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Abstract

In this article, we address the model identi�cation of nonlinear vibratory systems, with a speci�c focus

on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures.

The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative

unforced system and the use of normal forms. Within this framework, it is shown that without internal5

resonance, a valid reduced order model for a nonlinear mode is a single Du�ng oscillator. We then propose

an e�cient experimental strategy to measure the backbone curve of a particular nonlinear mode and we

use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-

Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced

responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part10

of Du�ng-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole

procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric

cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well

as to other experimental identi�cation methods.

1 Introduction15

The model identi�cation of dynamical systems is an important area of today's research. Basically, it consists
in performing dedicated experiments in order to estimate the values of a given set of parameters of an assumed
model for the system. In doing so, several goals can be pursued. It may be a simple model validation: one
compare the experimentally estimated values of the parameters to the theoretical ones to quantify its closeness
to reality. One can also be interested in a model updating: a given set of parameters are left free in the model20

and their values are estimated with dedicated experiments. For linear systems, modal models are often selected
and a large variety of mature and robust parameter identi�cation techniques/algorithms is available [1]. Most
of them are implemented in commercial experimental modal analysis software packages. On the contrary, if the
system's behaviour involves nonlinearities, the area of system's identi�cation, though extensively addressed in
the past twenty years, is still open and no systematic procedure exists. The interested reader is referred to the25

following review works [2, 3, 4].

The presence of nonlinearities in a given system can dramatically change its behaviour. Among others, the
system's free oscillations frequencies, as well as the resonance frequencies, depend on the amplitude. Moreover,
some energy exchanges between modes or between distant frequency bands can be observed, leading to harmonic
distortion, internal resonances, quasi-periodic oscillations or chaotic oscillations [5]. The physical sources of30

nonlinearities are numerous, and lead in each case to speci�c dynamical phenomena. They can be classi�ed
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into four families: material nonlinearities (elastoplastic material, nonlinear elastic material. . . ), geometrical
nonlinearities (large amplitude oscillations), contact nonlinearities (dry friction, shocks. . . ) and interaction
nonlinearities (�uid-structure, electrostatic transduction in micro/nano systems). Until now, the e�orts on
nonlinear systems identi�cations have been mainly targeted to localized nonlinearities (almost all the 23035

references of the 2016 review [2] are related to localized nonlinearities). By localized, we denote nonlinearities
that involve a very small subset of the model's degrees of freedom, the others being linear. Some examples are
contact nonlinearities or nonlinearities localized in connection components between subparts of the system.

In the present article, we speci�cally address the experimental identi�cation of models involving distributed
nonlinearities, even if it can be equally applied to models with localized nonlinearities. We target in particular40

the identi�cation of geometrically nonlinear slender structures, such as beams, plates and shells, with possible
interaction nonlinearities such as electrostatic or piezoelectric transductions. Geometrical nonlinearities involve
all the model's degrees of freedom (see e.g. [6]), as well as electrostatic transduction, intrinsically nonlinear
(see e.g. [7]) and piezoelectric transduction, materially nonlinear for large electric �elds [8]. Because of this
distributed nature of the nonlinearities, it is impossible to experimentally identify a nonlinear law involving45

the (numerous) physical degrees of freedom (like a nonlinear sti�ness), as often done for localized nonlinearities
[2]. Consequently, the method proposed in this article systematically relies on an accurate reduced order model
based on the concept of nonlinear modes and normal forms. As introduced for nonlinear structural systems
in [9, 10, 11], the normal form theory enables to reduce the dynamics of a nonlinear second order dynamical
system to an invariant set of oscillators, each one being associated to a so-called nonlinear mode. If no internal50

resonance occurs, the system's dynamics in free undamped oscillations can be reduced to a single nonlinear
mode, and consequently to a single nonlinear oscillator. Its main characteristics is its hardening / softening
behaviour, well de�ned by its backbone curve, showing the free oscillations frequency as a function of the motion's
amplitude. For slender structures such as beams, plates and shells subjected to geometrical nonlinearities, the
hardening / softening behaviour of a particular nonlinear mode depends, among other sources, on the curvature55

(�at structures like beams and plates have always hardening nonlinear modes whereas shells show softening
behaviours [12, 13, 14]), on possible prestresses [15] or on electrostatic or piezoelectric interactions [16, 17].

In this article, we propose an e�cient strategy to experimentally estimate the backbone curve of a particular
nonlinear mode and we use it to identify a reduced order model of the considered nonlinear mode. The
experimental identi�cation part relies on a recent measurement technique based on a Phase-Locked Loop (PLL)60

[18, 19]. The whole procedure is tested on three experimental systems. The �rst one is a free edge circular
plate, already used in [20]. The backbone curves of an axisymmetric mode and two asymmetric companion
modes are identi�ed. Then, the estimated parameters are compared to an analytical theoretical model, showing
the e�ciency of the method, even when 1:1 internal resonance are present. Then, two hardening nonlinear
modes of a chinese gong are measured. For those two structures, tested with free edge boundary conditions, the65

nonlinearities are mainly geometrical. On the contrary, the third tested structure is a piezoelectric cantilever
beam, for which the �rst mode is tested in several electrical conditions. In this latter case, the nonlinearities come
from several sources: geometrical, non perfect boundary conditions and piezoelectric material nonlinearities.

2 Nonlinear mode identi�cation

2.1 Nonlinear mode background70

2.1.1 First order reduced model

We consider the following N -dimensional model of a nonlinear system, valid for a N degrees of freedom
discrete mechanical system or a continuous one, discretized on a N dimensional basis (after a �nite element
discretization for instance [6, 21]):

Mẍ + Cẋ + Kx + fnl(x) = g, (1)

where N ∈ N, x(t) is the N dimensional displacement vector, a function of time t, M , C and K are the N ×N75

dimensional mass, damping and sti�ness matrices, fnl(x) is the nonlinear part of the internal force vector, g(t)

is the external force vector and •̇ = d•/dt. Note that for a sake of simplicity, a linear viscous damping model has
been used. We also restrict our attention to geometrically nonlinear structures, for which fnl(x) is a quadratic
and cubic polynomial function of x [22, 21, 23].
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We �rst consider a family of K < N linear modes (ωk,Φk), k = 1, . . .K, solutions of:80

(K − ω2
kM)Φk = 0, (2)

obtained by considering the eigensolutions of the undamped, free and linearized Eq. (1). Then, we expand the
solution x(t) on this basis, i.e. we seek a solution for x(t) of the form:

x(t) =

K∑

k=1

Φkqk(t). (3)

Using the orthogonality properties of the modes, one can show that the modal coordinates qk(t) verify for all
k = 1, . . .K:

q̈k + 2ξkωkq̇k + ω2
kqk +

K∑

i,j=1

βkijqiqj +

K∑

i,j,l=1

γkijlqiqjql = Qk, (4)

with Qk = ΦT
k g/Φ

T
kMΦk and where the modal damping has been assumed uncoupled (an assumption valid for85

small damping, even with non proportional C matrix [24]). The values of the nonlinear coe�cients βkij and γ
k
ijl

can be computed in practice by several methods (see e.g., among others [25, 23]). The same set of equations is
obtained after modal expansions of analytical models of beams, plates and shells [5, 26, 13, 27].

To this end, the model size has been reduced from N to K (with, hopefully, K � N). However, in practice,
the choice of the linear mode basis (the K retained linear modes) is not an easy task and a further reduction of90

the model size can be done with the help of the nonlinear mode framework. In the same way than for de�ning
the linear modes (Eq. (2)), we consider the underlying conservative model (4) in free vibrations (ξk = Qk = 0

∀k). Using normal forms, as introduced in [9, 10, 28], it is possible to simplify model (4) by introducing the
following nonlinear change of coordinates, for all k = 1, . . .K:

qk = uk + P(2)
k (ui, u̇i) + P(3)

k (ui, u̇i), (5)

where P(p)
k (ui, u̇i), i = 1, . . .K, is a polynomial function of (ui, u̇i) containing monomial terms of order p only95

(For instance, for p = 2 and K = 2, the monoms of P(2)
k are u2

1, u1u2, u2
2, u̇

2
1, u̇1u̇2, u̇2

2 [10]). By substituting

qk for uk in Eq. (4) using Eq. (5), it is possible to choose the coe�cients of the monomials of P(p)
k (ui, u̇i) in

order to cancel most of the nonlinear terms in (4). More precisely, all the non resonant nonlinear terms can
be cancelled. Nonlinear monomials are often resonant because of the occurrence of internal resonances. Some
others are naturally resonant (it is the case for some cubic ones), i.e. without the occurrence of a particular100

internal resonance (see [5, 10] for details about internal resonances and resonant terms). If we assume here
that there are no internal resonances, the initial dynamical system (4) is replaced by the following one, for all
k = 1, . . .K:

ük + ω2
kuk +Q(3)

k (ui, u̇i) = 0, (6)

in which Q(3)
k (ui, u̇i), i = 1, . . .K denotes a polynomial function of (ui, u̇i) of order 3 only. All coe�cients of

the monomials of P(p)
k and Q(3)

k are formally known as functions of the coe�cients βkij and γ
k
ijl of the initial105

dynamical system (4) [10].

This new dynamical system (6) is called the normal form of the initial one (4) and has two interesting
properties. First, it involves much less nonlinear monomials. In particular, all quadratic terms have been
cancelled, since they are all non-resonant, and it remains only cubic terms. Second, the only remaining (cubic)
nonlinear terms are such that they don't break the invariance of the oscillators of the normal form (6). It means110

that if a particular motion is initiated on a particular normal oscillator only, no energy is given to the others such
that the motion remains on this oscillator only. Mathematically, if the motion is initiated on the i-th. normal
coordinate, at t = 0 ui 6= 0, u̇i 6= 0 and for all the others the initial conditions are zero: uj = 0, u̇j = 0, ∀j 6= i,
then this latter property remains for all t > 0. In the K-dimensional phase space, the trajectory of the solution
qk(t) ∀k remains on a curved manifold (called the i-th invariant manifold), which is tangent to the i-th linear115

eigen-plane around the equilibrium point qk = 0 ∀k. These properties lead to the concept of a nonlinear normal
mode (NNM), here de�ned as an invariant manifold of the phase space, for which the above normal form theory
enables to directly compute the oscillations by using (6). Moreover, the geometry of the curved manifold is
de�ned by the nonlinear change of variables (5).

If a nonlinear modal motion on the i-th NNM is considered, uj = 0, u̇j = 0, ∀j 6= i and the normal120

dynamics (6) reduces to [10]:
üi + ω2

i ui + Γ1u
3
i + Γ2uiu̇

2
i = 0, (7)
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where Γ1 and Γ2 are the coe�cients of the third order polynomial Q(3)
i (ui, u̇i), functions of the βkij and γkijl

[10]. In addition to the classical �Du�ng� cubic nonlinear term Γ1u
3
i , the normal form adds another cubic

term Γ2uiu̇
2
i . This equation is exact up to the order 3 in (ui, u̇i), since Eqs. (5) and (6) are obtained after

truncated asymptotic expansions. It de�nes the nonlinear free oscillations on the i-th. NNM and in particular125

the dependence of the free oscillation frequency ωnl as a function of the amplitude (energy) of the motion, often
referred as the backbone curve [5] or the frequency - energy plot [29]. A �rst order perturbative solution of (7)
leads to:

ui(t) = εa1 cos(ωnlt+ ϕ), (8)

with [10]

ωnl = ωi
(
1 + Tε2a2

1

)
and T =

3Γ1 + Γ2ω
2
i

8ω2
i

, (9)

where ε� 1 is a bookkeeping symbol to remind that the amplitude εa1 of the motion needs to be small for the130

above expressions to be valid. The so-called backbone curve is obtained by plotting ωnl as a function of εa1.

To observe this particular �one NNM� motion in the physical space, one can introduce ui(t) de�ned by
Eq. (8) into the nonlinear change of variables (5), to obtain:

qi(t) = ui(t) + o(ε2), qj(t) = o(ε2), ∀j 6= i, (10)

so that, back to Eq. (3), one shows that:

x(t) = Φiui(t) + o(ε2) ' Φiεa1 cos(ωnlt+ ϕ). (11)

The above equation (11) shows that at �rst order, i.e. for small oscillations amplitude, the only nonlinear e�ect135

is the free oscillation frequency dependence upon the motion amplitude. Conversely, the motion onto one NNM
is synchronous and has the shape of the i-th mode shape. As shown in a series of article [10, 30, 11, 14], the
present normal form approach is very e�cient to predict the right hardening / softening trend of a particular
NNM, de�ned by coe�cient T of Eq. (9), since coe�cients Γ1 and Γ2 are functions of all the βkij and γ

k
ijl and

thus embed the non resonant e�ect of all the K linear modes of Eq. (4).140

When forced oscillations are considered, the normal form (8) can still be considered (and valid at �rst order
[31]), by adding damping and forcing terms of the initial dynamical system (4):

üi + 2ξiωiu̇i + ω2
i ui + Γ1u

3
i + Γ2uiu̇

2
i = Qi. (12)

The above equation thus enables to predict the forced resonant oscillations of the system in the frequency
vicinity of the i-th. NNM.

2.1.2 Higher order e�ects145

To consider higher order e�ects, that emerge for higher motion amplitude, we correct the result of Eq. (8)
by adding more harmonics. Since the nonlinearity in Eq. (7) is odd, the constant and second harmonics have a
zero amplitude, so that a higher order perturbative development gives:

ui(t) = εa1 cosφ+ ε3a3 cos 3φ, (13)

with φ = ωnlt+ ϕ. Following the same approach, Eq. (11) is replaced by:

x(t) = ε2
K∑

k=1

Φkbk0 + ε cosφ


Φibi1 + ε2

K∑

k=1
i 6=k

bk1Φk


+ ε2 cos 2φ

K∑

k=1

Φkbk2 + ε3 cos 3φ

K∑

k=1

Φkbk3 + o(ε4). (14)

where the bkh, k = 1 . . .K and h = 1, 2, 3 depend on a1, a3 and the change of variables (5). One can observe150

two e�ects of the higher order nonlinearities. Firstly, they bring supplementary harmonics in the signal. The
continuous (H0) and second (H2) harmonics are the direct consequence of the polynomial P(2)

k in the change

of variables (5). The third (H3) harmonics is the conjoint consequence of the polynomial P(3)
k and the third

harmonics in the normal coordinate ui (Eq. (13)), the latter created by the nonlinear normal dynamics (terms
u3
i and uiu̇

2
i in Eq. (7)). Secondly, the deformed shape of x(t) depends on the motion amplitude and on time155

(the motion is no more synchronous since it depends on the contribution of all the deformed shapes Φk in a
time-dependent manner). Indeed, even if the dynamical deformed shape of the NNM is mainly governed by
Φi, oscillating at H1 at order ε, it is corrected by second order terms in ε2, ε3, proportional to the other mode
shapes Φk, k 6= i. However, those two nonlinear manifestations are of the second order with respect to the free
oscillation frequencies and are for this reason neglected in the following.160
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2.1.3 Comparison with other theories

The normal form approach introduced in the previous section leads to naturally de�ne a NNM as an invariant
solution of the underlying unforced conservative system (Eq. (1) with C = 0 and g = 0). Since the obtained
solution moves on an invariant manifold of the phase space, the present approach is equivalent to the one
introduced by Shaw and Pierre, who de�ned a NNM as an invariant manifold of the phase space [32, 33].165

Equivalently, other authors ([29] and reference therein) extended the initial de�nition of Rosenberg [34] and
de�ned a NNM as a periodic solution of the conservative system in free oscillations. Since a periodic orbit is by
nature invariant, this second de�nition implies the �rst one. Conversely, theorems due to Lyapunov [35, pp. 361,
386] and Kelley [36] show that any smooth nonlinear N degrees of freedom 2nd. order conservative dynamical
system presents N families of periodic orbits around any stable equilibrium point, which coincide with the170

invariant manifolds. All those de�nitions of a NNM are thus equivalent and all address the same concept. On
the contrary, the extension of the nonlinear mode concept to damped systems is still under extensive research
(see e.g. [28, 37]).

2.2 Nonlinear mode identi�cation
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Figure 1 � Backbone curves: amplitude of the �rst harmonic (corresponding at �rst order to εa1) of the
response as a function of the oscillation frequency ωnl/ωi of oscillator (7) solved with ANM/HBM. Nine
values of (Γ1,Γ2) are considered as speci�ed on the �gure: Γ1 ∈ {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0} and
Γ2 ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.4, 3}, respecting Γ0 = Γ1 + Γ2ω

2
i /3 = 1. The solution at �rst order for

Γ0 = 1 is also plotted (dashed black).

A �rst and basic idea to identify the model would be to experimentally estimate all the βkij ,Γ
k
ijl coe�cients175

of the modal model (4). Considering the huge amount of coe�cients (for a N = 10 degrees of freedom model,
the model involves N3 = 103 βkij and N4 = 104 Γkijl coe�cients.), this is an impossible task in practice. In
contrast, the idea proposed in this article is to use the power of the normal form approach.

Using normal forms to exhibit a reduced order model that is then identi�ed using experiments has been
considered in the past in the case of internal resonances in plates and shells [20, 38, 39]. Here, we restrict180

ourselves on only one NNM, characterized at �rst order by the normal form written in Eq. (7). We then propose
here to characterize and identify this NNM by experimentally identifying the values of the parameters of Eq. (7),
namely the linear oscillation frequency (or eigenfrequency) ωi and the nonlinear coe�cients Γ1,Γ2. In practice,
we propose to identify the NNM model by measuring the backbone curve.

At �rst order, the backbone curve is equivalent to a parabola in the plane (ωnl, εa1), of equation (9), whose185

curvature is given by T which depends on the two nonlinear coe�cients Γ1 and Γ2. Consequently, an in�nite
number of values of (Γ1,Γ2) leads to the same value of T and thus, at �rst order, to the same backbone curve.
Fig. 1 shows several backbone curves for 9 values of (Γ1,Γ2) leading to the same value of T and numerically
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computed with the software Manlab with the Harmonic Balance Method and the asymptotic numerical method
(HBM/ANM). It enables the numerical continuation of periodic solutions ([40]). The simulations of Fig. 1190

can be considered as a reference since 12 harmonics have been used. They show that under a reasonably high
amplitude range (a < 0.5), all the curves are merged with a single parabola, so that they are all equivalent to
the solution of a classical Du�ng oscillator:

üi + ω2
i ui + Γ0u

3
i = 0, (15)

with

Γ0 =
8ω2

i T

3
= Γ1 +

Γ2ω
2
i

3
. (16)

Since we are interested in a �rst order identi�cation of a NNM, we propose here to simply characterize a NNM195

by the Du�ng oscillator of Eq. (15), which is able to e�ciently capture the �rst order behaviour of the NNM.
We then identify Γ0 (which embeds the e�ect of Γ1 and Γ2) by �tting a parabola on the experimental backbone
curve.

Figure 1 also shows that the di�erentiated e�ect of Γ1 and Γ2 appears at higher amplitudes. It would be
theoretically possible to �t an order four polynomial on the curves to separately identify Γ1 and Γ2. This point200

is left out of the scope of the present paper.

It is widely known [5] that the incurvation of the backbone curve, the so called hardening / softening
behaviour of the considered mode, is associated to the order of nonlinearities: a hardening behaviour comes
from cubic nonlinearities while a softening behaviour is due to quadratic nonlinearities. One can remark that
Eq. (7) only uses cubic coe�cients. It is in fact a consequence of the normal form theory and the cubic205

coe�cients Γ1 and Γ2 embed both the quadratic and cubic nonlinearities appearing the equations of motion of
the dynamical system [10]. Using this formalism, the type of nonlinearity is still indicated by the incurvation
of the backbone through the sign of T or Γ0. If Γ0 < 0 the NNM is softening while it is hardening if Γ0 > 0.

2.3 Some particular properties

As seen previously, we propose to identify a nonlinear mode as the Du�ng oscillator (15) using its backbone210

curve, which is its solution in free vibrations. In practice, as seen in the following, some experimental procedure
will rely on a forced excitation of the system. This section clari�es the concepts of amplitude resonance,
phase resonance and their relations to particular points of the free and forced frequency responses of a Du�ng
oscillator.

We consider the following forced Du�ng oscillator associated to Eq. (12) with u ≡ ui, ω0 ≡ ωi, ξ ≡ ξi,215

Q ≡ Qi and Γ0 de�ned by Eq. (16):

ü+ 2ξω0u̇+ ω2
0u+ Γ0u

3 = Q. (17)

To consider universal results, it is worth noting that (17) can be rescaled in amplitude and time by de�ning:

t̄ = ω0t, ū =

√
Γ0

ω0
u, (18)

to obtain the following equation:
¯̈u+ 2ξ ¯̇u+ ū+ ū3 = Q̄, (19)

with ¯̇u = dū/dt̄. The above equations show that the forced response of any Du�ng oscillator qualitatively
depends on two parameters only: the damping factor ξ and the forcing Q̄. In free oscillations, no free parameters220

remain after the scaling, so that the free response of any Du�ng oscillator can be displayed by a single backbone
curve, provided the scaling of Eq. (18) is applied. In the following, we shall equivalently consider Eq. (17) with
Γ0 = 1 and study its response as a function of frequency Ω̄ = Ω/ω0 in the frequency domain.

When measuring the response of Eq. (17) in free or forced vibrations, several particular behaviours can be
considered.225
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2.3.1 Phase resonance

The phase resonance is �rst considered. It is the particular case for which the excitation term Q(t) in
Eq. (17) exactly cancels, for all time t, the damping term 2ξω0u̇, so that the oscillator behaves as if it was
in undamped free oscillations. For a linear oscillator (Γ0 = 0) it is well known [41, 24] that a sine forcing
Q(t) = Q0 cos Ωt with Ω = ω0 achieves this goal. In this case, the displacement u(t) is in phase quadrature with230

Q(t) (if u(t) = u0 cos(Ωt + ϕ), ϕ = −π/2). In the nonlinear case, since the solutions of Eq. (17) are periodic
but often multiharmonic, it is shown in [42] that the same result is obtained by balancing each harmonic of the
damping term by a corresponding harmonic in the forcing. More precisely, we look at the solution of Eq. (17)
under a monophase periodic motion, with a phase lag of π/2 with respect to the periodic forcing:

u(t) =

+∞∑

h=1

uh coshΩt, Q(t) =

+∞∑

h=1

Qh sinhΩt. (20)

The time derivatives of u(t) and u3(t) can be written:235

u̇(t) = −
+∞∑

h=1

hΩuh sinhΩt, ü(t) = −
+∞∑

h=1

h2Ω2uh coshΩt, u3(t) =

+∞∑

h=1

wh(ui) coshΩt, (21)

where wh(ui) is the h-th. harmonics of u3 that depends on ui, i ∈ N∗. Introducing the above Fourier series
expansions in Eq. (17) and balancing the sine and cosine terms (i.e. applying the harmonic balance method)
leads to, for all h ∈ N∗: {(

ω2
0 − h2Ω2

)
uh + Γ0wh(ui) = 0,

−2hξω0Ωuh = Qh,

(22)

(23)

equations being equivalent in pairs to: {
ü+ ω2

0u+ Γ0u
3 = 0,

−2ξω0u̇ = Q.

(24)

(25)

Eq. (24) is exactly the underlying undamped free oscillator, equivalent by de�nition to the nonlinear mode. Its
solution (obtained by solving Eqs. (22)) gives the frequency of oscillations and the amplitude of each harmonics
as a function of the �rst one (Ω = ωnl = f(u1), uh = f(u1) ∀h > 1), the so-called backbone curve. Then,
Eq. (23) gives the value of the forcing harmonics as a function of uh to exactly balance the damping term
2ξω0u̇.240

As a conclusion, the above considerations show that it is possible to choose the shape of the forcing signal
Q(t) so that it exactly balance the damping term, implying that the oscillations u(t) are those of the underlying
undamped and unforced oscillator, equivalent to oscillations on the nonlinear mode. In practice, one has to �nd
the frequency Ω = ωnl and the right amplitude of Qh for which the phase lag of each harmonics of Q(t) with
respect to the corresponding one of u(t) is π/2.245

In practice, however, as shown by Eq. (13), the higher harmonics of u(t) (and thus of u̇) are often much
smaller than the �rst one, so that considering the following single sine signal for Q(t):

u(t) ' u1 cosωnlt ⇒ Q(t) = −2ξω0ωnlu1 sinωnlt, (26)

is a practical excellent application of the phase resonance. One has consequently to apply a π/2 phase lag
between the �rst harmonics of Q(t) and u(t) and plot the oscillations frequency Ω = ωnl as a function of u1 to
obtain the backbone curve of the nonlinear mode.250

2.3.2 Frequency response

Fig. 2 shows the frequency response of the Du�ng oscillator (17) for Γ0 = 1 and ξ = 0.1. They are numerically
obtained with the harmonic balance method and the Asymptotic Numerical Method (HBM/ANM), implemented
in the software package Manlab [40], which enable the continuation of periodic solutions of (17), by computing
the Fourier coe�cients of u(t):255

u(t) = u0 +

H∑

h=1

(uch coshΩt+ ush sinhΩt) = u0 +

H∑

h=1

uh cos(hΩt+ ϕh). (27)
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Figure 2 � Frequency responses (thin rainbow lines, F=0.1 0.15 0.2 0.25 0.3), continuation of the amplitude
(dashed black line) and phase (solid black line) resonances, and continuation of the fold point (dash-dotted
black line) for the system (17).

Since a large number of harmonics H is taken into account, the obtained plots can be considered as reference
solutions. Fig. (2) shows the amplitude and phase of the �rst harmonics (u1 =

√
(uc1)2 + (us1)2, ϕ1 =

− atan(us1/u
c
1)) as a function of Ω/ω0. A number of remarkable properties of this frequency response can

be drawn.

� The forced frequency response curves are the solutions of (17) with Q(t) = Q1 cos Ωt. They are shown in260

colored lines, for di�erent forcing amplitudes Q1. The dashed part of the curves indicates the unstable
region, associated to the multivalued parts of the curves, which leads to the jump phenomenon.

� The backbone curve, equivalent to a phase resonance, is computed by solving Eq. (17) in undamped free
oscillations. It is shown in solid black line and is precisely associated to a ϕ = −π/2 phase lag between
u(t) and Q(t).265

� The amplitude resonance, which is the locus of the maxima of amplitude of each frequency response,
is obtained by numerically following a singular point of the frequency-amplitude function [43, 44]. It is
plotted in dashed black line.

� The locus of the saddle-node bifurcation, delimiting the jump-down and the unstable region, is obtained
by numerically following a singular point of amplitude-frequency function [43, 44] and is plotted in dash-270

dotted black.

It is remarkable that for a damped system, the backbone curve � equivalent to a phase resonance and obtained
either by locking on the phase resonance or by following the free oscillations � is distinct from the amplitude
resonance, obtained by interpolating the maxima of amplitude of the frequency responses. Note that this
di�erence also exists in the case of a linear damped system. This di�erence is here displayed for moderately275

damped system (the �gure corresponds to ξ = 0.1) and should be negligible for lightly damped systems. Often
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in the literature, this di�erence is neglected because analytical solutions obtained by a �rst order perturbative
solution give equal amplitude and phase resonances. One can notice that the backbone curve is located between
the amplitude resonance and the upper saddle node bifurcation, close to the right (upper frequencies) of the
maxima, and always in the stable region.280

Another remarkable result shown on Fig. 2 is that the phase ϕ1 is a monotonous decreasing function of the
forcing frequency Ω, whereas the amplitude u1 is multivalued.

2.4 Experimental strategies

Experimentally, the easiest way to obtain an estimation of the backbone curve is to measure several frequency
responses for di�erent vibration amplitudes and to seek the amplitude resonance as the locus of the maxima of285

the responses. The frequency response around resonance for a given amplitude is obtained by exciting at a given
frequency, waiting for the steady state regime, recording the amplitude of motion, increasing or decreasing the
frequency by a small step, and repeating until the forced response is obtained in the required frequency range.
This stepped sine method is used in [45] for measuring backbone curves of gongs. Obtaining the backbone
estimation using this technique is technically simple but the whole procedure is long and tedious, even when it290

is automated. Moreover, it was reminded in Sec. 2.3 that the amplitude resonance can be distinct from the phase
resonance, especially in case of moderate or high damping. Note also that the forced responses obtained with
this stepped sine method are sensible to the jump phenomenon. In particular, measuring the stable solutions
close to the saddle-node bifurcation is di�cult in practice since their basin of attraction is dramatically reduced
and some small perturbation of the system can drive it to the coexisting low amplitude response. In practice295

a small frequency step should be used as well as perfectly continuous excitation. In the following, this method
will be referred as Stepped Sine Testing (SST).

A better estimation of the backbone curve can be obtained by the Nonlinear Resonant Decay Method [42]
(NLRD), consisting in two steps. In the �rst one, the system is set at phase resonance for a given mode using
force appropriation techniques; in the second step, the excitation is shut down and the system's free oscillations300

are measured. The estimation of the instantaneous amplitude and frequency, for instance with the help of
the Hilbert transform or a Fourier or wavelet transform, allows one to obtain the backbone curve, which is
the same as the locus of the phase resonance. This method has been applied to numerous cases for nonlinear
identi�cations [46, 47, 48]. A minor drawback is that the �nal result of this method relies on the accuracy of the
algorithm estimating the instantaneous frequency. Moreover, since we observe the resonance decay, this method305

leads to measure the nonlinear mode of the damped system and not the one of the underlying conservative one.
They are theoretically distinct, but very close if the damping is small. In the experimental part of this work,
the PLL method described hereafter will be used to initially set the system in phase resonance.

A third strategy consists in using experimental continuation techniques. Two distinct techniques can be cited.
The �rst one, which is used hereafter in the present study, consists in tracking the backbone curve by locking310

the system at the phase resonance using a Phase-Locked-Loop (PLL), as it was recently done by Mojrzisch [18]
and Peter [49, 19] in this context. Phase control in the context of nonlinear vibrations seems to have been used
�rstly by Sokolov & Babitsky [50], who aimed to maintain a self-excited system at resonance or exploring its
frequency-amplitude relation. They take advantage of the monotonous behaviour of the frequency-phase curves
for a limited set of non linear systems. An extension of this method is used by Mojrzisch et al. [51, 18] for315

measuring forced responses around resonance by sweeping the phase between excitation and vibration. The
use of the PLL in this context proves to be robust and e�cient. Peter et al. [19] use a similar design in order
to track backbone curves of nonlinear systems. However, no nonlinear identi�cation is made consequently to
the experimental results. The obvious advantage of the PLL method over the resonant decay method is that
it directly yields the instantaneous frequency and amplitude, thus avoiding the use of a Fourier or wavelet320

transform. However the technique may have several drawbacks, especially when the phase is not monotonous,
for instance when internal resonances are involved [49]. This technique is used in this paper for the experimental
characterization of nonlinear systems and is thoroughly described in Sec. 3.

The second continuation technique is the so-called control-based continuation, introduced in [52] and
developed in a large series of works since (see [53, 54, 55] and reference therein). It combines a stabilizing feedback325

control and a path-following technique as a function of an arclenth parameter, as in numerical continuation
methods. This technique share with the PLL method the same stabilizing and non intrusive property: unstable
periodic solutions of the system are stabilized but not changed. However, it is more general than the PLL since
it relies on an arclenth parametrization of the path and is thus able to tackle any saddle-node (fold) bifurcation,
but it requires more experimental e�orts. In contrary, the PLL method used here relies on a prescribed phase330
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and is able to follow a path only if the phase is monotonous along this path. This property is veri�ed for
dynamics that involve only one nonlinear mode (the present article give examples in the case of systems with
geometrical nonlinearities). On the contrary, this can be a restriction if the dynamics is based on more than
one nonlinear mode, and especially when internal resonance occur, since in this case, the phase can be no more
monotonous and some pitchfork bifurcations occur (see [20, 56, 49] for systems with 1:1, 1:2 and 1:3 internal335

resonances).

3 Phase-locked loop controller

3.1 Design

We consider a mechanical vibratory system of displacement (output) response x(t) driven by an input force
F (t). The principle behind the phase-locked loop is to adjust the frequency Ω of a harmonic excitation signal340

so that a prescribed phase lag ϕc is imposed between the measured force signal Fmeas(t) of the tested system
and its response x(t). Basically, the PLL is composed of a phase detector, a controller and a voltage-controlled
oscillator (VCO) (see Fig. 3(a)), as described in Refs. [57, 18, 49, 19]. The phase detector gives an estimation
ϕ̂ of the actual phase lag ϕ between the excitation and response signals; the di�erence e between the output ϕ̂
of the phase detector and the command ϕc is fed to an integral controller with gain KI . The controller yields a345

correction y to an initial prescribed frequency ωini. The result Ω feeds the VCO exciting the nonlinear system
to be controlled, with amplitude F . The PLL then automatically adjusts the frequency to obtain the intended
phase lag.

Ref. [57] details the di�erent possibilities for the practical realization of the phase detector. In our case,
the phase and the amplitude of the �rst harmonic of both x and Fmeas are detected using a synchronous350

demodulation (also known as homodyne detection and used in lock-in ampli�ers [58]). By multiplying a signal
by cos Ωt and sin Ωt and low-pass �ltering the result, one is indeed able to recover the amplitude and phase
of the component at Ω contained in the signal (see Fig. 3(b)). This implementation of the phase detector is
then interesting because it gives a robust estimation of amplitude and phase of a given harmonic contained in a
signal. This estimation is especially more robust than the one obtained with a Fourier transform. This is useful355

for several reasons: �rst, it yields an estimation of the amplitude of �rst harmonic of the displacement (i.e.
giving the backbone curve). Second, one can also obtain an estimation of the amplitude of the �rst harmonic
of the injected force, in order to apply a control on it. Finally, a robust estimation of the phase of the �rst
harmonic of both displacement and injected force yields a direct estimation of the phase lag, leading to an
amplitude independent error signal e and giving the possibility to use an arbitrary phase command, contrary360

to simpler designs of phase detector [59, 57].

Two di�erent measurements are possible using this PLL design:

� By setting the phase command ϕc at π/2 (phase resonance) and varying the excitation amplitude F , the
backbone can be recorded by measuring the amplitude of the �rst harmonic of x.

� Conversely, the PLL can also be used to measure the forced responses around resonance, even if it is365

unstable in open loop, by sweeping the phase ϕc over the range [0,−π] while keeping the injected force
excitation Fmeas constant.

3.2 Stability

We consider a mechanical systems whose behaviour is modelled by a the single Du�ng oscillator of Eq. (17).
We investigate in this section its stability when driven by a PLL controller described in the previous section. The370

stability of this controlled Du�ng oscillator has already been studied by Fan [59] in the case of ϕc = π/2, that
is when the PLL locks it in phase resonance. A slight di�erence with [59] lies however in the implementation of
the phase detector. The multiplying phase detector used in [59] (i.e. consisting in lowpass �ltering the product
of measured and excitation signals) only allows to obtain phase quadrature. In the following, we extend these
results to any value of the phase command ϕc, which is made possible by a direct phase lag estimation provided375

by the synchronous demodulation.
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Figure 3 � (a) Scheme of the PLL. F and ϕc are the commands. (b) Implementation of the synchronous
demodulation used in the phase detector.

We consider the nonlinear phase-controlled system:





ẍ+ 2ξω0ẋ+ ω2
0x+ Γ̂0x

3 = F cos θ,

θ̇ = ωini + y,

ẏ = KIe,

e = (ϕ̂− ϕc),
˙̂ϕ = ωc(ϕ− ϕ̂),

(28a)

(28b)

(28c)

(28d)

(28e)

where x is the system's response, ω0 its natural angular frequency, ξ its damping factor, Γ̂0 its cubic nonlinearity
parameter and F the amplitude of the harmonic forcing. θ̇ = Ω denotes the frequency of the VCO, ϕ is the
actual phase lag between response x(t) and excitation (see Eq. (29a)), ϕ̂ is the output of the phase detector and
the estimation of ϕ, KI is the integral gain of the controller, y is the output of the controller. We assume here380

that the phase detector has a small delay and that it behaves as a perfect sensor with a �rst order low-pass
�lter of cut-o� frequency ωc. In practice, higher order �lters are used and the following developments are still
valid for fast enough low pass �lters.

The system is solved by an averaging method [60]. We rewrite (28) at �rst order by letting x1 = x and
x2 = ẋ. A solution is then sought with the following form:

{
x1 = a cos (θ + ϕ),

x2 = −aω0 sin (θ + ϕ).

(29a)

(29b)

Substituting Eqs. (29) in Eqs. (28), we obtain the following formulation in terms of amplitude and phase angle:
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



ȧ =
−1

ω0

[
2ξω2

0a sin (θ + ϕ)− Γ̂0a
3 cos3 (θ + ϕ) + F cos θ

]
sin (θ + ϕ),

ϕ̇ = −y + ω0 − ωini −
1

aω0

[
2ξω2

0a sin (θ + ϕ)− Γ̂0a
3 cos (θ + ϕ)

3
+ F cos θ

]
cos (θ + ϕ),

ẏ = KI(ϕ̂− ϕc),
˙̂ϕ = ωc(ϕ− ϕ̂),

θ̇ = ωini + y.

(30a)

(30b)

(30c)

(30d)

(30e)

In the averaging method, it is assumed that the time dependent variables a, ϕ̂, y and φ, there �rst time
derivatives and θ̇ = Ω vary at a slow time scale with respect to the periodic fast time scale. Averaging over a
period (i.e. applying 1

2π

∫ 2π

0
dθ to the equations), we obtain the simpli�ed equations:





ȧ = −ξω0a−
F

2ω0
sinϕ,

ϕ̇ = −y + ω0 − ωini +
3Γ̂0

8ω0
a2 − F cosϕ

2aω0
,

ẏ = KI(ϕ̂− ϕc),
˙̂ϕ = ωc(ϕ− ϕ̂),

Ω = ωini + y,

(31a)

(31b)

(31c)

(31d)

(31e)

where the frequency Ω = θ̇ becomes an additional variable. The Du�ng oscillator in open-loop can be recovered385

by setting y(t) = 0, which implies that ωini = Ω is the prescribed excitation frequency.

Now, the �xed points (as, ϕs, ϕ̂s, ys,Ωs) are sought by imposing ȧ = ϕ̇ = ẏ = ˙̂ϕ = 0. At �rst, one obtains
ϕs = ϕ̂s = ϕc: the actual and estimated phase of x(t) with respect to the forcing are equal to the command
value ϕc. Moreover, the amplitude and phase of x(t) in the steady state are:





as =
−F
2ξω2

0

sinϕc,

Ωs = ω0 +
3Γ̂0F

2

32ξ2ω5
0

sin2 ϕc +
ξω0

tanϕc
,

(32a)

(32b)

with the following correction to the initial frequency:

ys = ω0 − ωini +
3Γ̂0F

2

32ξ2ω5
0

sin2 ϕc +
ξω0

tanϕc
. (33)

The �xed points de�ned by Eqs. (32) are those of a classical Du�ng oscillator: the closed loop steady state
response is the same than the open loop one. As a conclusion, the above results show that the system's behaves
as if it was in open-loop, with its phase imposed by the PLL to its prescribed value ϕc.390

The stability of the �xed point is studied by writing the jacobian matrix J of (31a-d):

J =




−ξω0
−F
2ω0

cosϕ 0 0
3Γ̂0

4ω0
a+ F cosϕ

2ω0a2
F sinϕ
2aω0

0 −1

0 ωc −ωc 0

0 0 KI 0


 , (34)

and evaluating it at the �xed point using (32a):

Js =




−ξω0
−F
2ω0

cosϕc 0 0
−3Γ̂0F
8ξω3

0
sinϕc +

2ξ2ω3
0 cosϕc

F sin2 ϕc
−ξω0 0 −1

0 ωc −ωc 0

0 0 KI 0


 . (35)

The system is stable if the real parts of the eigenvalues of Js are strictly negative. We �rst consider the top
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left 2×2 part of the jacobian matrix (35) that concerns the Du�ng oscillator (19) in open-loop. By computing
the eigenvalues λ and ensuring they have a strictly negative real part, one can derive the stability criterion:395

G < ξ2ω2
0 , (36)

where G is a function of F and ϕc:

G =
3Γ̂0F

2

16ξω4
0

cosϕc sinϕc −
ξ2ω2

0

tanϕc2
. (37)

By eliminating F between Eqs. (37) and (32a,b), one obtains two conditions equivalent to an instability region in
the (as, ϕs,Ωs) space, shown in grey on Fig. 2, that is independent of F . Its limit can be plotted by computing
as and Ωs as a function of ϕs and varying it. The unstable part of a given open-loop frequency response
is consequently obtained by its intersection with the instability region, the limits being obtained at the two400

saddle-node bifurcations points. This instability region is also shown in light red in Fig. 4(a), for parameters
ω0 = 1, Γ0 = 1, ξ = 1× 10−2. For a frequency response with F = 6× 10−3, an unstable part is found, whereas
for F = 3× 10−3, the whole frequency response is stable.

We consider now the closed-loop system. The particular case ϕc = π/2 is already treated in [59], with a
di�erent phase detector. Writing the determinant det(Js − λI) and applying the Routh-Hurwitz criterion, the405

following stability criterion is obtained:
KI < (ξω0 + ωc)ξω0. (38)

In the general case ϕc 6= π/2, the stability condition is more complex and the determinant writes

det(Js − λI) = ξω0ωcKI + λωc(KI + ξ2ω2
0 −G) + λ2(2ξω0ωc + ξ2ω2

0 −G) + λ3(2ξω0 + ωc) + λ4 (39)

= α0 + α1λ+ α2λ
2 + α3λ

3 + λ4. (40)

Using the Routh-Hurwitz criterion, one shows that the system is stable if:

αi > 0, (41)

α3α2α1 > α2
1 + α2

3α0, (42)

α3α2 > α1, (43)

which translates in

ξω0ωcKI > 0, (44a)

2ξω0 + ωc > 0, (44b)

G < 2ξω0ωc + ξ2ω2
0 , (44c)

G < KI + ξ2ω2
0 , (44d)

ωcK < 4ξ2ω2
0ωc + 2ξ3ω3

0 + 2ξω0ω
2
c − 2ξω0G, (44e)

ωcK
2
I +KI(2ξ

3ω3
0 + ξ2ω2

0ωc − ξω0ω
2
c − (ωc − 2ξω0)G)

−
[
4ξ4ω4

0ωc + 2ξ3ω3
0ω

2
c + 2ξ5ω5

0 − (4ξ3ω3
0 + 4ξ2ω2

0ωc + 2ξω0ω
2
c )G+ 2ξω0G

2
]
< 0.

(44f)

Criteria (44a) and (44b) are naturally veri�ed. Criterion (44c) limits the choice of ωc and states that the phase
detector must be su�ciently fast. The gain KI is chosen using criteria (44d, 44e, 44f). Note that (44f) does
not always allows stability to be found. Only a strictly positive determinant (depending on G) permits to �nd
two separate roots and the region between them where the criterion is veri�ed. Overall, from criteria (44a-44f),410

stability may involve the a priori knowledge of the nonlinearity.

Following the same procedure than for the open-loop case, an instability region is found for the PLL-driven
oscillator, derived from criteria (44a-44f) along with Eqs. (37) and (32a,b) in which F has been eliminated. For
any value of ϕc, the strictest criterion ensuring stability is found numerically and translated in a (as,Ωs) pair.
Instability regions obtained for ωc=0.2 (so that ωc � ω0 and criterion 44c is respected) and several values of the415

integral gain KI = 2× 10−4, 4.7× 10−4 and 1× 10−3 are plotted on Fig. 4(a). One can observe that the e�ect
of the gain KI is to move the instability region toward the high frequencies / amplitudes, which explains its
stabilizing e�ect. Consequently, a given frequency response can be partially unstable (blue area) or stable (green
and orange areas) depending on the gain and the position of the instability region. For any given excitation
amplitude, there exists a limit value K lim

I of the gain KI for which the frequency response becomes fully stable.420

For F = 6 × 10−3, K lim

I = 10−3 since the green instability region is tangent to the frequency response of the
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oscillator.

The dependence of the limit gain K lim
I on the forcing amplitude F is plotted on Fig. 4(b) using criteria (44a-

44f) and Eq. (37). The curves are dependent on both the damping ξ in the system and the cut-o� frequency of
the low pass �lter ωc, corresponding to the speed of the phase detector. The bigger ωc, the better the system425

can be controlled since the maximum amplitude that can be reached is higher. Also, when KI tends to 0, the
closed-loop maximum amplitude tends to a constant that is the maximum amplitude for the open-loop system
to be stable; it can be retrieved by looking at criterion (44d) but it is also suggested by Fig. 4(a).

In Fig. 4(b), the reversed bell shape of the curves informs us that very good performance, i.e. a high
excitation amplitude, can be reached at the cost of a precise adjustment of the controller: one can increase KI430

only up to a point from which an increase will only worsen stability properties. However, there was no need
for such performance in our experiment, especially if one is interested only in backbone curves; it was therefore
relatively easy to �nd empirically a correct KI .

In practice, a small proportional gain can be added to the controller for increasing the speed of the PLL
without increasing the sensibility to noise. For the experimental implementation, a higher order �lter (fourth435

order Butterworth �lter) is also used in the phase detectors. This does not fundamentally change the stability
properties: as shown in Fig. 4(b), the cut-o� frequency ωc has an in�uence on the instability region of the
PLL-driven system but as long as the �lter, i.e. the phase detector, is fast enough, stability is ensured on the
whole phase domain. Note that a �rst order �lter is su�cient for the experimental PLL to function but was
found to yield noisier results in tested cases.440
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Figure 4 � (a) Frequency response of Du�ng oscillator for F = 6 × 10−3 (black solid line) and F = 3 × 10−3

(solid gray line) and instability regions in open-loop (red dashed line / light red area), for KI = 0.2 × 10−4

(blue dashed-dotted line / light blue area), for KI = 4.7× 10−4 (green dash-dotted line / light green area) and
for KI = 1× 10−3 (orange dash-dotted line / light orange area). (b) Limit gain K lim

I for stability depending on
forcing F for several con�gurations: ξ = 0.002 (blue), ξ = 0.006 (red), ξ = 0.01 (green) and ωc=0.05 (dashed
line), 0.1 (thin solid line), 0.2 (thick solid line) rad.s−1.

3.3 Numerical validation

In Fig. 5(a), the results of a MATLAB/Simulink simulation of a PLL-driven Du�ng oscillator are compared
with the numerical solutions using the HBM/ANM method with the software Manlab for numerical continuation
[40]. The parameters used are close to those of an experimental system (ω0 = 394.9610 rad.s−1, Γ̂0 = 5.1054×105

s−2, ξ = 5 × 10−4). The PLL was set with a starting frequency of 392 rad.s−1, an integral gain of 10, a445

proportional gain of 0.5. The forcing starts at F=1 s−2 for the backbone curve while it is maintained at
F=10 s−2 for the frequency response. It is noticeable that the backbone obtained with the PLL in forced
regime is identical to the numerical solution in free regime. Moreover, when the phase is swept for a given
amplitude of excitation, we see that the PLL is able to drive the system to the correct frequency and that
we are able to recover the numerical solution, including in the unstable region which is stabilized by the PLL.450

Both the backbone curve and the frequency response are preceded by a short transient regime, shown here for
the sake of completeness, during which the PLL is self-adjusting: the frequency oscillates and the amplitude of
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vibration varies accordingly. In Fig. 5(b), one can check the precision and the speed of the phase detector: the
delay is indeed very small between signal x and its �rst harmonic reconstructed using the outputs of the phase
detector.455
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Figure 5 � (a) Comparison of the simulated response of the PLL-driven Du�ng oscillator and the numerical
Manlab solution: forced response by Manlab (dashed red line) and PLL (solid blue line), backbone curve by
Manlab (thick dashed red line) (free) and by PLL (thick solid blue line) (forced). ϕc varies between π/6

and 11π/12 rad. (b) Comparison of the motion x the PLL-driven Du�ng oscillator (solid blue line) and �rst
harmonic found using the phase detector (dashed red line).

4 Experiments

4.1 Setup

The proposed nonlinear identi�cation method is applied to three di�erent structures. The �rst one is a
circular plate, identical to the one studied in [61, 20]. The second structure is a chinese gong on which two
modes are identi�ed. The third structure is a piezoelectric unimorph cantilever beam, that can be used for460

energy harvesting purpose. In this case, the nonlinear mode identi�cation is done in the open and short-circuit
con�guration of the piezoelectric patch. The plate, the gong and the beam are represented in Figs. 6(a,b,c).

The chinese gong and the circular plate are excited by a non contact coil / magnet apparatus, already
described and used in [20]. According to [42, 46], it is complex to qualify a priori the relation between the
spatial distribution of the excitation force and the accuracy of the NNM isolation. Ref. [46] also mentions that465

a single point mono-harmonic excitation may be su�cient for satisfactory NNM isolation. In the meantime,
according to Eq. (11) for small amplitude at �rst order, the motion onto one NNM is synchronous monoharmonic
and has the shape of the i-th mode; hence, the magnet can be placed anywhere (except on a node) and is placed
closed to an antinode of vibration of the mode to be identi�ed in order to minimize the excitation force. The
force is directly proportional to the current in the coil and can thus be measured using the current monitoring470

output of the ampli�er (B&K 2712). The piezoelectric beam is base-excited by an electromagnetic shaker (B&K
4808) and a power ampli�er (B&K 2712). The base acceleration and the beam velocity are measured using
an accelerometer (PCB 352C65) and a laser vibrometer (Polytec PSV-400). The velocity is measured at an
arbitrary point close to the free extremity of the beam.

The setup is driven by a dSPACE MicroLabBox on which is implemented the control scheme using475

Matlab/Simulink. The sampling frequency is set to 50 kHz. This high frequency was chosen because it
corresponds to a small time step necessary for the accuracy of the numerical scheme and it avoids the presence
of high frequencies in the output synthesized by the dSPACE. The �lter used in the phase detector has a cut-o�
frequency of 20 Hz. A picture of the setup is displayed in Fig. 6(d). For the sake of completeness, it should be
mentioned that when the vibration exciter is an electromagnetic shaker, a second controller is used to correct480

F , avoiding force drops o� near resonance [62] and maintaining the amplitude of injected force constant. It is
veri�ed a posteriori that this second closed-loop control is not needed in the case of the coil-magnet excitation.
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In addition to the PLL measurement, two other measurement methods are used in order to validate the
experimental procedure. The forced responses around resonance are measured with a stepped sine sweep
excitation, as described in Sec. 2.4. A National Instrument acquisition card (NI-PXI 6229) is used for that485

matter, controlled by MATLAB in which the stepped sine in programmed. The NLRD method [42, 46] is also
used. Since the system is driven in phase quadrature, assuming that the phase quadrature of the �rst harmonic
is su�cient, the NNM resonant decay should yield the free amplitude-frequency relationship when the excitation
initiated with the PLL is turned o�. On a side note, the PLL method could be implemented such as it verify the
force appropriation criterion [42] considering several harmonics. In fact, the recent work by Peter [19] proposes490

a criterion using the higher harmonics to check a posteriori the correct isolation of the NNM, even if the phase
resonance testing is implemented with a single harmonic. In the current experiments, it has been observed that
the harmonic distortion in both the excitation force and the response was relatively weak. Quantifying the
in�uence of higher harmonics is beyond the scope of the present article but discussions on this topic can be
found in [19].495

(a) (b) (c)

(d)

Figure 6 � Experimental setup : (a) Circular plate, (b) gong and coil, (c) piezoelectric beam, shaker and
accelerometer, (d) Plate, magnet and coil apparatus, vibrometer, ampli�er and dSPACE MicroLabBox.

4.2 Axisymmetric and asymmetric modes of a circular plate

The plate is made of brass, has a radius of 110 mm and a thickness of 1.6 mm. It is set-up horizontally,
maintained with three thin wires. The �rst axisymmetric mode and the �rst asymmetric mode of the circular
plate are considered. The operational de�ection shapes displayed in Fig. 7 are recovered from a modal analysis
done with the scanning laser vibrometer. The two asymmetric companion modes (2,0) have slightly di�erent500

frequencies, due to unavoidable imperfections. The mode with the lowest frequency is referred as mode (2,0,1)
and the one with the highest as mode (2,0,2). The e�ect of the mistuning of these two companion modes on
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the forced response have thoroughly been studied in [61, 20]. In these measurements on the circular plate, the
integral gain of the PLL is set to 15, with a proportional gain of 0.5. Since the plate response is measured by
the laser vibrometer (which measures the velocity), we impose a zero phase lag between forcing and velocity505

for the measurement of a backbone curve. Force responses measurement are obtained by varying the phase
between −π/3 and 1.2 rad, with a sweep rate of 0.015 rad.s−1.

(a) (b) (c)

Figure 7 � Operational shapes of the plate at frequencies of (a) the axisymmetric mode (0,1) (194 Hz) and the
asymmetric companion modes (b) (2,0,1) (105 Hz) and (c) (2,0,2) (111 Hz)

Figs. 8(a,b) displays the backbone curves obtained using the PLL. They also show several forced responses
in amplitude and phase of the displacement for di�erent excitation levels. The unstable region of the forced
response is stabilized and can be measured, even for high amplitudes. The backbone passes very close to the510

maximum of amplitude for each forced responses, as it is described in Sec. 2.

It is straightforward to �t a parabola (least-square with constant and quadratic coe�cients) on the backbone
obtained using the PLL (see Fig. 8(c)). The backbone obtained using the NLRD method and the corresponding
�tted parabola are also plotted on Fig. 8(c). In this case the instantaneous frequency and amplitudes are
recovered by taking the ridge of the Short-Time-Fourier-Transform of the decaying signal.515

From the �tted parabolas, one can extract the nonlinear cubic coe�cient Γ̂0 and the linear frequency
f0 = ω0/2π appearing in Eq. (28a); Note that if x is the displacement, Γ̂0 in Eq. (28a) is easily related to
Γ0 of the NNM appearing in Eq. (17) with the help of Eq. (11):

Γ0 = Γ̂0Φ2
m, (45)

where Φm is the value of the modal shape at the measurement point (obtained theoretically or experimentally).
The parameters f0 and Γ̂0 are presented in Tab. 1 for the two methods. The identi�ed coe�cients and frequencies520

are identical, which cross-validates the techniques

The backbones curves of the two asymmetric companion modes (2,0,1) and (2,0,2) are plotted on Fig. 9.
For mode (2,0,1), a change of curvature can be observed around 112 Hz. This is due to a 1:1 internal resonance
with mode (2,0,2) being activated, leading to a bifurcation towards a coupled solution [20, 63]. Hence, it is
proposed to identify the nonlinear mode using the �rst region of the backbone only. The parabolas �t very well525

from 105 to 112 Hz, and the estimation di�ers when the coupled solution appears. In the case of mode (2,0,2),
the internal resonance does not seem to be activated and the identi�cation can be made on the whole backbone
curve. Furthermore, one can notice that the results obtained with the phase resonance and the resonant decay
methods are identical. The identi�ed parameters are presented in Tab. 1.

Finally, the experimentally identi�ed frequencies and coe�cients can be compared to those obtained with530

a nonlinear model of the circular plate. For this matter, the dimensionless frequency and cubic coe�cient are
found following the methodology presented in Appendix A. The obtained dimensionless coe�cients for a generic
circular plate given by the model of [61] are referenced in Tab. 1. It appears that the frequencies ω̄ are very
well estimated by the model and that small di�erences are observed for the Γ̄ coe�cients.

It is quite remarkable that the parabola �ts so well the measured backbone for modes (0,1) and (2,0), even535

for high amplitudes: for the asymmetric modes (2,0), the highest vibration amplitude reaches the thickness of
the plate. This fact means that the �rst order approximation made in Sec. 2 still applies and that higher e�ects
play a negligible role. It fully justi�es the proposed approach.

4.3 Axisymmetric and asymmetric modes of a Chinese Gong

Chinese gongs display an important pitch glide in playing situations. The pitch glide direction can be540

related to the hardening / softening behaviour of a NNM; It depends on the central section geometry and
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Figure 8 � Mode (0,1) of the circular plate : backbone curve obtained using the PLL (black) and forced
responses measured with PLL under currents 0.48 (blue), 1.42 (purple) and 2.38 A (red): amplitude (a) and
phase (b). (c) Backbone curves obtained using the PLL, �tted parabola (dashed black), backbone curve using
NLRD (gray), �tted parabola (dashed gray).
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Figure 9 � Modes (2,0) of the circular plate. (a) backbone curve, obtained with PLL, of mode (2,0,1) (blue)
and mode (2,0,2) (red), along with �tted parabolas (dashed curves). (b) Same as (a) with the measurements
from the NLRD method added: mode (2,0,1) (magenta) and mode (2,0,2) (orange) along with �tted parabolas
(dashed curves)
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Mode (0,1)
PLL NLRD Model

f0 (Hz) 194.5 194.33
Γ̂0 (m−2.s−2) 5.1127× 1011 5.1127× 1011

ω̄ 9.070 9.062 9.175
Γ̄ 9.126 9.126 8.575

Mode (2,0,1)
PLL NLRD Model

f0 (Hz) 105.89 105.92
Γ̂0 (m−2.s−2) 1.0639× 1011 1.1028× 1011

ω̄ 4.897 4.896 5.093
Γ̄ 2.123 2.201 1.898

Mode (2,0,2)
PLL NLRD Model

f0 (Hz) 111.11 110.99
Γ̂0 (m−2.s−2) 1.0842× 1011 1.1400× 1011

ω̄ 5.176 5.133 5.093
Γ̄ 2.171 2.270 1.898

Table 1 � Experimentally identi�ed (PLL and NLRD) and theoretical nonlinear coe�cients for modes (0,1),
(2,0,1) and (2,0,2) of the circular plate.

reduces essentially to the ratio of the central section thickness to curvature [64, 65]: gongs with a �at central
area display a downward pitch glide (hardening behaviour) whereas those with a convex central area display
an upward pitch glide (softening behaviour). Identifying the nonlinear parameters of the modes involved could
help to �nd links between the sound and the geometrical or material characteristics.545

The measured chinese gong has a diameter of 314 mm and a thickness of 1.5 mm approximately. The central
area display a �at pro�le so that a hardening behaviour is expected for the fundamental nonlinear mode [65].
The gong is set-up vertically, in playing conditions. We focus on the �rst axisymmetric mode (0,1) and the
�rst asymmetric mode (1,1). The modal shapes displayed in Fig. 10 are recovered from a modal analysis done
with the scanning laser vibrometer. The linear eigenfrequencies for the �rst and third mode are 280 and 478 Hz550

respectively. In the case of mode (0,1) the magnet is placed in the center of the gong and the vibration is
measured at the same place; for mode (1,1) the magnet is placed at the upper anti-node and the vibration is
measured at the same place. Note that the structure is sensitive to the magnet position; hence the magnet
has an in�uence on the measured nonlinearity. In these measurements, the integral gain is set to 10, with
a proportional gain of 2. As with the circular plate (see Sec. 4.2), the phase di�erence between forcing and555

velocity is set to 0 for the measurement of a backbone curve while it varies between −π/3 and 1.2 rad for a
forced response, with a sweep rate of 0.015 rad.s−1.

(a) (b)

Figure 10 � Operational shapes of the chinese gong at frequencies of the �rst axisymetrical mode (0,1) (280 Hz)
and asymetrical mode (1,1) (478 Hz).

Fig. 11 displays the backbone curve and the frequency responses around resonance obtained with the PLL
measurement method for the �rst axisymmetric mode (0,1) of the gong. It can be seen that the �rst mode has
a hardening behaviour. Fig. 11 also shows that the frequency response around resonance can be fully recovered560

including the unstable region for the highest amplitudes. One can notice that at high amplitudes, the backbone
curve notably deviates from the top of the frequency response and seems to be in the unstable region. It is likely

20



due to a slight heating of the coil and magnet excitation system that has consequences on the gong behaviour.
It is the main reason the experimental results do not feature higher amplitudes for the gong; this topic should
be the subject of a further study. The red curve is noisier than the others in the unstable region. Indeed,565

approaching the stability limit of the system can enhance noise. Also, since the gong is attached in one point
only and positionned vertically, it is very sensitive to any external perturbation, that result in solid body motion
for example.

The frequency response measured using SST are also represented on Fig. 11, taking care of reproducing the
same excitation levels. This method shows well the jump phenomenon for the highest excitation levels. The two570

methods give identical results, assessing the validity of the PLL for nonlinear forced responses measurement.
For the SST result at the maximum excitation level (yellow triangles), an early jump down may be observed.
This is likely to be due to an external perturbation during the experiment. It could be avoided by choosing
a very small frequency step. Finally, Fig. 11 shows the backbone curve obtained with the NLRD method
and the backbone curve obtained by �nding the maxima of amplitude of the frequency responses obtained by575

SST. Several artefacts can be observed with the NLRD method, due to an insu�cient frequency resolution.
Finding the instantaneous frequency precisely enough can be a sensible task with this method. Graphically, it
is reassuring that the three methods yield sensibly identical results. Note that the estimation of the backbone
curve obtained with SST may be incorrect at high amplitude because of the early jump down. More generally
since the gong seems to be sensitive to heat, high amplitude excitation can heat it di�erently depending on the580

duration of the excitation, possibly leading to discrepancies in the resonance frequency.

For this �rst mode, the nonlinear identi�cation yields the parameters indicated in Tab. 2 for the three
methods. The �tted parabolas are not shown on Fig. 11 for readability concerns. The nonlinear cubic coe�cients
Γ̂0 obtained with the three methods display small discrepancies but it may be due to the quality of the results
obtained with NLRD and SST.585
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Figure 11 � Mode (0,1) of the gong: backbone curves obtained using PLL (solid black), using NLRD (black
lozenge), using SST (�lled black circles), forced frequency responses measured with PLL (colored line) under
currents 0.1 (blue), 0.2 (purple), 0.3 (red) and 0.4 A (yellow). and forced frequency responses measured with
SST(colored triangle) under currents 0.1 (blue), 0.2 (purple), 0.3 (red) and 0.4 A (yellow).

Fig. 12 shows that mode (1,1) has a also a hardening behaviour. Again, the frequency responses for di�erent
amplitudes are displayed and a larger multivalued region appears for the forcing amplitudes tested in this case.
The nonlinear identi�cation for mode (1,1) yields the parameters indicated in Tab. 2. Comparing modes (0,1)
and (1,1), it appears that the measurements on mode (0,1) were trickier : it is probably due to higher amplitudes,
the appearance of solid body motion, and lower modal damping. The measurements made on mode (1,1) are590

much cleaner.
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Figure 12 � Mode (1,1) of the gong: backbone curve (solid black), �tted parabola (dashed black) and forced
frequency responses under current 0.185 (blue), 0.324 (purple) and 0.464 A (red) in the coil, using PLL.

Mode (0,1) Mode (1,1)
Method PLL NLRD SST PLL
f0 (Hz) 282.53 282.49 282.55 478.32

Γ̂0 (m−2.s−2) 1.11× 1012 1.31× 1012 9.97× 1011 1.97× 1013

Table 2 � Experimentally identi�ed nonlinear coe�cients for mode (0,1) and (1.1) of the chinese gong.

4.4 Piezoelectric unimorph beams

Unimorph beams are often used in the context of energy harvesting [66] : in this domain, nonlinearities are
interesting because of the incurvation of the frequency response with the amplitude, allowing to harvest vibration
energy on wider frequency range [67]. There is thus a need for the identi�cation of nonlinear parameters,595

especially for building a reasonable reduced-order model of the harvesting system. Moreover, in the case of
piezoelectric devices, the modal electro-mechanical coupling coe�cient ki of the i-th. mode is an indicator of
the performance and is linked to the natural frequencies ωOC

i and ωSC
i with the piezoelectric ceramic in open

and short-circuit, respectively [68]:

ki =
(ωOC
i )2 − (ωSC

i )2

(ωSC
i )2

. (46)

In the case of nonlinear unimorph beam, the frequencies depend on the excitation amplitude.600

The unimorph studied here is constituted by a steel beam of dimensions 120 × 20 × 0.75 mm on which
is glued a PZT ceramic PIC155 with dimension 20 × 60 × 0.5 mm. The placement and dimensions of the
PZT ceramic are optimised for the �rst mode of the cantilever, according to [68]. The frequency responses
for this unimorph beam in open and short-circuit around the �rst resonance are obtained for several vibration
amplitudes using the PLL, set with an integral gain of 25 and a proportional gain of 1. They are plotted on605

Fig. 13. The tracked backbone curves for the two con�gurations are also plotted. For a given con�guration (open
or short-circuit), the estimated backbone curve is very accurate and seems to match the amplitude resonance,
which is understandable since the damping is reasonably low. It is clear that the nonlinearity for the �rst mode
is softening and the backbone curve is straight. The �rst mode of a base-excited cantilever beam is usually
known to be hardening [69] but the softening behaviour may come from several phenomena: internal residual610

stress [70] due to the beam manufacturing process, or the coupling with the PZT ceramic are known to produce
a softening behaviour [17]. Other possible reasons for this particular softening behavior are the quality of the
clamping condition, which may generate dry friction, or the nonlinear nature of the shaker, interacting with
the excited structure. Further study is needed to fully understand the nonlinear dynamic of this piezoelectric
beam alone. Nonlinear piezoelectric cantilever beams are well studied in the literature [71, 72] and the key point615

may be in the modelisation of the piezoelectric ceramic nonlinearity: for instance, [72] enhances that straight
backbones are observed for bimorph cantilever with soft piezoelectrics such as the PIC155 used here. Since the
backbone curves are almost straight lines, one cannot identify a nonlinear cubic coe�cient based on the model
proposed in Sec. 2
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No stabilized unstable region is observed, due to the quality factor and the small vibration amplitudes620

involved. High amplitudes were not tested; they were indeed more likely to damage the glueing of the PZT
ceramic or the ceramic itself. The resonance shift between the two con�gurations is noticeable and quasi-
constant when amplitude increases. From Eq. (46), it is found that k1=19% for the �rst mode of the unimorph
beam under study, which demonstrates the quality of the coupling between beam and ceramic and makes the
structure attractive for energy harvesting.625
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Figure 13 � Forced frequency responses using PLL for mode 1 of the piezoelectric unimorph beam in open
(bright tone) and short-(light tone) circuit for base accelerations 0.90 (blue), 1.20 (purple), 1.50 (red), 1.80
(yellow) m.s−2, and corresponding backbone curves for open (black) and short- (gray) circuit.

5 Conclusions

This paper is dedicated to the identi�cation of nonlinear modes using the phase resonance method and a
phase-locked-loop. A framework has been proposed to identify a single nonlinear mode based on displacement
measurements at moderate amplitudes. An isolated nonlinear mode is characterized by two nonlinear cubic
coe�cients, whose e�ects are impossible to distinguish at �rst order. Hence, it was proposed to characterized630

a nonlinear mode with a linear eigenfrequency and a single nonlinear coe�cient. These two parameters are
identi�ed by �tting a parabola on the measured backbone curve of the mode.

The strategy retained to measure the backbone curve is the phase resonance technique. It is done practically
using a Phase-Locked-Loop. The PLL can also be used to measure nonlinear forced responses around resonance
by maintaining the amplitude constant and varying the phase. The stability of the controlled nonlinear oscillator635

is demonstrated for any value of the phase lag, thus avoiding the jump phenomenon appearing in the classical
stepped sine sweep method. Stability is dependent on the characteristics of the nonlinear oscillator, the gain
and the speed of the feedback loop. The use of the PLL and more generally the phase resonance technique in
case of internal resonances should be studied further. The evaluation of the stability of the measured backbone
could also be studied.640

The proposed method is applied in this paper to identify two nonlinear hardening modes of a circular
plate, two nonlinear hardening modes of a chinese gong and the �rst �exural softening mode of a unimorph
piezoelectric beam. Backbone curves and frequency responses are measured in each case. The unstable region of
the frequency response is also measured. Except in the case of the piezoelectric beam, �tting a parabola on the
backbone curves allowed a reliable estimation of the two parameters characterizing the nonlinear modes. In the645

case of the circular plate, the nonlinear coe�cients are successfully compared with the theoretical coe�cients.
The piezoelectric beam displays an unexpected nonlinear behaviour, which does not allow to identify a nonlinear
coe�cient. This should be investigated in a further study.

In addition, two other measurement methods are used in order to identify the nonlinear modes and assess
the validity of the phase resonance testing : a stepped sine sweep measurement and the nonlinear resonant650

decay method. The three methods yields identical results but in this study, the phase resonance method using
PLL seems to give the cleanest result, since it is done in forced regime, and does not rely on an instantaneous
frequency detection algorithm nor the measurement of a high number of forced frequency responses.
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Appendix A Dimensionless coe�cients for the circular plate815

A clever way to compute the nonlinear coe�cients of the NNMs of a given circular plate is to formulate the
plate's equations of motion in terms of dimensionless variable, so that the computation is done for a generic
circular plate. Here, following Ref. [61], we use the dimensionless variables:

ū =
R

h2
u, (47)

and

t̄ =

√
D/ρh

R2
t, (48)

where R is the radius of the plate, h its the thickness, E is the Young's modulus, ρ is the mass density and ν is820

the Poisson ratio of the plate's material, and D = Eh3/12(1− ν2), in order to rewrite Eq. (15) in the following
form:

¨̄u+ ω̄2 ˙̄u+ εΓ̄ū3 = 0, (49)

with
ε = 12(1− ν2)h2/R2. (50)

It is then possible to identify the dimensionless frequency ω̄:

ω̄ = R2

√
ρh

D
ω0, (51)

and dimensionless nonlinear cubic coe�cient Γ̄:825

Γ̄ =
ρR4

E
Γ0. (52)

In the case of the circular plate studied in Sec. 4, the following values are used for the parameters : E=85×
109 Pa, ρ=7974 kg.m−3, ν=0.38, h=1.6 mm and R=110 mm.

27


	Introduction
	Nonlinear mode identification
	Nonlinear mode background
	First order reduced model
	Higher order effects
	Comparison with other theories

	Nonlinear mode identification
	Some particular properties
	Phase resonance
	Frequency response

	Experimental strategies

	Phase-locked loop controller
	Design
	Stability
	Numerical validation

	Experiments
	Setup
	Axisymmetric and asymmetric modes of a circular plate
	Axisymmetric and asymmetric modes of a Chinese Gong
	Piezoelectric unimorph beams

	Conclusions
	Appendix Dimensionless coefficients for the circular plate



