf � ki ¼ l� � h; ð7Þ
where kf and ki are the wavevectors of the diffracted beam

and the incident beam, respectively, and h ¼ ½h; k; l�T is the

index of diffraction. Note that kf and ki are of the same

magnitude, i.e. kkfk ¼ kkik ¼ 1=�, where � is the wavelength.

Therefore, the unit vectors of kf and ki, denoted k̂kf and k̂ki, are

linked by the following relation:

k̂kf � k̂ki ¼ ðkf � kiÞ=ð1=�Þ ¼ �l� � h ð8Þ
or

k̂kf ¼ k̂ki þ �l� � h: ð9Þ
Taking the squared norm on both sides of equation (9) gives

1 ¼ 1 þ 2�k̂ki � ðl� � hÞ þ �2kl� � hk2: ð10Þ
Hence,

� ¼ �2
k̂ki � ðl� � hÞ
kl� � hk2 : ð11Þ

Substituting equation (11) into equation (9) leads to

k̂kf ¼ k̂ki � 2
½k̂ki � ðl� � hÞ�
kl� � hk2

l� � h: ð12Þ

Note that in < the incident beam is collimated with the y axis.

Therefore the components of k̂ki in < are constantly k̂ki
i 	 �2i

(�ij is the Kronecker delta), and the components of k̂kf can be

written as

k̂kf
i ¼

kl� � hk2�2i � 2l�2jhjl
�
irhr

kl� � hk2 : ð13Þ

The interception of k̂kf by the area detector forms a Bragg

peak. The coordinates of the peak in the detector reference

frame, denoted ðx; yÞ, have the following relation with k̂kf

according to Fig. 1:

k̂kf
i g1i

x� xc

¼ k̂kf
i g2i

y� yc

¼ k̂kf
i g3i

d
; ð14Þ

where gij are the components of g, the matrix transforming the

coordinates in < into the detector coordinate system:



g ¼
cos � � cos � sin � sin � sin �
sin � cos� cos � � sin� cos �

0 sin � cos�

2
4

3
5: ð15Þ

Then ðx; yÞ can be expressed as

x ¼ d
k̂kf
i g1i

k̂kf
i g3i

þ xc; y ¼ d
k̂kf
i g2i

k̂kf
i g3i

þ yc: ð16Þ

Because the expressions of k̂kf
1, k̂k

f
2 and k̂kf

3 in equation (13) have

the same denominator kl� � hk2, we can define a scaled version

of kf :

s¼: kl� � hk2k̂kf ¼ kl� � hk2k̂ki � 2½k̂ki � ðl� � hÞ� l� � h: ð17Þ
Its components in < are

si ¼ kl� � hk2�2i � 2l�2jhjl
�
irhr ¼ l�pmhml

�
pnhn�2i � 2l�2jhjl

�
irhr: ð18Þ

The coordinates of the diffracted peak on the area detector

can be expressed as

x ¼ d
sig1i

sig3i

þ xc; y ¼ d
sig2i

sig3i

þ yc: ð19Þ

In enhanced Laue-DIC, the obtained lattice matrices and

calibration parameters in two configurations are considered

instead of the increment of elastic strain and lattice rotation

between two configurations as in original Laue-DIC. Here, the

calibration parameters and lattice matrix of the reference

configuration are denoted by uppercase letters, and those of

the current configuration by lowercase letters (see Table 1).

Note that in enhanced Laue-DIC the designation of reference

or current configuration can be arbitrary, while in original

Laue-DIC it is necessary to denote as the reference config-

uration the one whose lattice matrices and calibration para-

meters are known accurately in advance, otherwise only the

increments of deviatoric elastic strain or stress between two

configurations can be evaluated.

The displacement of a Bragg peak between the reference

and the current configurations can be expressed as

�x ¼ d
sig1i

sig3i

�D
SiG1i

SiG3i

þ�xc; �y ¼ d
sig2i

sig3i

�D
SiG2i

SiG3i

þ�yc;

ð20Þ
where

�xc ¼: xc � Xc; �yc ¼: yc � Yc; ð21Þ
g is determined by � and �, and G is determined by B and �.

Therefore, it can be seen from equation (20) that the dis-

placement of a peak is associated with eight calibration

parameters: d, D, �xc, �yc, �, B, � and �.

The s and S parameters of equation (20) are determined by

the reference and current lattice matrices, respectively; we are

actually concerned with eight degrees of freedom for each

lattice matrix since isotropic dilation of the lattice matrix does

not change the peak positions. Without loss of generality, the

xx component of the lattice matrix is set to be a constant value,

say 1, while treating the rest of the components as unknowns.

Then, we have 16 unknowns coming from the reference and

current lattice matrices, along with the eight unknown cali-

bration parameters mentioned in the last paragraph to be

determined.

Now the question is, is it possible to determine the 16 lattice

matrix components and eight calibration parameters with 12

spot displacements? The answer is, according to the implicit

function theorem (Nocedal & Wright, 1999, pp. 575–591), as

long as the Jacobian matrix of equation (20) (denoted as J

hereinafter) has full rank, at least 12 spot displacements are

adequate to determine the 24 parameters, i.e.

det J ¼ det
@ð�x1;�y1;�x2;�y2; . . . ;�x12;�y12Þ

@P 6¼ 0;

ð22Þ
where P denotes the set of all 24 parameters. To further

illustrate how J determines the uniqueness of the solution of

equation (20), let us raise an example in which det J ¼ 0. If in

the reference and current configurations all parameters except

d and D are the same, then for any spot we have from equation

(20)

@�x

@d
¼ sig1i

sig3i

¼ SiG1i

SiG3i

¼ � @�x

@D
;

@�y

@d
¼ sig2i

sig3i

¼ SiG2i

SiG3i

¼ � @�y

@D
:

ð23Þ

Therefore, the column of J corresponding to the partial deri-

vatives with respect to d is opposite to the column corre-

sponding to the partial derivatives with respect to D. In this

case, det J ¼ 0, and P cannot be fully determined purely from

the spot displacements. Indeed, under such circumstances, the

spot displacement is only related to d�D and no longer

depends on d or D.

The value of det J also serves as an indicator of the

robustness against DIC errors. Let us denote the errors in DIC

as ��xi; ��yi; i ¼ 1; 2; . . . ; 12 and the resulting errors in the

identification of parameters as �P i; i ¼ 1; 2; . . . ; 24. When the

errors in DIC are small, we have

�P1�P2 � � � �P24 ¼
1

j det Jj ��x1��y1 � � � ��x12��y12: ð24Þ

Therefore, it is evident from equation (24) that the larger

jdet Jj is, the less impact the errors in DIC will exert on the

identification of P.

In practice, more than 12 spot displacements are collected

and our problem turns into minimizing an objective function:

�¼:
X
hkl

Whkl
x d

shkli g1i

shkli g3i

�D
Shkli G1i

Shkli G3i

þ�xc ��xhkldic

� �2

þ
X
hkl

Whkl
y d

shkli g2i

shkli g3i

�D
Shkli G2i

Shkli G3i

þ�yc ��yhkldic

� �2

; ð25Þ

Table 1
Symbols for quantities in the reference and current configurations.

Reference configuration D Xc Yc B � L* G S
Current configuration d xc yc � � l* g s



where the superscript hkl represents the index of the spot,

�xhkldic and �yhkldic are the displacements of the spot obtained by

DIC, and Whkl
x and Whkl

y are their weights. In practice, to avoid

trigonometric calculations, �, B, � and � are not optimized

directly but t�=2 ¼: tan �=2, tB=2 ¼: tan B=2, t�=2 ¼: tan �=2 and

t�=2 ¼: tan�=2 are optimized instead. Then equation (25)

becomes

� ¼
X
hkl

Whkl
x d

shkli ~gg1i

shkli ~gg3i

�D
Shkli

~GG1i

Shkli
~GG3i

þ�xc ��xhkldic

� �2

þ
X
hkl

Whkl
y d

shkli ~gg2i

shkli ~gg3i

�D
Shkli

~GG2i

Shkli
~GG3i

þ�yc ��yhkldic

� �2

; ð26Þ

where

~gg¼: ð1 þ t2�=2Þð1 þ t2�=2Þg;
~GG¼: ð1 þ t2B=2Þð1 þ t2�=2ÞG:

ð27Þ

P can be obtained by minimizing equation (26) with the spot

displacements as the sole input. In summary, the procedure of

enhanced Laue-DIC mainly consists of four steps (see Fig. 3):

(1) Take two diffraction images from different positions of a

sample. Use, for example, the standard method to index each

spot and obtain an estimation of their lattice matrices and

calibration parameters.

(2) Measure the displacement of each spot between the two

configurations by DIC.

(3) Minimize the discrepancy between the measured

displacements and simulated displacements by manipulating

the lattice matrices and calibration parameters of the two

configurations.

(4) Obtain the orientations and deviatoric elastic strains

from the lattice matrices.

The flowchart of enhanced Laue-DIC is given in Fig. 3. The

enhanced Laue-DIC method shares some similarities with the

method proposed by Maurice et al. (2011) for finding cali-

bration parameters of the high-resolution EBSD setup.

4. Numerical test

Before dealing with experimental data, let us first run some

numerical tests to study the performance of different optimi-

zation algorithms. The candidate algorithms include the

Powell (1964) and L-BFGS-B (Nocedal & Wright, 1999,

pp. 222–249) algorithms. Powell’s method, which requires no

calculation of the gradient of �, is based on line (or one-

dimensional) minimizations along optimized conjugate direc-

tions determined from a local quadratic fit of �; these direc-

tions are updated after each iteration. The BFGS method is

also based on a local quadratic approximation of function �,

but, unlike Powell’s method, it requires the computation of the

function gradient. A (quasi)-Newton method is then used for

line minimization, with a Hessian matrix not calculated

explicitly but estimated from previous evaluation of the

function. Complete expressions for the partial derivatives of �
are given by Zhang (2015). The number of spots considered in

our tests is 40. The procedure of the numerical tests is given as

follows:

(1) Given the exact values of lattice matrices and calibration

parameters of two configurations, calculate the theoretical

peak positions on the area detector and subsequently their

displacements. The considered deformation gradient between

the two configurations is taken from a typical experimental

data set:

1 3:33 � 10�4 �3:55 � 10�4

9:15 � 10�6 1 �4:49 � 10�4

�3:36 � 10�4 2:42 � 10�4 1

2
4

3
5: ð28Þ

(2) Slightly deviate the calibration parameters and the

simulated peak positions from their exact values according to

a normal distribution. According to Poshadel et al. (2012), the

assumed error of fitting a peak position is 0.1 pixel; the

considered deviations of the calibration parameters are given

in Table 2. Note that yc exhibits a larger uncertainty than xc

because the penetration depth along the y axis adds to the

uncertainty (see Fig. 1).

(3) Calculate an estimation of the lattice matrices of the two

configurations with the deviated peak positions and deviated

calibration parameters by using, for example, the standard

method (Chung & Ice, 1999).

(4) Slightly deviate the theoretical peak displacements from

their exact values according to a normal distribution. The

deviation of the peak displacements is set to 0.01 pixels in

order to mimic the uncertainty of DIC (Bornert et al., 2009;

Amiot et al., 2013; Zhang, 2015).
Figure 3
Flowchart of enhanced Laue-DIC.

Table 2
Deviations of calibration parameters, set to be equal to the values of the
uncertainties evaluated by Poshadel et al. (2012).

�d,D �xc,Xc
�ycYc

��,B ��,�

0.004 mm 4.96 mm (0.16 pixel) 8.06 mm (0.26 pixel) 0.005
 0.005




(5) Run the optimization to investigate whether and to what

accuracy the values of the lattice matrices and calibration

parameters can be recovered using the deviated displacements

simulated in step (4) as input and the deviated parameters

obtained in steps (2) and (3) as initial guess.

For calibration parameters, it is straightforward to define

their errors by the discrepancies between the calculated values

and the exact ones:

ex ¼: jxcal � xexaj; x 2 fd;D;�xc;�yc; �;B; �;�g; ð29Þ
where the superscript cal represents values calculated after the

minimization process, and the superscript exa represents the

exact values. As for the lattice matrices l and L, the following

steps are used to measure their errors:

(1) Divide each component of the lattice matrix by the cube

root of the determinant of the lattice matrix in order to

exclude the influence of the volume of the unit lattice, which is

out of reach, i.e.

l̂l¼: l

ðdet lÞ1=3
; L̂L¼: L

ðdetLÞ1=3
; ð30Þ

(2) The errors on l and L are defined as

el ¼:
P3

i¼1

P3
j¼1 jl̂lcal

ij � l̂lexa
ij j

9
;

eL ¼:
P3

i¼1

P3
j¼1 jL̂Lcal

ij � L̂Lexa
ij j

9
:

ð31Þ

Because our numerical test uses randomly generated data,

we optimize 500 random cases for each algorithm to make the

results statistically significant. The statistical performance of

each algorithm is evaluated by the means of ex,

x 2 fl;L; d;D;�xc;�yc; �;B; �;�g of all random cases,

denoted as ex.

The performance of optimization is affected by the iteration

count. Fig. 4 depicts the convergence of the L-BFGS-B algo-

rithm, where the x axis represents the iteration counts and the

y axis represents the ratio of the cost function � to its initial

value �0. As can be seen, the value of � drops only slowly

when the iteration counts exceed 20 (a similar behavior has

been observed when using the Powell method instead of

L-BFGS-B). Therefore, a stopping criterion is set for each

algorithm employed: the optimization procedure is stopped

once the decrease of � after one iteration is smaller than 5%

of the current value of �.

The first two rows of Table 3 report the performance of the

mentioned algorithms. For both algorithms, the accuracy of

the lattice matrices attains the order of 10�5. However, it is

found that the mean errors on calibration parameters are

generally larger than the imposed errors tabulated in Table 2.

This prompts us to believe that the adopted algorithms are less

efficient with calibration parameters than with lattice matrices.

Here, the problem is solved by resorting to partial optimi-

zation: all parameters P are firstly subdivided into lattice

matrices, L ¼ fl�;L�g, and calibration parameters, denoted as

C ¼ fd;D;�xc;�yc; �;B; �;�g. Because L bears a larger

degree of uncertainty than C (the uncertainty in lattice

matrices comes from uncertainties in calibration parameters

plus those in peak positions), L is first optimized with C fixed,

and once the optimization of L has been finished we go on to

optimize C while keeping L fixed. This process is stopped once

the decrease of � after one iteration is below 5% of the

current value of �.

For each stage of partial optimization, i.e. optimizing L or C,

both L-BFGS-B and Powell algorithms were tried, and it is

found that the combination of optimizing L by L-BFGS-B and

optimizing C by Powell gives the most satisfactory results (see

the last line of Table 3). Comparing the last line with the first

two lines, it can be seen that the errors of lattice matrices

obtained by partial optimization are of the same magnitude as

those obtained by the L-BFGS-B or Powell algorithm, but the

errors of the calibration parameters by partial optimization

are smaller by an order of 10�2–10�1. Note that, while partial

optimization is so far the best optimization scheme that we

have tried, we hope to find in the future an optimization

scheme with better performance.

Figure 4
�=�0 versus iteration counts.

Table 3
Performance of each individual algorithm.

Algorithm el eL ed (mm) eD (mm) e�xc
(pixel) e�yc

(pixel) e� (
) eB (
) e� (
) e� (
)

L-BFGS-B 5.4 � 10�5 6.0 � 10�5 5.3 � 10�2 1.4 � 10�2 1.3 0.2 4.2 � 10�3 2.8 � 10�3 6.5 � 10�3 6.3 � 10�3

Powell 9.6 � 10�5 9.6 � 10�5 1.2 � 10�2 7.5 � 10�2 4.4 � 10�3 2.3 � 10�2 6.7 � 10�4 4.6 � 10�3 6.5 � 10�3 7.5 � 10�3

Partial optimization 3.5 � 10�5 3.4 � 10�5 4.0 � 10�4 3.9 � 10�4 1.1 � 10�3 4.4 � 10�2 4.8 � 10�4 2.5 � 10�4 4.8 � 10�4 4.8 � 10�4



5. Experimental validation
Now we will use the standard method, original Laue-DIC and

enhanced Laue-DIC to treat diffraction images collected from

an in situ four-point bending test carried out at beamline

BM32 at the ESRF. In this test, an Si monocrystal was

mounted onto a four-point bending machine and the bending

moment was applied by the four pins holding the monocrystal

(see Fig. 5). The size of the crystal was 34.95 � 7.97 �
2.42 mm. The [100], [010] and [001] crystallographic directions

were aligned along the edges of the sample so that the y cross

section coincided with the mirror plane of the sample’s lattice.

This orientation reduces the shear deformation in the y cross

section to zero from a theoretical point of view.

The bending moment was applied progressively. At the

loadings of 3.9, 88.6 and 199.4 N, the sample was scanned

along the x axis of the sample coordinate system with a step

size of 8.7 mm (see Fig. 5) while maintaining the loading and

experimental setup. In such loadings, the corresponding

maximum �yy in the scanning line are 2.14, 48.39 and

108.95 MPa, respectively, according to the elastic beam theory.

The detector used in our experiment was a VHR X-ray CCD

camera whose pixel size and dynamic range were 31 mm and

12 bit, respectively. The exposure time for each image was

0.2 s. The obtained Laue spots were more or less streaked by

dynamic effects (Yan & Noyan, 2006) (see Fig. 6). Prior to

scanning each sample, a diffraction image was obtained from a

Ge monocrystal positioned on the surface of the sample to

determine the calibration parameters of the setup (Robach et

al., 2011).

In terms of DIC setting, the shape function was set to be a

zero-order polynomial, i.e. the motion of the spot on the

detector screen was assumed to be pure translation (the

shapes of the spots in two diffraction images show a high

resemblance). This resemblance could be a posteriori

confirmed by the value of the correlation coefficient, the

quantification of the resemblance of the images, which turned

out to be of the order of 1 � 10�3 [the value of the correlation

coefficient ranges from 0 to 2; a smaller value means a higher

resemblance; when it becomes zero, the two images are

identical; see equation (4)]. The weights in equation (26) were

designated to be

Whkl
x ¼ Whkl

y ¼ 1 � Chkl; ð32Þ
where Chkl is the correlation coefficient of the spot with index

ðhklÞ. A higher resemblance usually means more credibility in

the measurement of the displacements.

An analytical solution of stress based on anisotropic elastic

theory (Rand & Rovenski, 2005) was used to provide a

reference to the measurements. For homogeneous anisotropic

material, the analytical solution of stress is independent of the

orientation and elastic constants, as long as classical beam

theory holds true (i.e. for a sufficiently large aspect ratio of the

beam), which is assumed here:

�0yy ¼ � 2

3

M

Iz
x� X

2

� �
;

�0xx ¼ �0zz ¼
1

3

M

Iz
x� X

2

� �
;

�xy ¼ �yz ¼ �zx ¼ 0;

8>>>><
>>>>:

ð33Þ

where �0 and � represent the deviatoric stress components, M

is the bending moment calculated by M ¼ ðF=2ÞL from Fig. 5,

X is the sample size in the x direction of the sample coordinate

system (see Fig. 5), Iz ¼ ZX3=12 is the area moment of inertia

of the y cross section, and Z is the size of the sample in the z

direction. The elastic constants for the Si monocrystal are

C11 ¼ 166 GPa, C12 ¼ 64 GPa and C44 ¼ 79 GPa (Keating,

1966).

Although with equation (33) the theoretical stress profiles

could be calculated with the force measured by the sensor

(nominal force), these reference stress profiles might be prone

to error owing to the uncertainties in the measured force, the

sample sizes and the positioning of the pins. We would rather

apply a linear regression to the measured stress profiles to

obtain reference stress profiles, since it is indicated from

equation (33) that the stress should be linearly distributed

along the scanning line.

5.1. Comparison between the standard method and
enhanced Laue-DIC

The sequences of diffraction images were processed with

the standard method and enhanced Laue-DIC, and we

compare their results. First, we used the standard method to

obtain the lattice matrix and calibration parameters for each

Laue image. Then, all illumination sites were grouped into

pairs, each pair containing two adjacent illumination sites (see

Figure 5
The in situ test carried out at beamline BM32 at the ESRF. L ¼ 8:5 mm.

Figure 6
The streaked spots in a diffraction image of Si.



Fig. 7). Pairing the images in this way maximizes the resem-

blance between them and is therefore beneficial for DIC.

Finally, we applied DIC to each pair and used the aforemen-

tioned procedure of enhanced Laue-DIC (see Fig. 3) to refine

lattice matrices and calibration parameters at each illumina-

tion site. In each pair of images, �30 spots were considered.

The profiles of �0yy along the x axis at 3.9, 88.6 and 199.4 N

with both the standard method and enhanced Laue-DIC are

plotted in Fig. 8. It appears that the measurements by

enhanced Laue-DIC exhibit less fluctuation around the solu-

tions value. A short span of the 88.6 N stress profile next to the

neutral fiber at x ’ 1 mm can be also observed, departing

from the expected linear trend. This anomaly, which does not

happen for other loading stages, is unfortunately not

explained; it probably comes from some drift in the experi-

mental conditions. It is not due to the data processing as it can

be observed with the three methods tested here, namely

standard, Laue-DIC and enhanced Laue-DIC.

A more quantitative evaluation lies in comparing the root

mean square (RMS) of the discrepancies between the

measurements and the fitted solution:

RMS¼:
Pn

i¼1½�meas
ðiÞ � �fit

ðiÞ�2
n

( )1=2

: ð34Þ

The RMS values of �0yy for the standard and enhanced Laue-

DIC methods are given in Table 4. The results show that at

loadings of 88.6 and 199.4 N enhanced Laue-DIC can reduce

the discrepancies between the measurements and the fitted

solution by the order of 1–3 MPa. But at the loading of 3.9 N,

the discrepancy of enhanced Laue-DIC is slightly larger; this

may be because at such loading the peak displacements are

very small and not precisely captured by DIC. Indeed, the

accuracy of DIC for almost null displacements has been

observed to be worse than for finite displacements (Amiot et

al., 2013).

Table 5 gives the fitted slopes of the �0yy profiles and the

nominal slopes calculated from equation (33). It can be seen

that for the loads of 3.9 and 88.6 N the nominal slope and the

fitted slope differ only slightly; for the load of 199.4 N the

nominal slope and the fitted slope differ more. In any case,

enhanced Laue-DIC provides an evaluation closer to the

nominal values.

Other components of deviatoric stresses are now investi-

gated. For brevity, only the results for 199.4 N are given (see

Fig. 9). It is observed that enhanced Laue-DIC always reduces

the fluctuations of profiles. Nevertheless, we observe at both

ends of the scanning line abnormal trends deviating from the

supposed linearity of the stress profiles in equation (33). Such

trends are also observed in the �0yy profiles, but with a much

lower, almost negligible, amplitude. However, these deviations

should not be due to enhanced Laue-DIC itself, because they

also exist in the results of the standard method. Some reasons

Figure 7
Correlation pairs: red spots represent illumination sites, black curves
represent correlations between two spots and the dashed line represents
the scanning line x (see Fig. 1).

Figure 8
Comparison of the measured �0yy profile by (a) the standard method and
(b) enhanced Laue-DIC.

Table 4
RMS of discrepancies between the measurements and the fitted solution
of the �0yy profiles (unit: MPa).

3.9 N 88.6 N 199.4 N

Standard method 1.94 6.50 3.23
Enhanced Laue-DIC 2.17 3.95 2.10

Table 5
Fitted and nominal slopes of �0yy profiles (unit: MPa mm�1).

3.9 N 88.6 N 199.4 N

Fitted slope from standard method �1.99 �24.59 �54.50
Fitted slope from enhanced Laue-DIC �1.67 �26.10 �55.23
Nominal slope �1.18 �26.66 �60.03



other than data treatment that may account for these

abnormalities include the following:

(1) The analytical solution gives the stress on the specimen

surface, while measurements give the stress somewhere

beneath the surface owing to the penetration of the X-rays. In

addition, the measurement provides a kind of averaged stress

over the area irradiated by the beam, which encompasses a

(small) range of the scanning line, because of the tilt angle

between the beam and the sample.

(2) The sample might not be under pure bending conditions,

because of the imperfections of the setup and of the finite

aspect ratio of the sample. In addition, the polished surface of

the sample might not be perfectly flat.

Aside from the stress profile, enhanced Laue-DIC also

allows for the evaluation of the calibration parameters of each

illumination site. As mentioned before, a piece of Ge mono-

crystal was glued onto the sample surface to get a first

evaluation of the calibration parameters before scanning. We

call the obtained calibration parameters the nominal ones and

denote them by a superscript nom. Then, the deviation of the

calibration parameters was quantified by the bias of the mean

xcal from the nominal value, e.g. ex ¼ jxcal � xnomj, and the

fluctuation �x, the standard deviation of xcal, in which

x 2 fd;�xc;�yc; �; �g (we do not use capital letters D, B and

� any more because we do not have to distinguish the refer-

ence and current configuration here). Note that �xnom
c 	 0

and �ynom
c 	 0 as a consequence of the definition of these

parameters (the nominal values of �xnom
c and �ynom

c are the

same for all illumination sites). The results of biases and

fluctuations are tabulated in Table 6.

From Table 6, it can be seen that the fluctuations of the

calibration parameters are larger than their corresponding

mean deviations. In comparison with Table 2, the calculated

fluctuations of the calibration parameters are of a similar

magnitude to those reported by Poshadel et al. (2012) for d, �
and �. The fluctuations of �xc and �yc are smaller than those

reported for xc and yc, consistent with the fact that in

enhanced Laue DIC one does not seek the exact absolute

position of the normal projection of the illuminated region on

the detector, but only its possible deviations between

compared configurations.

5.2. Comparison between original Laue-DIC and enhanced
Laue-DIC

With the same sequence of diffraction images, we can also

run both original and enhanced Laue-DIC analysis, and

compare the stress increments from original Laue-DIC with

those from enhanced Laue-DIC. Here, we use a different

pairing scheme from the one in the previous section: the lattice

in the middle of the scanning line (step number N/2) is chosen

as the reference one, and we perform both original and

enhanced Laue-DIC with the other lattices in the scanning line

(see Fig. 10) to calculate the stress increment with respect to

the reference lattice, i.e. ��ij ¼: �ij � �ref
ij ; i; j 2 fx; y; zg. This

image-pairing scheme is adapted for Laue-DIC, for which the

used reference image should correspond to a well known

lattice. Here, point N=2 lies in the beam neutral fiber and is

therefore assumed to be stress free. In addition, when used for

Figure 9
Comparison of stress profiles of other components by (a) the standard
method and (b) enhanced Laue-DIC.

Table 6
Mean biases and fluctuations of calibration parameters (pixel size:
31 mm).

d (mm) �xc (pix) �yc (pix) � (
) � (
)

e 2.8 � 10�3 1.3 � 10�3 4.6 � 10�3 7.7 � 10�4 2.6 � 10�3

� 4.9 � 10�3 9.1 � 10�3 1.5 � 10�2 3.3 � 10�3 4.2 � 10�3

Figure 10
Correlation pairs: red spots represent illumination sites, black curves
represent correlations between two spots and the dashed line represents
the scanning line x (see Fig. 1). N is the total number of illumination sites.



the enhanced Laue-DIC method, this scheme allows evalua-

tion of the stress and calibration parameters many (¼ N � 1)

times for the same reference configuration and hence allows

estimation of the errors on the calibration and reference

lattice at that point.

Fig. 11 plots the profiles of ��0yy at 3.9, 88.6 and 199.4 N with

both original and enhanced Laue-DIC. The RMS values of the

discrepancies between the measurements and the fitted solu-

tion are given in Table 7. Both qualitative and quantitative

comparison of the ��0yy profiles by original and enhanced

Laue-DIC show that the performance of the two methods is

very similar.

Fig. 12 plots the profiles of the increments of the other stress

components at the loading of 199.4 N. Again, it is observed

that these profiles are very similar to their counterparts.

However, the profile of ��yz by enhanced Laue-DIC exhibits

more fluctuation than its counterpart by original Laue-DIC.

To sum up, the stress profiles obtained by the two versions

of Laue-DIC are very similar, but the profiles by enhanced

Laue-DIC appear slightly more fluctuated. We are still not

certain about the cause of this phenomenon; either enhanced

Laue-DIC has more accurately reflected the inhomogeneity of

stress distribution at micrometre scale, or enhanced Laue-DIC

has encountered greater difficulty in its optimization. As

already discussed, large uncertainties of the calibration para-

meters and the reference lattice matrix, together with a good

image quality (low noise, high resolution, high peak intensity

and large spot numbers), are required to highlight the merits

of enhanced Laue-DIC. Otherwise, it is not worthwhile to

apply enhanced Laue-DIC to work out 24 unknowns if we

could have a fairly reasonable estimation of them. This point

will be investigated in detail in a forthcoming paper by means

Figure 11
Comparison of the measured ��0yy profile by (a) original Laue-DIC and
(b) enhanced Laue-DIC.

Table 7
RMS of discrepancies between the measurements and the analytical
solution (unit: MPa).

3.9 N 88.6 N 199.4 N

Original Laue-DIC 1.94 4.53 1.82
Enhanced Laue-DIC 1.93 4.50 1.86

Figure 12
Comparison of profiles of increments of other stress components by (a)
original Laue-DIC and (b) enhanced Laue-DIC.



of a statistical analysis of randomly distorted numerical Laue

images.

As can be seen from Fig. 10, each time enhanced Laue-DIC

is performed, the stress of the reference configuration is

evaluated. Thereby the stress of the reference illumination site

is evaluated N � 1 times when all pairs of images in Fig. 10

have been analyzed (N represents the total number of illu-

mination sites, in our case N ¼ 284). The N � 1 evaluations

enable us to calculate the standard deviations of each stress

components of the reference configuration: ��xx ¼ 1:43 MPa,

��yy ¼ 0:44 MPa, ��zz ¼ 1:55 MPa, ��yz ¼ 2:67 MPa, ��zx ¼
2.06 MPa and ��xy ¼ 0:56 MPa. It is observed that the �yz and

�xz components exhibit larger uncertainties. In the same way,

the standard deviations of the calibration parameters at the

same position are �d ¼ 4:3 � 10�5 mm, ��xc
¼ 3:4 �

10�4 pixels, ��yc
¼ 1:3 � 10�3 pixels, �� ¼ 8:2 � 10�4 
 and

�� ¼ 5:8 � 10�4 
. Unlike the uncertainties tabulated in

Table 6, the uncertainties here are only associated with the

errors of the peak displacements and the performance of

numerical optimization, because they all refer to the reference

configuration.

6. Summary

In this work, the so-called enhanced Laue-DIC method is

proposed to derive lattice matrices and calibration parameters

of two configurations. Compared to the standard method, the

main features of the enhanced Laue-DIC method can be

summarized as follow:

(1) Enhanced Laue-DIC calculates the lattice matrices and

calibration parameters simultaneously, while the standard

method calculates them separately.

(2) Enhanced Laue-DIC uses two diffraction images to

obtain the lattice matrices and calibration parameters of the

two configurations, while the standard method uses only one

image to obtain the lattice matrix (and a separate calibrant

image taken in advance on a reference specimen for the

calibration parameters).

(3) Although enhanced Laue-DIC usually uses lattice

matrices and calibration parameters obtained by the standard

method as initial guess, it essentially uses spot displacements

as the sole source of information while the standard method

uses the absolute positions.

Enhanced Laue-DIC differs from original Laue-DIC in two

aspects (with the sole assumption that the crystal in its natural

unstressed state exhibits cubic symmetry): (i) enhanced Laue-

DIC calculates the deviatoric elastic strain and orientation of

the lattice, while original Laue-DIC calculates the elastic

strain increment and relative rotation between two config-

urations; (ii) enhanced Laue-DIC calculates calibration

parameters while original Laue-DIC does not.

We have presented the performance of the standard

method, original Laue-DIC and enhanced Laue-DIC by

treating a diffraction image sequence of scanning an Si

monocrystalline sample subjected to bending. Compared to

the results of the standard method, those of enhanced Laue-

DIC exhibit less fluctuation. However, in terms of stress

increment, the results of original Laue-DIC appear slightly

less fluctuated.

Further improvements for the proposed enhanced Laue-

DIC method may include the following:

(1) Apply this method to samples with a rough surface, as it

allows for determination of both lattice matrices and diffrac-

tion location and is tolerant to significant evolution of cali-

bration parameters.

(2) As pointed out in equation (24), the determinant of the

Jacobian matrix det J influences the robustness against errors

in DIC measurement. Therefore in a future experiment it

would be possible to deliberately manipulate the calibration

parameters to increase det J and hence the robustness against

DIC errors. Also, as the detector position seems to be more

easily optimized than its orientation (Zhang, 2015), one could

imagine deriving intermediate methods between Laue-DIC

and enhanced Laue-DIC in which only part of the calibration

parameters would be refined.

(3) As revealed from x4, the optimization algorithm is vital

for the performance of enhanced Laue-DIC. In future, we

hope to find a more efficient algorithm, with which the para-

meters could quickly converge to their accurate values.
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