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a b s t r a c t

The present paper extends in-plane-out-of-plane separated representations successfully used for
addressing fully 3D model solutions defined in plate-like domain, to dynamics. Common time integration
are performed using explicit or implicit strategies. Even if the implementation of implicit integration
schemes into a 3D in-plane-out-of-plane separated representation does not imply major difficulties,
the use of explicit integration preferable in many applications becomes a tricky issue. In fact the mesh
employed for discretizing the out-of-plane dimension (thickness) determines the maximum time-step
ensuring stability. In this paper we introduce a new efficient hybrid explicit/implicit in-plane-out-of-
plane separated representation for dynamic problems defined in plate-like domains that allows comput-
ing 3D solutions with the stability constraint exclusively determined by the coarser in-plane
discretization.

1. Introduction

Many mechanical systems and complex structures involve plate
and shell parts whose main particularity is having a characteristic
dimension (the one related to the thickness) much lower that the
other ones (in-plane dimensions). The introduction of appropriate
kinematic and mechanic hypotheses allow the reduction of the
general 3D mechanical problem to a 2D involving the in-plane
coordinates. This was the route employed for deriving beam, plate
and shell theories in solid mechanics, that were extended later to
many other physics, like flows in narrow gaps, thermal or electro-
magnetic problems in laminates, among many others. However, in
many cases, when addressing complex coupled physics the validity
of hypotheses able to reduce models from 3D to 2D becomes
doubtful and consequently in order to ensure accurate Results 3D
discretizations seem compulsory. However the last imply too fine
meshes when considering well-experienced mesh-based dis-
cretization procedures, where the mesh size is almost determined

by the domain thickness and the material and/or solution details to
be represented. In order to alleviate the associate computational
complexity authors proposed few years ago computing the fully
3D solution employing an in-plane-out-of-plane separated repre-
sentation whose computational complexity remains the one char-
acteristic of 2D plate or shell simulations [5,6].

In many structural analysis and simulation of forming processes
dynamical aspects cannot be neglected and then elastic models are
replaced by their elastodynamics counterparts. It exists a vast liter-
ature on structural dynamics, covering different discretization
techniques and time integration procedures [29,17,27,30,26].

When considering an implicit analysis, solution at each time
step needs some iterations to enforce equilibrium. On the contrary
explicit schemes do not require iteration as the nodal accelerations
are solved directly, and from which velocities and displacements
are calculated by simple integration. At its turn displacements
allow the calculation of strains and stresses. The main handicap
of explicit simulations is that the time step must verify the stability
condition, decreasing with the element size.

On the contrary implicit elastodynamic integrations become
unconditionally stable, that is, there is not a limit in the time step
to be considered in what concerns stability. Thus, implicit time
steps are generally several orders of magnitude larger than the
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ones considered in explicit time integrations. However, implicit
integration requires the solution of linear systems several times
at each loading step when addressing nonlinear models. Explicit
techniques do not require that matrix inversion and consequently
address nonlinearities (contact or material nonlinearities) easily. In
[18] a hybrid schema was proposed that considers the domain
composed of two parts in which explicit and implicit time integra-
tions apply.

When dynamics applies on degenerated domains, like plates or
shells, and no acceptable simplifying hypotheses are available for
reducing their complexity to 2D, fully 3D solutions seem compul-
sory. This is for example the case when considering the progressive
dynamic damage of composite laminates where a rich through-
the-thickness description could be extremely valuable, among
many other scenarios in which a fully 3D formulation is retained.

In plane-out-of-plane separated representations, revisited in
the next section, allows reducing the 3D solution to a sequence
of 2D (in-plane) and 1D (along the thickness) problems, as proved
when considering elastostatics in plate and shell domains [5,6].

Even if the implementation of implicit integration schemes into
a 3D in-plane-out-of-plane separated representation does not
imply major difficulties, the use of explicit integration, preferable
in many applications, e.g. crash simulations, becomes a tricky
issue. In fact the mesh employed for discretizing the out-of-plane
dimension (thickness) determines the limit time-step ensuring sta-
bility, and consequently it could become quickly unaffordable
when refining the out-of-plane discretization.

In this paper we introduce a new hybrid explicit/implicit in-
plane-out-of-plane separated representation for dynamic prob-
lems defined in plate-like domains that computes efficiently 3D
solution and where the stability constraints are exclusively deter-
mined by the coarser in-plane discretizations.

Next section revisits the main concepts related to the separated
representations intensively considered in the present work. Then,
Section 3 defines the elastodynamics problem and its in-plane-out-
of-plane separated representation. Section 4 addresses time integra-
tion within the separated representation framework, and proposes
an efficient hybrid explicit/implicit formulation. Finally Section 5
validates the proposed methodology from some case studies.

2. An overview on separated representations

Separated representations, at the heart of the so-called Proper
Generalized Decomposition – PGD – consists of expressing the
unknown field depending on many coordinates (space, time,
parameters, . . .) as a finite sum decomposition in which each term
involved in the sum consists at its turn in the product of a series of
unknown functions each one depending on one coordinate. Thus,
when addressing a transient model involving the unknown field
uðx; tÞ, its separated representation reads [20–22]

uðx; tÞ �
XN
i¼1

XiðxÞ � TiðtÞ; ð1Þ

where neither the time-dependent functions TiðtÞ nor the space
functions XiðxÞ are ‘‘a priori” known. Both will be computed on-
the-flight when solving the problem.

This rationale can be extended to the solution of any problem
whose solution involves d generic coordinates uðx1; � � � ; xdÞ accord-
ing to [1–3]

uðx1; x2; � � � ; xdÞ �
XN
i¼1

X1
i ðx1Þ � X2

i ðx1Þ � � �Xd
i ðxdÞ; ð2Þ

where the set of coordinates can include a series of parameters
uðx; t;p1; � � � ; ppÞ according to [8]

uðx; t;p1; � � � ; ppÞ �
XN
i¼1

XiðxÞ � TiðtÞ �
Yp
k¼1

Pk
i ðpkÞ: ð3Þ

In the present paper we are mainly concerned by the space sep-
aration to address the solution of mechanical problems defined in
degenerated domain. Next section revisits space separated
representations.

Sometimes the spatial domain X, assumed three-dimensional,
can be fully or partially separated, and consequently it can be
expressed as X ¼ Xx �Xy �Xz or X ¼ Xxy �Xz respectively. The
first decomposition is related to hexahedral domains whereas the
second one is related to plate, beams or extruded domains. We
consider below both scenarii:

� The spatial domain X is partially separable. In this case the sep-
arated representation writes:

uðx; zÞ �
XN
i¼1

XiðxÞ � ZiðzÞ; ð4Þ

where x ¼ ðx; yÞ 2 Xxy and z 2 Xz. This decomposition implies:
(1) the solution in Xxy of two-dimensional BVP’s to obtain func-

tions Xi,
(2) the solution in Xz of one-dimensional BVP’s to obtain func-

tions Zi.
The complexity of the PGD simulation scales with the two-
dimensional mesh used to solve the BVP’s in Xxy, regardless of
the mesh used in the solution of the BVP defined in Xz for calculat-
ing ZiðzÞ.
� The spatial domain X is fully separable. In this case the sepa-
rated representation writes:

uðx; y; zÞ ¼
XN
i¼1

XiðxÞ � YiðyÞ � ZiðzÞ; ð5Þ

implying:

(1) the solution in Xx of one-dimensional BVP’s to obtain func-
tions Xi,

(2) the solution in Xy of one-dimensional BVP’s to obtain func-
tions Yi,

(3) the solution in Xz of one-dimensional BVP’s to obtain func-
tions Zi.

The cost savings provided by the PGD are potentially phenomenal
when the spatial domain is fully separable. Indeed, the complexity
of the PGD simulation now scales with the one-dimensional
meshes used to solve the BVP’s in Xx;Xy and Xz.

Even when the domain is not fully separable, a fully separated
representation could be considered by using appropriate geometri-
cal mappings or by immersing the non-separable domain into a
fully separable one. The interested reader can refer to [16,13].

In-plane-out-of-plane separated representations are particu-
larly useful for addressing the solution of problems defined in plate
[5], shell [6], beams [7] or extruded domains [23]. The same
approach was extensively considered in structural plate and shell
models in [11,31–35,28]. Space separated representations where
enriched with discontinuous functions for representing cracks in
[15], delamination in [24] and thermal contact resistances in
[10]. Domain decomposition within the separated space represen-
tation was accomplished in [25]. The in-plane-out-of-plane
decomposition was then extended to many other physics. Thermal
models were considered in [10] and squeeze flows of Newtonian
and non Newtonian fluids in laminates in [12,14,19].

As soon as separated representations are considered the solu-
tion of a multidimensional problem reduces to the solution of a
sequence of lower dimensional problems with the consequent



computing time savings. The solution procedure has been exten-
sively used, described and analyzed in our former works, many
of them referred in the present work. The interested reader can
refer to the primer [9] and the numerous references therein.

3. Elastodynamics: problem definition

We consider a physical domain X for which a linear elastic
behavior is assumed, according to

r ¼ C : �; ð6Þ
where C is the fourth order stiffness tensor, and the strain tensor �
derives from the symmetric component of the gradient of displace-
ments i.e. � ¼ rsu, where rs refers to the symmetric component.

From now on we consider Voigt notation, and for the sake of
notational simplicity we consider the same notation, r;� and C
for expressing the stress and strain vectors and the stiffness matrix
respectively.

The dynamic problem, in absence of damping and external
forces, with the displacement field uðx; tÞ for x 2 X and
t 2 I ¼ ½0; T�, reads
q€uðx; tÞ ¼ r � r; ð7Þ
with q the material density, _u and €u the first and second time
derivative of the displacement field respectively, i.e. the velocity
and acceleration.

The domain boundary C ¼ @X is partitioned in the so-called
Dirichlet and Neumann regions, CD and CN , where respectively dis-
placements and tractions are enforced, with CD [ CN ¼ C and
CD \ CN ¼ £. Dynamic problems require specifying the initial
displacement and velocity that without loss of generality in what
follows are assumed null, i.e. _uðx; t ¼ 0Þ ¼ 0 and uðx; t ¼ 0Þ ¼ 0.

Assuming again the trial and test displacements belonging to
appropriate functional spaces, and considering an elastic constitu-
tive equation, the weak form associated with (7) reads

q
Z
X
u� � €u dxþ

Z
X
�ðu�Þ � C�ðuÞð Þdx ¼

Z
CN

u� � F dx; ð8Þ

where the applied traction depends on time, i.e. F ¼ FðtÞ.

3.1. In-plane-out-of-plane separated representation

As discussed in the previous section, with X having one dimen-
sion (the one related to the thickness) much smaller than the
others involving the in-plane coordinates, an in-plane-out-of-
plane separated representation seems again the most appealing
route for addressing 3D discretizations while keeping the compu-
tational complexity the one characteristic of 2D discretizations.
The domain is expressed from X ¼ Xxy �Xz.

Even if as also indicated space-time separated discretizations
were considered many times in the past [20,2], in the present work
time derivatives are discretized using standard schemes.

By considering the notation uðx; y; z; t ¼ kDtÞ ¼ ukðx; y; zÞ,
with Dt the time step, the in-plane-out-of-plane separated repre-
sentation of the displacement field at time tk ¼ kDt;ukðx; y; zÞ,
reads

ukðx; y; zÞ ¼
ukðx; y; zÞ
vkðx; y; zÞ
wkðx; y; zÞ

0
@

1
A � uk

Nðx; y; zÞ

¼
XN
i¼1

ui;k
xyðx; yÞ � ui;k

z ðzÞ
v i;k

xyðx; yÞ � v i;k
z ðzÞ

wi;k
xyðx; yÞ �wi;k

z ðzÞ

0
B@

1
CA ¼

XN
i¼1

Ui;k
xyðx; yÞ � Ui;k

z ðzÞ ð9Þ

where ‘‘�” refers to the Hadamard product, and with

Ui;k
xyðx; yÞ ¼

ui;k
xyðx; yÞ
v i;k

xyðx; yÞ
wi;k

xyðx; yÞ

0
BB@

1
CCA ¼

ui;k
xy

v i;k
xy

wi;k
xy

0
BB@

1
CCA; ð10Þ

Ui;k
z ðzÞ ¼

ui;k
z ðzÞ
v i;k

z ðzÞ
wi;k

z ðzÞ

0
B@

1
CA ¼

ui;k
z

v i;k
z

wi;k
z

0
B@

1
CA; ð11Þ

where for alleviating the notation the coordinate dependences will
be omitted.

From all them we can obtain the separated vector form of the
strain tensor at time tk;�k 	 �ðukÞ:

�ðukÞ �
XN
i¼1

@ui;kxy
@x � ui;k

z

@v i;k
xy

@y � v i;k
z

wi;k
xy � @w

i;k
z

@z

@ui;kxy
@y � ui;k

z þ @v i;k
xy

@x � v i;k
z

@wi;k
xy

@x �wi;k
z þ ui;k

xy � @u
i;k
z

@z

@wi;k
xy

@y �wi;k
z þ v i;k

xy � @v
i;k
z

@z

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: ð12Þ

The separated representation constructor proceeds by comput-
ing a term of the sum at each iteration. Assuming that the first
n
 1 modes (terms of the finite sum) of the solution were already
computed, uk

n
1ðx; y; zÞ with n P 1, the solution enrichment reads:

uk
nðx; y; zÞ ¼ uk

n
1ðx; y; zÞ þ Un;k
xy ðx; yÞ � Un;k

z ðzÞ ð13Þ

where both vectors Un;k
xy and Un;k

z are unknown at the present itera-
tion defining a nonlinear problem. The test function u� reads

u� ¼ U�
xy � Un;k

z þ Un;k
xy � U�

z .

With both Un;k
xy and Un;k

z unknown the resulting problem
becomes non-linear. We proceed by considering the simplest lin-
earization strategy, an alternated directions fixed point algorithm
widely considered and described in our former works.

When Un;k
z is assumed known, we consider the test function uH

given by UH
xy � Un;k

z . By introducing the trial and test functions into
the weak form and then integrating in Xz because all the functions
dependingon the thickness coordinate are known,weobtain a2Dweak
formulation defined in Xxy whose discretization (by using a standard

discretization strategy, e.g. finite elements) allows computing Un;k
xy .

Analogously, when Un;k
xy is assumed known, the test function uH

is given by Un;k
xy � UH

z . By introducing the trial and test functions
into the weak form and then integrating in Xxy because all the
functions depending on the in-plane coordinates ðx; yÞ are at pre-
sent known, we obtain a 1D weak formulation defined in Xz whose
discretization (using any technique for solving standard ODE equa-

tions) allows computing Un;k
z .

Thus, the 3D computational cost is transformed into a sequence of
2D and 1D solutions, with the associated computing time savings [5].

4. Time discretization

Before introducing the hybrid strategy we consider at time tkþ1

the standard implicit and explicit formulations (two commun time
integration schemas among other possibilities [4]), given respec-
tively by

q
Z
X
u� � u

kþ1 
 2uk þ uk
1

Dt2
dxþ

Z
X
�ðu�Þ � C�

ukþ1 þ uk
1

2

� �� �
dx

¼
Z
CN

u� � F
kþ1 þ Fk
1

2
dx; ð14Þ



that as previously indicated is unconditionally stable, and the expli-
cit one

q
Z
X
u� � u

kþ1 
 2uk þ uk
1

Dt2
dxþ

Z
X
�ðu�Þ � C�ðukÞ� �

dx

¼
Z
CN

u� � Fkdx; ð15Þ

that is conditionally stable, with the stability limit Dtmax, defining
the stability domain Dt < Dtmax, given by

Dtmax ¼ L
c
; ð16Þ

where L is the characteristic length of the spatial discretization and
the dilatational wave speed c is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 1
 mð Þ
1þ mð Þ 1
 2mð Þq

s
: ð17Þ

As previously commented explicit strategies are employed in
many commercial codes. However, when applied to discretize 3D
problems defined in degenerated domains, like plates or shells,
the extremely fine meshes considered along the thickness direc-
tion have an unfavorable impact on the time step that becomes
extremely small to ensure stability. The in-plane-out-of-plane sep-
arated representation cannot scape to this important issue, being
the mesh size along the out-of-plane coordinate (much finer that
the one used in the plane) the one that determines the time step.

It is important emphasizing the main aim of the present work
and the proposed methodology for performing it. First, it is impor-
tant to note that we are interested in performing fully 3D simula-
tions in degenerated geometries (e.g. plate domains) while
considering explicit time integrations.

In this context the following remarks can be addressed:

� When using 2D discrete models (considering for example plate
elements), the stability criterion related to explicit time integra-
tions involves the size of the elements, but as the mesh is the
one related to the middle plane, the critical time step remains
reasonable in most of cases.

� However, as soon as 3D discretizations are considered, the char-
acteristic size of the finite elements along the plate thickness
becomes much smaller than the in-plane characteristic length,
and then when considering explicit time integrations the time
step needed for ensuring stability decreases with the through-
of-thickness characteristic element length.

� Increasing the resolution in the thickness direction implies the
increase of the number of elements involved in the discretization
as well as the decrease of the time step for ensuring stability, both
having unfavorable consequences on the computational cost.

� In our former works [5,6] we proposed in the framework of elasto-
statics considering in-plane-out-of-plane separated representations
that allowed reducing the computational complexity of solving a
fully 3D problem to the one characteristic of 2D solutions.

� However, as just indicated, such a decomposition when combined
with explicit time integrations fails, because again the stability is
associated to the smallest discretization characteristic length, the
one related to the through-of-thickness discretization.

� It is in that impasse that one is tempted of using, in the case of
explicit time integration, the in-plane-out-of-plane separated
representation (that reduces the computational complexity to
the one characteristic of 2D models) combined with an hybrid
time integration, explicit in the plane (conditionally stable but
with the critical time-step scaling with the characteristic in-
plane discretization length) and implicit along the thickness
(unconditionally stable), that allows reducing the computa-
tional complexity while keeping as stability constraint the one
associated to the in-plane explicit time integration.

� Obviously fully implicit in-plane-out-of-plane decompositions are
possible, where the implicit time integration ensures uncondi-
tional stability while the space separated representation reduces
the computational complexity. Despite of its intrinsic interest it
is not considered in the present paper, and in all cases, the asso-
ciated solutions are the same as the ones obtained by using a fully
3D finite element discretization but reducing the solution compu-
tational complexity. As previously commented fully explicit inte-
grations fail because the too stringent stability conditions induced
by the too fine through-of-thickness discretization.

� Thus, in this paper we analyze the intermediate procedure, the
one in which the fine through-of-thickness representation is alle-
viated thanks to the use of the in-plane-out-of-plane space sepa-
rated representation and its associated implicit unconditionally
stable time integration. Thus, the stability of the resulting dis-
cretization is expected being induced by the in-plane mesh in
which an explicit time integration is retained. The present paper
is intended analyzing this hybrid methodology, and proving that
in the case of fully explicit separated representations (as in the
case of fully explicit 3D finite elements) the stability is dictated
by the smallest characteristic discretization length (the one along
the domain thickness). On the contrary when considering the
hybrid scheme described in the next section, we expect the stabil-
ity being dictated by the characteristic in-plane discretization
length (being the trough-of-thinness discretization implicit).

In summary, the main goal is enriching explicit 2D plate and
shell formulations widely employed in industry and commercial
codes, with a fine through-of-thickness description (3D) without
affecting unfavorably the integration stability.

4.1. Explicit-in-plane/implicit-out-of-plane hybrid scheme

As just indicated, in order to circumvent the just referred stabil-
ity issues, we propose an out-of-plane implicit discretization
(unconditionally stable) while the in-plane discretization (imply-
ing coarser meshes) makes use of an explicit schema. Thus, the sta-
bility is prescribed by the in-plane size mesh, several order of
magnitude higher than the one associated to the thickness.

For that purpose we propose considering at time tk the strain
defined by

�hðukÞ ¼

uk
;x

vk
;y

wkþ1
;z þwk
1

;z

2

vkþ1
;z þvk
1

;z

2 þwk
;y

ukþ1
;z þuk
1

;z

2 þwk
;x

uk
;y þ vk

;x

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

�

XNk

i¼1

ui;k
xy;x � ui;k

z

XNk

i¼1

v i;k
xy;y � v i;k

z

PNkþ1
i¼1

wi;kþ1
xy �wi;kþ1

z;z þ
PNk
1

i¼1
wi;k
1

xy �wi;k
1
z;z

2PNkþ1
i¼1

v i;kþ1
xy �v i;kþ1

z;z þ
PNk
1

i¼1
v i;k
1
xy �v i;k
1

z;z

2 þ
XNk

i¼1

wi;k
xy;y �wi;k

z

PNkþ1
i¼1

ui;kþ1
xy �ui;kþ1

z;z þ
PNk
1

i¼1
ui;k
1
xy �ui;k
1

z;z

2 þ
XNk

i¼1

wi;k
xy;x �wi;k

z

XNk

i¼1

ui;k
xy;y � ui;k

z þ
XNk

i¼1

v i;k
xy;x � v i;k

z

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

ð18Þ



where for the sake of notational simplicity the derivatives of func-
tion u� with respect the coordinate x is noted by u�;x (and similarly
for the other functions involved in the displacement components
with respect to any coordinate). Moreover, the superscript �h refers
to its hybrid nature and Nkþ1;Nk;Nk
1 are the number of products
involved in the separated representation of the displacement at
times steps kþ 1; k and k
 1 respectively.

It can be noticed that the derivatives involving the out-of-plane
(thickness) coordinate are treated using an implicit schema whereas
an explicit one is retained for the in-plane derivatives. Thus, the
hybrid schema is some place in between standard implicit and expli-
cit techniques, taking profit of the advantages of both them.

When using the hybrid schema the weak form at time tkþ1, con-
sists of finding ukþ1, verifyingZ
X
qu� �u

kþ1
2ukþuk
1

Dt2
dxþ

Z
X
�ðu�Þ � C�hðuÞ� �

dx¼
Z
CN

u� �Fk dx:

ð19Þ
To construct the separated representation of the solution at

time tkþ1 we consider the standard procedure, assuming that
n
 1 terms have been already computed and that at the present
iteration looks for the term n, according to

ukþ1
n
1ðx; y; zÞ ¼

ukþ1
n
1ðx; y; zÞ
vkþ1

n
1ðx; y; zÞ
wkþ1

n
1ðx; y; zÞ

0
B@

1
CA ¼

Xn
1

i¼1

Ui;kþ1
xy ðx; yÞ � Ui;kþ1

z ðzÞ; ð20Þ

with

ukþ1
n ðx; y; zÞ ¼ ukþ1

n
1ðx; y; zÞ þ Pkþ1ðx; yÞ � Tkþ1ðzÞ: ð21Þ
where for the sake of notational simplicity the unknown fields Un;kþ1

xy

and Un;kþ1
z are referred by Pkþ1ðx; yÞ and Tkþ1ðzÞ, with components

Pkþ1ðx; yÞ ¼
pkþ1
u ðx; yÞ

pkþ1
v ðx; yÞ

pkþ1
w ðx; yÞ

0
B@

1
CA; ð22Þ

and

Tkþ1ðzÞ ¼
tkþ1
u ðzÞ
tkþ1
v ðzÞ
tkþ1
w ðzÞ

0
B@

1
CA: ð23Þ

The linearity allows writing

�h
nðx; y; zÞ ¼ �h

n
1ðx; y; zÞ þ �h
PTðx; y; zÞ ð24Þ

where

�h
n
1ðx; y; zÞ ¼
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;x

vk
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2 þwk
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¼

XNk

i¼1

ui;k
xy;x � ui;k

z

XNk
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v i;k
xy;y � v i;k

zPn
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xy �wi;kþ1
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and

�h
PTðx; y; zÞ ¼

0
0

pkþ1
w �tkþ1

w;z
2

pkþ1
v �tkþ1

v ;z
2

pkþ1
u �tkþ1

u;z
2

0

0
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:

The test displacement reads

u�ðx; y; zÞ ¼
p�
uðx; yÞ � tkþ1

u ðzÞ þ pkþ1
u ðx; yÞ � t�uðzÞ

p�
vðx; yÞ � tkþ1

v ðzÞ þ pkþ1
v ðx; yÞ � t�vðzÞ

p�
wðx; yÞ � tkþ1

w ðzÞ þ pkþ1
w ðx; yÞ � t�wðzÞ

0
@

1
A

¼ P� � Tkþ1 þ Pkþ1 � T�; ð26Þ
and the associated strain

�ðu�ðx; y; zÞÞ ¼

p�
u;x � tkþ1

u þ pkþ1
u;x � t�u

p�
v ;y � tkþ1

v þ pkþ1
v;y � t�v

p�
w � tkþ1

w;z þ pkþ1
w � t�w;z

p�
w;y � tkþ1

w þ pkþ1
w;y � t�w þ p�

v � tkþ1
v ;z þ pkþ1

v � t�v;z
p�
w;x � tkþ1

w þ pkþ1
w;x � t�w þ p�

u � tkþ1
u;z þ pkþ1

u � t�u;z
p�
v;x � tkþ1

v þ pkþ1
v;x � t�v þ p�

u;y � tkþ1
u þ pkþ1

u;y � t�u

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð27Þ
For the sake of simplicity, and without loss of generality, we

assume that the applied traction F on CN , can be expressed from
the single term separated representation, i.e.

Fkðx; y; zÞ ¼ Fk
x;yðx; yÞ � Fk

zðzÞ: ð28Þ
Using the previous expressions, Eq. (19) readsZ

X
qu� � P

kþ1 � Tkþ1

Dt2
dxþ

Z
X
�ðu�Þ � C�h

PT

� �
dx

¼ 

Z
X
qu� � u

kþ1
n
1 
 2uk þ uk
1

Dt2
dx


Z
X
�ðu�Þ � C�h

n
1

� �
dx

þ
Z
CN

u� � Fk dx: ð29Þ

As both Pkþ1 and Tkþ1 are unknown, problem (29) becomes non-
linear and consequently requires an appropriate linearization
strategy. As usual in our previous works an alternated directions

fixed point strategy is considered that by assuming Tkþ1 known cal-

culates Pkþ1 and from the last updates Tkþ1. The process continues
until reaching convergence (the fixed point).

When assuming Tkþ1 known the test displacement reads

u�ðx; y; zÞ ¼
p�
uðx; yÞ � tkþ1

u ðzÞ
p�
vðx; yÞ � tkþ1

v ðzÞ
p�
wðx; yÞ � tkþ1

w ðzÞ

0
B@

1
CA ¼ P� � Tkþ1; ð30Þ

that introduced into the weak form (29) results in a 2D problem

involving the in-plane coordinates that allows calculating Pkþ1.
Now, assuming that last known, the test displacement becomes

u�ðx; y; zÞ ¼
pkþ1
u ðx; yÞ � t�uðzÞ

pkþ1
v ðx; yÞ � t�vðzÞ

pkþ1
w ðx; yÞ � t�wðzÞ

0
B@

1
CA ¼ Pkþ1 � T�; ð31Þ

that introduced at its turn into the weak form (29) results in a 1D

problem involving the thickness, whose solution results in Tkþ1.
As preciously indicated the iteration procedure continues until
reaching the convergence characterized by



R
X Pkþ1

p � Tkþ1
p 
 Pkþ1

p
1 � Tkþ1
p
1

� �2
dxR

X Pkþ1
p
1 � Tkþ1

p
1

� �2
dx

< �; ð32Þ

where p refers to the fixed point iteration and � is a small enough
threshold value.

Similarly the enrichment procedure stops when the criterion

R
X UNkþ1 ;kþ1

xy � UNkþ1 ;kþ1
z

� �2
dxR

X U1;kþ1
xy � U1;kþ1

z

� �2
dx

< ~�; ð33Þ

is fulfilled, with ~� another small enough threshold value.

5. Numerical validation

5.1. Dynamics of an homogeneous plate

We consider the problem defined in the domain X depicted in
Fig. 1, with Hx ¼ Hy ¼ 3 m and Hz ¼ 0:1 m. In the first case study,
the material occupying X is assumed homogeneous.

Boundary conditions are given by: u ¼ 0;0;0ð Þ on the face
ADHE; u ¼ free;0; freeð Þ on the faces ABFE and DCGH;
FðtÞ ¼ 0;0;A sinðxtÞð Þ on face BCGF, with A ¼ 108;x ¼ 20p as
depicted in Fig. 2.

The material properties are defined in Table 1, where E is the
Young modulus, m the Poisson coefficient and q the material
density.

Figs. 3 and 4 compare the stability of standard explicit Q8-3D
finite elements (fully explicit separated representations with
equivalent discretizations lead to the same results) and the hybrid
scheme just proposed, for different values of the in-plane and out-
of-plane mesh sizes, Lxy and Lz respectively. As it can noticed com-
puted results reflect the stability conditions given by Eqs. (16) and
(17). It is important to note that when considering fully explicit
schemes, the stability is found being prescribed by the mesh size
related to the thickness direction, however, when considering the
hybrid schema the stability becomes given by the in-plane charac-
teristic mesh size, that being much larger that the one related to
the thickness, integration becomes more efficient.

To validate the hybrid approach (only in what concerns accu-
racy and stability, because issues related to computing time sav-
ings were addressed in [5]), the computed solution is compared
with both explicit and implicit 3D finite elements integration with
a time step (in the explicit case) guaranteeing the integration sta-
bility. The simulation parameters are the ones introduced previ-
ously concerning the material properties, and the ones

Fig. 1. Problem geometry.

Fig. 2. Loading.

Table 1
Material properties.

E (N=m2): 2 � 1011

m: 0:25
q (kg=m3): 8000

Fig. 3. Stability analysis for a given in-plane characteristic mesh size Lxy .

Fig. 4. Stability analysis for a given out-of-plane characteristic mesh size Lz .



concerning the remaining simulation parameters are indicated in
Table 2, where Nx;Ny and Nz refer to the number of elements
involved in the discretization of directions x; y and z.

Fig. 5 depicts the time evolution of the vertical displacement w
at the central point on segment FG when using different integra-
tion schemes. The solution obtained by using the hybrid strategy
agrees in minute with the one obtained by using the finite element
method and considered as reference for comparison purposes.

5.2. Considering richer out-of-plane approximations

In order to check the ability of the proposed technique for
addressing richer out-of-plane representations, we consider that
the domain depicted in Fig. 1 consists now in a laminated com-
posed of 8 anisotropic plies ½0;45;
45;90�S. The applied force
now writes again FðtÞ ¼ 0;0;A sinðxtÞð Þ and applies on the face
BCGF, with A ¼ 108 but now with x ¼ 200p, as depicted in Fig. 6.

The mechanical properties of the 0�-ply are given in Table 3,
where E is the Young modulus, m the Poisson coefficient, G the
shear modulus and q the density. The subscripts indicate respec-
tively the proprieties along the longitudinal direction of the fibers
(1), the in-plane transverse direction (2) and the out-of-plane
direction (3).

In the present case the elastic constitutive equation becomes
orthotropic and using again Voigt notation it reads

exx
eyy
ezz
cyz
cxz
cxy

2
666666664

3
777777775
¼

1
E1


 m12
E1


 m13
E1

0 0 0


 m12
E1

1
E2


 m23
E2

0 0 0


 m13
E1


 m23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

2
666666666664

3
777777777775

rxx

ryy

rzz

ryz

rxz

rxy

2
666666664

3
777777775
: ð34Þ

We compared the solution obtained using the hybrid strategy
with the one obtained using implicit finite elements. An explicit
finite element solution was not envisaged because the too small
time step induced by the extremely fine through-the-thickness
mesh. The simulation parameters are reported in Tables 3 and 4.

Fig. 7 compares the time evolution of the vertical displacement
at the middle of segment FG. It can be noticed again that the hybrid
strategy provides an excellent solution compared with the implicit
finite element considered as reference.

Finally Fig. 8 compares the time evolution of the stress compo-
nent rzz at the same location calculated (middle of segment FG)
using the finite element method and the implicit/explicit hybrid
in-plane-out-of-plane decomposition. Again both solutions match
perfectly.

Table 2
Simulation parameters.

Hx: 3 m
Hy: 3 m
Hz: 0:1 m
Nx: 10
Ny: 2
Nz: 10
Dt: 10
6 s

Fig. 5. Vertical displacement at the central point of segment FG.

Fig. 6. Loading applying in the composite laminate.

Table 3
Mechanical properties of the 0�-ply.

E1 (N=mm2): 120 � 103

E2 (N=mm2): 8:9 � 103

E3 (N=mm2): 8:9 � 103

m12: 0:35
m13: 0:35
m23: 0:32
m21: m12
m31: m13
m32: m23
G12 (N=mm2): 4:5 � 103

G13 (N=mm2): 4:5 � 103

G23 (N=mm2): 5:3 � 103

q (kg=m3): 1750

Table 4
Simulation parameters.

Hx: 250 mm
Hy: 100 mm
Hz: 4 mm
Nx: 10
Ny: 2
Nz: 48 (6 elements per ply)
Dt: 10
6 s



6. Analysis of computational performances

In order to investigate the performances of the proposed tech-
nique we perform in this section different analyses. Before, we
would like advertising on two facts. First, all computing times
are referred to a Matlab implementation on a standard laptop.
Thus, computed results allow comparing approaches but not to
conclude on absolute performances. Second, for the sake of gener-
ality the problem linearity is not taken into account in the sense
that at each time step a linear system is solved without taking
advantage of the numerous computational profits that linearity
offers in the finite element framework. This conservative approach
allows extending the main conclusions to the nonlinear case.

We consider again the problem defined in the domain X
depicted in Fig. 1, with Hx ¼ Hy ¼ 3 m; Hz ¼ 0:1 m and with the
material properties defined in Table 1, considering the same
boundary conditions than in Section 5.1 and the same loading,
the last illustrated in Fig. 2. In the analyses here addressed, the
PGD constructor stoping criterion is set to � ¼ ~� ¼ 10
6.

First, we compare the hybrid PGD method with its fully implicit
counterpart. The three different meshes defined in Table 5 are con-
sidered, where again Nx;Ny and Nz refer to the number of elements
involved in the discretization of directions x; y and z respectively.
For each mesh we compare the computing time employed by both
the hybrid and the fully implicit PGD discretizations to solve the
problem in the time interval ½0;400Dt�, with the time-step

Dt ¼ 10
5

3 s for all the simulations.
Results presented in Fig. 9 prove that, as expected, when using

the same time-step the hybrid method proceeds faster than the
implicit one. Later, in order to take advantage of the superior sta-
bility of fully implicit discretizations, time-steps will be selected
differently for ensuring an equivalent accuracy, in order to com-
pare computing costs in a more appropriate manner.

Now, we perform a comparison between the three PGD formu-
lations (explicit, hybrid and implicit) in the time interval ½0;400Dt�,
with Dt ¼ 10
7 s to ensure the stability of the explicit time integra-
tion. Results for the three meshes in Table 6 are presented in
Fig. 10. As expected the computational cost of the hybrid formula-
tion is in between the one of explicit and implicit time integrations.

We have already proved in Figs. 3 and 4 that the stability
domain of the hybrid formulation does not depend on the mesh
size associated with the thickness direction, so that the hybrid sim-
ulation proceeds faster than the one performed using a fully expli-
cit formulation by using a larger time-step in the hybrid
integration.

Fig. 7. Vertical displacement at the middle of segment FG.

Fig. 8. Stress component rzzðtÞ at the central point of segment FG. Implicit and
hybrid-based solutions are almost superimposed.

Table 5
Meshes considered in the analysis of computational performances depicted in Fig. 9.

Mesh 1 Mesh 2 Mesh 3

Nx: 10 20 30
Ny: 10 20 30
Nz: 100 100 100

Mesh 1 Mesh 2 Mesh 3
0

200

400

600

800

1000

1200

1400
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1800

tim
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(s
)

Hybrid PGD
Implicit PGD

Fig. 9. Hybrid versus implicit PGD formulations.

Table 6
Meshes considered in the analysis of computational performances depicted in Fig. 10.

Mesh 4 Mesh 5 Mesh 6

Nx: 10 20 30
Ny: 10 20 30
Nz: 50 50 50



In order to prove it, we perform a simulation using ‘Mesh 2” in
Table 5, in the time interval ½0;4�ms. We use as time steps for the
explicit and the hybrid methods respectively Dtex ¼ 10
7 s and
Dthy ¼ 10
5 s, ensuring the stability of both schemes. Results
shown in Fig. 11 reveal as expected that the higher time-step con-
sidered in the hybrid integration induces significant computing
time savings.

The last analysis aims at taking advantage of the superior stabil-
ity performances of the implicit formulation, that a priori can use
larger time-steps that the ones of explicit and hybrid formulations
that are only conditionally stables. However, here not only stability
issues are addressed but also the accuracy of the computed
solutions.

Thus, in the present numerical analysis we consider the mesh
defined Table 7 and the time interval ½0; T� with T ¼ 6 ms, and con-
sider as reference solution the one computed using an explicit FEM
scheme with a very fine time-step Dt ¼ 10
7 s, ensuring both sta-
bility and accuracy, both performances having been checked.
Fig. 12 compares the computational cost related to FEM and PGD
explicit time integrations. As expected the separated representa-
tion involved in the PGD formulation allows better performances.

Then the problem is solved using first the hybrid scheme with a
time-step Dt ¼ 2 � 10
5 s that ensures its stability and implicit
(PGD and FEM) time integrations using higher time-steps. For each
solution we consider the computational cost as well as the error E
with respect to the reference solution, computed from

E ¼
R T
0

R
X u
 uref

� �2dxdt� �1
2

R T
0

R
X u2

ref dxdt
� �1

2
: ð35Þ

Table 8 compares the different solutions, proving that: (i) impli-
cit PGD and FEM integrations lead to almost the same solutions,
being the ones related to PGD less computationally expensive;
and (ii) implicit simulations related to the same computational
cost than hybrid simulation produce larger errors, for the analyzed
case.

7. Conclusion

This paper proposes a new time discretization scheme for solv-
ing 3D dynamical problems defined in degenerated domains, that
is, domains in which one of its characteristic dimensions is much
smaller that the other ones, as it is the case when considering
plates or shells.

Mesh 4 Mesh 5 Mesh 6
0

100

200

300

400

500

600

tim
e 

(s
)

Explicit PGD
Hybrid PGD
Implicit PGD

Fig. 10. Comparing explicit, hybrid and implicit PGD formulations.
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Fig. 11. Hybrid versus explicit PGD formulations.

Table 7
Mesh used in the results described in Fig. 12 and Table 8.

Mesh 7

Nx: 10
Ny: 10
Nz: 90

Mesh 7
0

1

2

3

4

5

6

tim
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(s
)

104

Explicit PGD
Explicit FEM

Fig. 12. Explicit PGD versus explicit FEM.

Table 8
Hybrid and implicit PGD integrations versus a standard implicit finite element
formulation (using different time-steps).

Time Error

Dt ¼ 2 � 10
5 s Hybrid PGD: 65 s 8:3 � 10
3

Implicit PGD: 203 s 8:4 � 10
3

Implicit FEM: 746 s 8:4 � 10
3

Dt ¼ 4 � 10
5 s Implicit PGD: 185 s 1:66 � 10
2

Implicit FEM: 363 s 1:66 � 10
2

Dt ¼ 6 � 10
5 s Implicit PGD: 145 s 2:47 � 10
2

Implicit FEM: 236 s 2:47 � 10
2

Dt ¼ 8 � 10
5 s Implicit PGD: 88 s 3:27 � 10
2

Implicit FEM: 174 s 3:27 � 10
2

Dt ¼ 10
4 s Implicit PGD: 63 s 4:05 � 10
2

Implicit FEM: 146 s 4:05 � 10
2



A first complexity reduction is attained by considering an
in-plane-out-of-plane separated representation that allows reduc-
ing the original 3D complexity to the one characteristic of 2D plate
or shells models, even if the computed solution is fully 3D and any
hypothesis is introduced. Such separated representation allows the
use of extremely fine descriptions along the thickness direction.

However, such decomposition when combined with explicit
time integrations has a major handicap, the too small size of the
discretization involved in the thickness direction implies an extre-
mely small time step for ensuring stability. In this paper we cir-
cumvent such a drawback by using an implicit (unconditionally
stable) through-the-thickness discretization whereas a standard
explicit scheme is considered for treating the in-plane operators.
Thus, the stability is dictated by the in-plane mesh size, much coar-
ser than the one employed in the thickness direction. It is impor-
tant to note, that even if a part of the whole scheme remains
implicit, it only affects one dimension and then its solution is
extremely fast and cheap.

The inclusion of progressive damage models combined with
dynamical effects constitutes a work in progress, where the sepa-
rated representations seems an appealing option to better repre-
sent damage effects along the laminate thickness, and where
explicit time integrations are usually employed in industrial
applications.
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