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a b s t r a c t 

A model is proposed, where the evolution of the orientation of each fiber is coupled to the orientations of the 
surrounding fibers in the flow of a fiber-filled fluid and includes the effects of the fiber volume fraction and aspect 
ratio. This is performed by accounting for the effective behavior of the fiber-filled fluid, which is anisotropic 
although the fibers are embedded in an isotropic Newtonian fluid. The rotation of a fiber in these conditions is 
predicted by a dumbbell model, which allows an extension of Jeffery’s equation to anisotropic cases. This involves 
the numerical evaluation of the drag force applied on a sphere in an orthotropic incompressible fluid, which is 
evaluated by finite element simulations. A simple fit is proposed for the practical use of the coupled model, which 
is applied finally to the orientation kinematics of a population of fibers in a simple shear flow, and the results 
are compared with the ones given by the standard uncoupled approach. 

1. Introduction

In our former works we addressed the kinematics of rods, simulating 
short rigid straight fibers involved in reinforced plastics, by assimilat- 
ing them to dumbbells with hydrodynamic forces applied on the dumb- 
bell beads [1] . Such a modeling framework allows recovering the Jef- 
fery equation for a prolate spheroid with infinite aspect ratio [2] , as 
shown below. This rationale has been extended to study rigid [3] and 
deformable [4] clusters composed of rods, to address confinement ef- 
fects [5,6] , to include higher-order gradients [7] , to consider viscoelas- 
tic surrounding fluids [8] , or to account for rods inertia [9] . Moreover, 
in [3] the authors proved that the Jeffery equation for general ellip- 
soids is recovered by using a rigid tri-dumbbell analog. All these devel- 
opments leading to the equivalence between ellipsoids and dumbbells 
were performed under the assumption that the particle is immersed 
in an isotropic fluid. When the particles volume fraction increases, 
the so-called semi-dilute regime is reached, where direct contacts be- 
tween fibers can still be neglected but hydrodynamic interactions come 
into play as referred in the papers above (and the abondant references 
therein) or as addressed within a thermodynamic setting in [10] . This 
induces an anisotropic effective behavior of the fluid surrounding a par- 
ticle and should alter its orientation kinematics, which is expected to 
deviate from the standard Jeffery prediction. 

To our knowledge, the effects of this anisotropy on the rod kine- 
matics has never been addressed, and all theories and models giving 
the orientation kinematics rely on an isotropic environment, in opposi- 
tion with what is expected from self-consistent approaches, for instance. 
Therefore, the present work aims at developing an approximate model 
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for the rotation of rigid spheroids with large aspect ratios (representing 
slender rods and fibers accurately) that takes into account the effective 
fluid behavior resulting from a population of fibers with a non-isotropic 
distribution of orientations. Since no analytical solution is available in 
the anisotropic case for the problem solved by Jeffery in isotropic condi- 
tions, a slender spheroid will first be assumed equivalent to a dumbbell, 
the orientation kinematics will be solved for the latter in the anisotropic 
case, and a direct comparison with a finite element simulation will val- 
idate the equivalence with a slender spheroid. Finally, the model will 
be applied to the orientation kinematics of a whole population of fibers 
suspended in a fluid submitted to a simple shear in order to emphasize 
the effects of taking anisotropy into account in the flow of fiber-filled 
plastics. 

2. Rod kinematics in an anisotropic medium

To derive the dumbbell-based model, we start by revisiting the kine- 
matics of a slender rod of length 2 L immersed in an isotropic Newtonian 
fluid with viscosity 𝜂, where the kinematics described by the velocity 
field v ( x ) is assumed unperturbed by the presence of the rod, whatever 
its orientation. The latter is defined by the unit vector p , and inertia 
effects are neglected in the sequel. If we assume the rod can be repre- 
sented by the dumbbell depicted in Fig. 1 and that hydrodynamic forces 
apply on the two (identical) beads only, each being proportional to the 
difference between the velocity of the fluid 𝐯 0 + ∇ 𝐯 𝐩 𝐿 (with v 0 the ve- 
locity of the fluid at the dumbbell centroid G ) and the velocity of the 
bead 𝐯 𝐺 + 𝐩̇ 𝐿 (with v G the velocity of the dumbbell centroid), the force 
acting on the bead at p L (the origin of coordinates is taken at G ) reads 
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Fig. 1. Hydrodynamic forces applied on a dumbbell immersed in a Newtonian 
fluid. 

𝐅 ( 𝐩 𝐿 ) = 𝜁 ( 𝐯 0 + ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 − 𝐩̇ 𝐿 ) , (1)

where 𝜁 is the drag coefficient in the isotropic fluid, and the force on 
the opposite bead at − 𝐩 𝐿 is 

𝐅 (− 𝐩 𝐿 ) = 𝜁 ( 𝐯 0 − ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 + 𝐩̇ 𝐿 ) . (2)

Adding these two forces and enforcing the linear momentum balance 
𝐅 ( 𝐩 𝐿 ) + 𝐅 (− 𝐩 𝐿 ) = 𝟎 leads to 𝐯 0 = 𝐯 𝐺 , that is, the dumbbell centroid
moves with the unperturbed fluid velocity. As the resulting torque must 
also vanish, the only possibility is that the forces act along the direction 
of p , that is 𝐅 ( 𝐩 𝐿 ) = 𝜆𝐩 , with 𝜆 a real number: 

𝜆 𝐩 = 𝜁 𝐿 (∇ 𝐯 𝐩 − 𝐩̇ ) . (3)

Taking the scalar product of both sides with p provides the 𝜆 value: 

𝜆 = 𝜁 𝐿 𝐩 𝑇 ∇ 𝐯 𝐩 , (4)

since 𝐩 𝑇 𝐩 = 1 and consequently 𝐩 𝑇 𝐩̇ = 0 , and (3) gives 

𝜁 𝐿 

(
𝐩 𝑇∇ 𝐯 𝐩 

)
𝐩 = 𝜁 𝐿 (∇ 𝐯 𝐩 − 𝐩̇ ) (5)

leading finally to the rotation rate of the dumbbell: 

𝐩̇ = ∇ 𝐯 𝐩 − 

(
𝐩 𝑇 ∇ 𝐯 𝐩 

)
𝐩 (6)

which coincides with the well known Jeffery’s equation for a rigid 
spheroid with an infinite aspect ratio. Therefore, the rotation of a slen- 
der fiber in an isotropic Newtonian fluid is equal to the rotation of a 
rigid dumbbell, and this remarkable coincidence, which was unrecog- 
nized in the early papers where rigid dumbbells were studied (see [11] , 
for instance), has been stressed in [1] . 

It may be noticed that the drag coefficient is absent in (6) , but this 
does not apply when the fluid is anisotropic, as we show now. In this 
case, the drag force is not necessarily aligned with the velocity of the 
bead with respect to the fluid, unless possibly along a symmetry axis of 
the fluid behavior, and an anisotropic drag tensor 𝜻 is introduced, simi- 
larly to what has been done in [12] . This second-order tensor is positive 
definite, so that the drag force does dissipate energy, and therefore it 
has an inverse. The hydrodynamic force acting on the bead at p L reads 
now 

𝐅 ( 𝐩 𝐿 ) = 𝜻( 𝐯 0 + ∇ 𝐯 𝐩 𝐿 − 𝐯 𝐺 − 𝐩̇ 𝐿 ) , (7)

and, taking into account the positivity of 𝜻 , 𝐯 0 = 𝐯 𝐺 yields again from
the linear momentum balance. The angular momentum balance implies 

𝜻(∇ 𝐯 𝐩 𝐿 − 𝐩̇ 𝐿 ) = 𝜆 𝐩 , (8)

which, using the invertibility of 𝜻 , can also be written as 

∇ 𝐯 𝐩 − 𝐩̇ = 

𝜆

𝐿
𝜻−1 𝐩 . (9)

Taking the scalar product with p gives 

𝐩 𝑇 ∇ 𝐯 𝐩 = 

𝜆

𝐿
𝐩 𝑇 𝜻−1 𝐩 , (10)

which leads to the value of 𝜆: 

𝜆 = 𝐿 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝜻−1 𝐩

(11)

that can be introduced into (9) and gives finally 

𝐩̇ = ∇ 𝐯 𝐩 − 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝜻−1 𝐩 

𝜻−1 𝐩 . (12)

Since 𝜻−1 appears at both the numerator and denominator, it can be 
replaced by a normalized inverse drag tensor 𝝃 where 𝜉11 + 𝜉22 + 𝜉33 = 1 ,
so that 

𝐩̇ = ∇ 𝐯 𝐩 − 

𝐩 𝑇 ∇ 𝐯 𝐩 
𝐩 𝑇 𝝃 𝐩 

𝝃 𝐩 (13)

generalizes (6) . This expression for the rotation of a rigid dumbbell in 
an anisotropic fluid will be assumed below to govern also the rotation of 
a prolate spheroid with infinite aspect ratio. In this sense, this extends 
Jeffery’s result to the anisotropic case. 

Of course, (6) is recovered in the isotropic case, where the normal- 
ized inverse drag tensor reduces to 𝝃 = 𝜹∕3 ( 𝜹 denotes the second-order 
identity tensor), because the drag tensor 𝜻 simplifies to 𝜁 𝜹. By taking 
the scalar product with p , it may also be checked that (13) does satisfy 
the condition 𝐩 𝑇 𝐩̇ = 0 to preserve the unit length of p . Before comparing 
the kinematics (13) and (6) for a population of fibers, it is necessary to 
address three main issues: the effective behavior of the fiber-filled fluid 
must be detailed, the associated second-order 𝝃 tensor must be com- 
puted, and the extension of (13) to a fiber must be validated. This is 
performed in the following Sections. 

3. Orthotropic behaviors considered

The effective viscous behavior of a Newtonian fluid filled with fibers 
is deduced here by applying the Advani and Tucker [13] approach. This 
two-step procedure combines a model for the effective behavior when 
all fibers are aligned, and a closure relation applied to the symmetric 
second-order orientation tensor a otherwise. The latter is given by 

𝐚 = ∫(0 , 1) 𝐩 ⊗ 𝐩 𝜓( 𝐩 ) d 𝐩 (14)

where the orientation distribution function 𝜓( p ), defined over the sur- 
face (0 , 1) of the unit ball, gives the fraction of fibers that are parallel 
to p and verifies the normality condition: 

∫(0 , 1) 𝜓( 𝐩 ) d 𝐩 = 1 (15)

from which 𝑎 11 + 𝑎 22 + 𝑎 33 = 1 results.
In the first step of the Advani–Tucker procedure, the Mori–Tanaka 

model [14] , as reformulated by Benveniste [15] , is used here for the case 
where all fibers are aligned and represented as very elongated prolate 
spheroids. This model was developed originally for composite materi- 
als, and was preferred by Tucker and Liang [16] at the end of their 
review of various models that predict the stiffness of short-fiber com- 
posites. Taking advantage of the formal equivalence between the equa- 
tions governing the deformation of an elastic solid at small strain and 
those governing the flow at a given time in a linear viscous fluid at low 

Reynolds number (see [17] , for instance), this model is extended read- 
ily to fiber-filled fluids. For a volume fraction f of aligned rigid fibers 
in an incompressible fluid of viscosity 𝜂, the effective behavior is trans- 
versely isotropic and defined by the following three material constants: 
an elongational viscosity 

𝜂𝐸 = 3 
( 

1 + 

2
3 

𝑓

1 − 𝑓 

1 − 𝑤 

2 

ℎ ( 𝑤 ) − 2 𝑤 

2 + 2 ℎ ( 𝑤 ) 𝑤 

2 

) 

𝜂 (16)

a longitudinal shear viscosity 

𝜂𝐿 = 

( 

1 + 2 𝑓

1 − 𝑓 

1 − 𝑤 

2 

(1 + 𝑤 

2 )(2 − 3 ℎ ( 𝑤 )) 

) 

𝜂 (17)

and a transverse shear viscosity 

𝜂𝑇 = 

( 

1 + 4 𝑓

1 − 𝑓 

1 − 𝑤 

2 

3 ℎ ( 𝑤 ) − 2 𝑤 

2 

) 

𝜂 (18)



where w > 1 denotes the fiber aspect ratio, and 

ℎ ( 𝑤 ) = 

𝑤 

( 𝑤 

2 − 1) 3∕2 
(
𝑤 

√
𝑤 

2 − 1 − arccosh 𝑤 

)
. (19)

When w →∞, it may be noted that h →1 (with already h ≥ 0.99 when 
w ≥ 16), whereas 𝜂E →∞ but both 𝜂L and 𝜂T tend to (1 + 𝑓 ) 𝜂∕(1 − 𝑓 ) . 

In the second step of the Advani-Tucker procedure, non-aligned 
fibers are considered, and an evaluation of the anisotropic fluid behavior 
is obtained by combining the above unidirectional case and information 
about the orientation distribution function. The latter is reduced to the 
second-order orientation tensor a , provided that a suitable closure rela- 
tion is applied, which defines a fourth-order orientation tensor related 
to a . Here, the IBOF closure proposed by Chung and Kwon [18] is used, 
which has been developed by fitting over a large set of flow simulations 
and a values. As a result, the effective behavior is orthotropic, with its 
three material symmetry planes being normal to the principal axes of 
a . In the latter system of axes, six material parameters are defined for 
an incompressible orthotropic fluid behavior: three elongational viscosi- 
ties 𝜂11 , 𝜂22 and 𝜂33 , and three shear viscosities 𝜂12 , 𝜂23 and 𝜂31 . These 
6 parameters are deduced from the volume fraction f and aspect ratio 
w of the fibers (to get the reference unidirectional case), and from the a 
tensor (to include the orientation distribution) through the expressions 
given in [18] . The linear relation between the deformation rate D and 
the stress deviator s (or extra-stress, such that the stress tensor is given 
by 𝝈 = 𝐬 − 𝑝 𝜹, where p is a pressure) writes as follows in the principal 
axes of orthotropy (the reverse expressions for the components of s in 
terms of D are more involved): 

𝐷 11 = 

𝑠 11 
𝜂11 

+ 

( 

1 
𝜂33 

− 

1
𝜂11 

− 

1
𝜂22 

) 

𝑠 22 
2 

+ 

( 

1 
𝜂22 

− 

1
𝜂33 

− 

1
𝜂11 

) 

𝑠 33 
2 

𝐷 22 =
( 

1 
𝜂33 

− 

1
𝜂11 

− 

1
𝜂22 

) 

𝑠 11 
2 

+ 

𝑠 22 
𝜂22 

+ 

( 

1 
𝜂11 

− 

1
𝜂22 

− 

1
𝜂33 

) 

𝑠 33 
2 

𝐷 33 =
( 

1 
𝜂22 

− 

1
𝜂33 

− 

1
𝜂11 

) 

𝑠 11 
2 

+ 

( 

1 
𝜂11 

− 

1
𝜂22 

− 

1
𝜂33 

) 

𝑠 22 
2 

+ 

𝑠 33
𝜂33 

(20)

and 𝐷 12 = 𝑠 12 ∕(2 𝜂12 ) , 𝐷 23 = 𝑠 23 ∕(2 𝜂23 ) , 𝐷 31 = 𝑠 31 ∕(2 𝜂31 ) for the shear
components, in agreement with Beaussart et al. [17] using different no- 
tations. These relations are complemented by an objective evolution law 

for the a tensor, which includes the rotation of the orthotropy axes and 
induces an updating of the six viscosities through the Advani–Tucker 
model. 

The special case of transverse isotropy about axis 1 that applies 
when all fibers are parallel is recovered when 𝜂11 = 𝜂𝐸 , 𝜂12 = 𝜂31 = 𝜂𝐿 ,

𝜂23 = 𝜂𝑇 , 𝜂22 = 𝜂33 = 4 𝜂𝐸 𝜂𝑇 ∕( 𝜂𝐸 + 𝜂𝑇 ) . In the limit isotropic case, where
𝑎 11 = 𝑎 22 = 𝑎 33 = 1∕3 , one has 𝜂11 = 𝜂22 = 𝜂33 = 3 𝜂12 = 3 𝜂23 = 3 𝜂31 . The
Abaqus [19] finite element code is employed in the simulations reported 
below, using again the equivalence between elastic solids and linear flu- 
ids, which requires the addition of three Poisson’s ratios to the material 
constants. They were defined such that a Poisson’s ratio of 0.5 minus 
10 −6 results in the isotropic case, which means that the incompressibil- 
ity condition is approached extremely closely. 

4. Viscous drag in orthotropic fluids

4.1. Preliminary validation tests 

The drag of a sphere translating in an unbounded isotropic incom- 
pressible viscous fluid has been calculated in 1851 by Stokes in a famous 
paper [20] , but an extension to the case of a finite domain has been per- 
formed by Lin et al. [21] . These authors have shown that when a sphere 
of radius R moves with velocity v at the center of a spherical fluid do- 
main of radius qR , with zero velocity at the boundary, the drag force 
can be expressed in closed form: 

𝐹 = 24 𝑞 5 + 𝑞 4 + 𝑞 3 + 𝑞 2 + 𝑞 

4 𝑞 5 − 5 𝑞 4 − 5 𝑞 3 + 5 𝑞 2 + 5 𝑞 − 4 
𝜋𝑅𝜂𝑣 (21)

which recovers the well-known relation 𝐹 = 6 𝜋𝑅𝜂𝑣 derived by Stokes 
when q →∞. This result, which has been established originally for a 

Fig. 2. (a) Mesh used in the finite element simulations to compute the viscous 
drag of a sphere moving in an orthotropic fluid. The sphere (in red), with a ve- 
locity parallel to the Y -axis (horizontal), is embedded in a 100 times larger fluid 
domain (in green), and one-fourth of the geometry is considered for symmetry 
reasons. (b) Enlarged view in the vicinity of the rigid moving sphere; to avoid 
meshing its volume, the velocities of all nodes at its surface are set equal and 
parallel to the Y -axis. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

spherical inclusion displaced in a finite spherical elastic medium [21] , 
implies that the drag force is 8% over Stokes’ value when 𝑞 = 30 , over 
about 5% when 𝑞 = 50 , and still over 2% when 𝑞 = 100 . This is an indi- 
rect consequence of the slow r / R decrease of the velocity field in Stokes’ 
solution, where r denotes the radial coordinate. Since a precise evalu- 
ation of the drag force in an unbounded orthotropic fluid is desired in 
this study, a mesh extending from the moving sphere up to 100 times its 
radius has been defined for the numerical simulations. More precisely, 
one fourth of the inner and outer spheres has been considered, which is 
bounded by symmetry planes (see Fig. 2 a). The mesh has been generated 
with the Netgen mesh generator [22] , it contains 607, 852 nodes, 493, 
384 quadratic 10-node tetrahedral elements using a hybrid formulation 
(i.e., where the displacements and the pressure are degrees of freedom), 
which results in 2, 262, 943 unknowns. As shown in Fig. 2 b, the mesh 
has been refined at the two points where a singularity is expected, i.e., 
where a streamline ends onto the moving sphere, for symmetry reasons. 

A unit displacement of the central spherical surface has been pre- 
scribed along the Y axis, which corresponds to a unit velocity in terms 
of the elasticity-viscosity equivalence, whereas the surface of the outer 
sphere was fixed, and the resulting force has been computed with 
Abaqus. When the fluid is isotropic, with a unit 𝜂 value, the computed 
force on a sphere of unit radius is 19.2827, whereas a value of 19.2831 is 
given by (21) , i.e., 1.023 times Stokes’ value. This very good agreement 
validates the mesh and the finite element approach for computing the 
drag force. Moreover, this suggests also that an error of about 2% might 
be expected when the drag of a sphere in an unbounded anisotropic 
fluid will be evaluated from simulations with a mesh of finite size ex- 
tending up to 100 times the sphere radius. Nevertheless, the results for 
the components of the normalized inverse drag tensor may be even more 
precise, since ratios between drag forces in different directions are in- 
volved and errors may cancel out. For instance, the exact value of 1/3 



Fig. 3. Component of the normalized inverse drag tensor 𝝃 parallel to the main 
symmetry axis of an incompressible transversely isotropic fluid where 𝜂𝐸 = 3 𝜂𝑇 . 
Finite element results (symbols) and analytical solution of Gómez-González and 
Álamo [23] (solid curve). 

is obtained for each component in the isotropic case, although the drag 
force is overestimated by 2% in each direction. 

Another validation of the finite element modeling is provided by 
comparing to the remarkable solution obtained by Gómez-González and 
del Álamo [23] for the viscous drag of a sphere in a transversely isotropic 
fluid. Actually, the results of Gómez-González and Álamo [23] have been 
obtained in the more general case of a nematic fluid, but the case of 
incompressible transverse isotropy is obtained for a special choice of 
the material variables: 𝛼1 = 4( 𝜂𝑇 − 𝜂𝐿 ) , 𝜂𝑎 = 𝜂𝑇 and 𝜂𝑏 = 𝜂𝑐 = 𝜂𝐿 in the
notations of Gómez-González and Álamo [23] . This corresponds to an 
incompressible transversely isotropic fluid where 𝜂𝐸 = 3 𝜂𝑇 , with 𝜂L / 𝜂T 

left as a single anisotropy parameter, the isotropic case being recovered 
when 𝜂𝐿 ∕ 𝜂𝑇 = 1 . The quite complex expressions obtained for the drag 
force when the sphere is displaced either parallel ( 𝜁∥) or perpendicular 
( 𝜁⊥) to the direction of transverse isotropy are not repeated here, but 
they can be found in [23] . They allow to compute the component of the 
normalized inverse drag tensor along the axis of transverse isotropy: 

𝜉11 =
𝜁⟂

𝜁⟂ + 2 𝜁∥
(22)

with 𝜉22 = 𝜉33 = (1 − 𝜉11 )∕2 , so that 𝜉11 + 𝜉22 + 𝜉33 = 1 . When the 𝜂L / 𝜂T

ratio is varied from 0.1 to 10, the curve shown in Fig. 3 is obtained for 
𝜉11 . The agreement between the finite element results (for a finite fluid 
domain) and the analytical solution (for an unbounded fluid domain) is 
quite good, and the discrepancy with respect to the analytical values is 
at most −1 . 3 %. 

4.2. Application to orthotropic fluids 

The evaluation of the viscous drag of a sphere in an incompress- 
ible orthotropic fluid has already been addressed in the context of the 
dumbbell kinetic theory at the scale of the polymer molecule. Among 
ealy papers, Curtiss and Bird [12] introduced this concept, and Bird and 
Wiest [24] reviewed various empirical formulae. More recently, Azaiez 
[25] proposed a linear combination of the identity tensor (which applies 
to the isotropic case) and a , and the associated polymer-fiber interaction 
parameter has been fitted to experimental results by Guo et al. [26] . The 
concern here is the viscous drag at the upper scale of a fiber, modelled 
as a dumbbell, and a quantitative evaluation is sought by using finite 
element simulations. 

In order to sample all possible a tensors for given fiber volume frac- 
tion and aspect ratio, a set of 45 points is defined in the classical triangle 
used by Cintra and Tucker [27] , for instance, where a 11 ≥ a 22 ≥ a 33 (see 

Fig. 4. Set of 45 ( a 11 , a 22 ) pairs used for the evaluation of the inverse drag 
tensor. 

Fig. 4 ). This ordering of the principal values of a and the associated def- 
inition of axes (1,2,3) is kept from now on in this paper. Points A and 
B correspond to isotropic ( 𝑎 11 = 𝑎 22 = 1∕3 ) and unidirectional ( 𝑎 11 = 1 )
distributions of fiber orientations, respectively, lines AB and AC include 
the axisymmetric orientation distributions ( 𝑎 22 = 𝑎 33 along AB, 𝑎 11 = 𝑎 22
along AC), and line BC is defined by 𝑎 33 = 0 . The 44 non-trivial (i.e., not
corresponding to the isotropic case) points considered are aligned on a 
0.05 ×0.05 grid, as shown in Fig. 4 . Consequently, 132 finite element 
simulations are required for given fiber volume fraction and aspect ratio: 
one per translation of the sphere along each of the 3 principal directions 
of the orthotropic behavior associated with each of the 44 non-trivial 
points. Once the drag force ( F 1 , F 2 , or F 3 ) has been evaluated along 
each of the principal axes of the a tensor, where the inverse drag tensor 
𝝃 also is diagonal, the normalized components of the latter are given by 

𝜉11 =
1 

1 + 

𝐹 1 
𝐹 2

+ 𝐹 1
𝐹 3

(23)

with a similar relation for 𝜉22 , and 𝜉33 = 1 − 𝜉11 − 𝜉33 . Since 5 volume
fractions ( 𝑓 = 0 . 1 , 0.15, 0.2, 0.25, and 0.3) were considered, and 5 as- 
pect ratios ( 𝑤 = 20 , 35, 50, 75, and 100) were used for each volume 
fraction, a total of 3, 300 finite element simulations were performed. 

No systematic simple trend could be found among the results, like 
𝜉11 ≤ 𝜉22 ≤ 𝜉33 for instance, or a component always increasing or de- 
creasing when f or w increases. The expression proposed by Azaiez 
[25] for the inverse drag tensor, after normalization and using slightly 
different notations, namely 

𝝃 = 

𝜎

3 
𝜹 + (1 − 𝜎) 𝐚 (24)

which recovers 𝝃 = 𝜹∕3 in the isotropic case ( 𝐚 = 𝜹∕3 ) whatever the 
value of 𝜎, or for any a tensor if 𝜎 = 1 , has been fitted to the set of re- 
sults pertaining to fixed f and w values. In each case, 132 ( a 11 , 𝜉11 ), ( a 22 , 
𝜉22 ), or ( a 33 , 𝜉33 ) pairs (one set of three for each of the 44 non-trivial 
a tensors) were considered for determining the optimal 𝜎 value. Fig. 5 a 
illustrates that the linear law (24) is quite acceptable in the favorable 
case of a low volume fraction ( 𝑓 = 0 . 10 ) of moderately elongated fibers 
( 𝑤 = 20 ), but the agreement with the numerical results is less satisfac- 
tory in the more extreme case of a high volume fraction ( 𝑓 = 0 . 30 ) of 
very elongated fibers ( 𝑤 = 50 ) shown in Fig. 5 b. Since a simple, though 
crude, law may nevertheless be useful in practice, the 𝜎 values obtained 
for the 25 combinations of f and w considered here are given in Table 1 , 
which can be used to interpolate for intermediate fiber volume fractions 
f and aspect ratios w . It may be noted that 𝜎 increases when either f or 
w increases. 



Fig. 5. Linear fit (straight line) obtained with the set of ( a 11 , 𝜉11 ) (red circles), 
( a 22 , 𝜉22 ) (blue squares), and ( a 33 , 𝜉33 ) (yellow triangles) pairs obtained for 
𝑓 = 0 . 10 and 𝑤 = 20 (a), or for 𝑓 = 0 . 30 and 𝑤 = 50 (b). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1

Values of the 𝜎 parameter obtained for various combinations of 
fiber volume fraction f and aspect ratio w . 

𝑓 = 0 . 10 𝑓 = 0 . 15 𝑓 = 0 . 20 𝑓 = 0 . 25 𝑓 = 0 . 30 

𝑤 = 20 1.182 1.218 1.242 1.260 1.274

𝑤 = 35 1.273 1.306 1.328 1.343 1.355

𝑤 = 50 1.327 1.357 1.376 1.389 1.399

𝑤 = 75 1.382 1.407 1.422 1.433 1.441

𝑤 = 100 1.415 1.437 1.450 1.459 1.466

5. Rotation of a prolate spheroid

When a rigid prolate spheroid is free to translate and rotate in an un- 
bounded isotropic viscous fluid submitted to simple shear at infinity, the 
solution detailed by Jeffery [2] gives the rate of rotation of its long axis. 
The purpose of this Section is to evaluate this rotation when the fluid is 
orthotropic, since no analytical result is available, and to compare with 
the dumbbell model proposed in Section 2 . In order to test the validity 
of this model, a few cases only are treated because the problem is de- 
fined by 9 parameters: the aspect ratio of the spheroid, its orientation 
with respect to the plane and direction of simple shear, the orientation 
of the principal axes of the second-order orientation tensor, two inde- 
pendent principal values of the latter, and the fiber volume fraction in 
the fluid surrounding the fiber considered (assuming all fibers have the 
same aspect ratios). 

Fig. 6. The cubic volume (shown translucent) meshed for the study of the rota- 
tion of a tilted prolate spheroid (shown in light color). A simple shear is applied, 
which translates the upper and lower faces of the cube in opposite directions. 

A mesh has been prepared, where a prolate rigid spheroid with a 
length of 20 and a diameter of 1 ( 𝑤 = 20 ) is embedded at the center of 
a cube of side 60. The mesh has been refined in the vicinity of the sharp 
ends of the spheroid, it has 427, 163 nodes, 311, 584 10-node quadratic 
tetrahedral hybrid elements, with a total of 1, 593, 076 unknowns. The 
sides of the cube are normal to the Cartesian axes and parallel to the 
symmetry planes of the fluid orthotropy, the long axis of the fiber is 
parallel to the (1,1,1) direction in order to avoid favoring an orthotropy 
axis ( Fig. 6 ), and simple shear is applied in the X -direction parallel to 
the XZ -plane. The origin of the coordinate system is taken at the center 
of the cube and a velocity 𝑣 𝑋 = 𝛾̇𝑌 , 𝑣 𝑌 = 𝑣 𝑍 = 0 is applied on all cube 
faces. In these conditions, the analytical solution of Jeffery [2] for an 
unbounded isotropic fluid domain gives the rotation rate of the unit 
vector parallel to the long axis p of the spheroid as 

𝐩̇ = 𝛀𝐩 + 𝑘 𝐃 𝐩 − 𝑘 ( 𝐩 𝑇 𝐃 𝐩 ) 𝐩 (25)

where 𝛀 and D are the antisymmetric and symmetric parts of the veloc- 
ity gradient ∇ v , respectively, and 𝑘 = ( 𝑤 

2 − 1)∕( 𝑤 

2 + 1) , with (6) being 
recovered when w →∞ (extremely elongated spheroids). Eq. (25) leads 
to the following expressions for the components of 𝐩̇ in the case consid- 
ered here: 

𝑝̇ 𝑋 = 

𝛾̇√
3 

(1 
2 
+ 

𝑘

6 

)
, 𝑝̇ 𝑌 = 

𝛾̇√
3 

(
− 

1
2 
+ 

𝑘

6 

)
, 𝑝̇ 𝑍 = − 

𝛾̇√
3 
𝑘

3 
(26)

which allows a validation of the finite element simulation. With the 
mesh described above, where 𝑘 = 0 . 995 because 𝑤 = 20 , the three val- 
ues of (26) have been recovered extremely precisely, with relative dif- 
ferences of less than 0.03%. 

Because of the large value of k involved in the finite element model, 
the obtained rate of rotation is close to the value for w →∞, where 𝑝̇ 𝑋 = 

−2 ̇𝑝 𝑌 = −2 ̇𝑝 𝑍 = 2 ̇𝛾∕(3 
√
3 ) . Therefore, the components of 𝐩̇ obtained in

the numerical simulations with an orthotropic fluid can be compared to 
the values given explicitly by the approximate dumbbell model (13) us- 
ing the inverse drag tensor, namely: 

𝑝̇ 𝑋 = 

𝛾̇√
3 
(1 − 𝜉𝑋𝑋 ) , 𝑝̇ 𝑌 = − 

𝛾̇√
3 
𝜉𝑌 𝑌 , 𝑝̇ 𝑍 = − 

𝛾̇√
3 
𝜉𝑍𝑍 (27)

for a slender fiber tilted to the (1,1,1) direction with respect to the Carte- 
sian axes. Note that in (27) the ( X, Y, Z ) axes are aligned with the prin- 
cipal axes of a (and, therefore, of 𝝃), but three cases arise when either 
( 𝑋, 𝑌 , 𝑍) = (1 , 2 , 3) , or ( 𝑋, 𝑌 , 𝑍) = (3 , 1 , 2) , or ( 𝑋, 𝑌 , 𝑍) = (2 , 3 , 1) , leading 
to three different rotations of the fiber. 

For instance, when the fluid surrounding the fiber contains a vol- 
ume fraction 𝑓 = 0 . 3 of fibers with an aspect ratio 𝑤 = 20 , two cases 
are considered, which correspond to points B and C in Fig. 4 , i.e., 
where either 𝑎 11 = 1 (aligned fibers) or 𝑎 11 = 𝑎 22 = 1∕2 . The following



Table 2

Components of 𝐩̇ given by the dumbbell model and by the finite element simulations for 
a spheroid with its long axis ( 𝑤 = 20 ) parallel to the (1,1,1) direction and immersed in an 
orthotropic fluid (where 𝑓 = 0 . 3 and 𝑤 = 20 , 𝑎 11 = 1 in case B, 𝑎 11 = 𝑎 22 = 1∕2 in case C) 
submitted to a simple shear. Three orientations of the fluid orthotropy with respect to the 
Cartesian axes are considered in each case. 

Case B Case C

( X, Y, Z ) Model 𝑝̇ 𝑋 ∕ ̇𝛾 𝑝̇ 𝑌 ∕ ̇𝛾 𝑝̇ 𝑍 ∕ ̇𝛾 𝑝̇ 𝑋 ∕ ̇𝛾 𝑝̇ 𝑌 ∕ ̇𝛾 𝑝̇ 𝑍 ∕ ̇𝛾

(1,2,3) Spheroid 0.4888 −0 . 2448 −0 . 2440 0.4180 −0 . 1593 −0 . 2587 
Dumbbell 0.4790 −0 . 2395 −0 . 2395 0.4203 −0 . 1570 −0 . 2633 
Difference −0 . 0098 0.0053 0.0045 0.0023 0.0023 −0 . 0046 

(3,1,2) Spheroid 0.3326 −0 . 0886 −0 . 2440 0.3188 −0 . 1612 −0 . 1576 
Dumbbell 0.3379 −0 . 0984 −0 . 2395 0.3141 −0 . 1570 −0 . 1570 
Difference 0.0053 −0 . 0098 0.0045 −0 . 0047 0.0042 0.0006

(2,3,1) Spheroid 0.3318 −0 . 2455 −0 . 0863 0.4161 −0 . 2586 −0 . 1576 
Dumbbell 0.3379 −0 . 2395 −0 . 0984 0.4203 −0 . 2633 −0 . 1570 
Difference 0.0061 0.0060 −0 . 0121 0.0042 −0 . 0047 0.0006

values have been obtained with the finite element simulations reported 
in Section 4.2 for the components of the normalized inverse drag ten- 
sor: 𝜉11 = 0 . 1704 and 𝜉22 = 𝜉33 = 0 . 4148 in case B, 𝜉11 = 𝜉22 = 0 . 2720 and
𝜉33 = 0 . 4560 in case C. They lead to the values reported in Table 2
when the dumbbell model is applied. These results are compared in 
Table 2 with the rotations of the prolate spheroid given by the finite 
element simulations; they suggest that the dumbbell model evaluates 
the components of 𝐩̇ to within ± 0.01. This validates the assumption 
that the solution to the Jeffery problem in the anisotropic case can be 
approximated reasonably well by a dumbbell model. 

The rotation rate predicted by Jeffery’s equation for a slender fiber 
is recovered when 𝜉𝑋𝑋 = 1∕3 in (27) , and therefore a rotation towards 
the alignment of all other fibers (component 𝑝̇ 𝑋𝑋 ) is obtained faster 
or slower than predicted by Jeffery’s equation when 𝜉XX is smaller or 
larger than 1/3, respectively. The values of 𝑝̇ 𝑋𝑋 predicted by (27) when 
using values of 𝜉XX < 1/3 as obtained in Section 4.2 are confirmed by 
the finite element simulations shown above ( Table 2 ), but they do not 
agree with the predictions of Koch and Shaqfeh [28] . The latter authors 
obtained 𝑝̇ 𝑋𝑋 values lower than given by Jeffery’s equation by using 
a direct evaluation and summation of hydrodynamic effects to evaluate 
the rotation of a slender fiber when all other fibers immersed in the fluid 
are aligned in a given direction. Since our finite element simulations 
of a rotating fiber do not use the drag factor but merely rely on the 
preliminary evaluation of the effective behavior of the fluid surrounding 
the rotating fiber, we note that an agreement with Koch and Shaqfeh 
[28] might be obtained, at least qualitatively, with a different evaluation 
of the effective behavior that would lead to a slower rotation in the finite 
element simulations and to 𝜉XX > 1/3 in Section 4.2 . At the present stage, 
we may just observe that these two approaches, which are based on 
different evaluations of the effects of surrounding fibers in semi-dilute 
suspensions, lead to opposite trends. It may also be recalled incidentally 
that [28] is limited to aligned fibers, whereas our approach is more 
general. 

6. Simulating the orientation kinematics of a population of rods

In this Section, the orientation kinematics of a population of initially 
randomly oriented rods is computed when the surrounding Newtonian 
fluid is submitted to a simple shear ( 𝑣 𝑋 = 𝛾̇𝑌 , 𝑣 𝑌 = 𝑣 𝑍 = 0 , like in the 
previous Section). Two cases are considered, where the coupling of the 
rod orientation kinematics with the orientations of the surrounding rods 
is either ignored or taken into account. In the former no-coupling case, 
each rod evolves independently from the others, and its orientation his- 
tory is obtained readily by integrating the standard Jeffery’s Eq. (6) . In 
the coupled case, the generalized Jeffery’s Eq. (13) is used for evolving 
each orientation and, by contrast, the whole population of orientations 
must be updated at every time step. 

At any time t in the integration procedure, the N rods involved in 
the numerical simulation of the suspension are described by their orien- 
tations 𝐩 𝑡 

𝑖 
(with 𝑖 = 1 , ⋯ , 𝑁), from which the second-order orientation 

tensor is computed as a discrete counterpart of (14) : 

𝐚 𝑡 = 

1
𝑁 

𝑁 ∑
𝑖 =1 

𝐩 𝑡 
𝑖
⊗ 𝐩 𝑡 

𝑖
. (28)

This tensor can then be used to compute the inverse drag tensor 𝝃𝑡 at 
time t through (24) , and finally (13) is applied to each rod in the popu- 
lation to obtain its rate of rotation 𝐩̇ 𝑡 

𝑖 
in order to update the orientations 

with a mere explicit Euler scheme: 𝐩 𝑡 +Δ𝑡 
𝑖 

= 𝐩 𝑡 
𝑖 
+ Δ𝑡 𝐩̇ 𝑡 

𝑖 
for 𝑖 = 1 , ⋯ , 𝑁 . The 

next time step can then be handled. This procedure is noticeably sim- 
plified by the use of the appropriate, preliminarily fitted, and constant 
𝜎 value in (24) , which can be read from Table 1 when the aspect ratio 
w of the fibers and their volume fraction f have been defined. Since the 
rods considered in this discrete approach do not have a finite diame- 
ter (hence an infinite aspect ratio and a zero volume), the fiber volume 
fraction and aspect ratio are present through the value of 𝜎 only. This 
explains why the simulations described below use the same set of N rods 
when different f and w values are considered. Neither f nor w affects the 
predictions of the uncoupled model, of course, since they are not present 
in (6) . 

A population of 𝑁 = 5 , 000 rods is considered, with orientations 
which are initially distributed randomly and uniformly on the unit 
sphere, so that an almost isotropic orientation distribution is depicted. 
Since the rods are expected to orient along the shear direction ( X -axis) 
because both (6) and (13) predict 𝐩̇ = 𝟎 if all fibers are aligned along 
this direction, the associated a XX component of the orientation tensor 
should approach the value of 1 at long times. This quantity is plotted 
in Fig. 7 (where 𝛾̇ = 1 s −1 has been used) as predicted by the standard 
Jeffery model and by the coupled model that takes into account the 
anisotropic effective medium. The predictions of the latter model de- 
pend on the fiber volume fraction and aspect ratio, and three cases are 
considered: 𝑓 = 0 . 10 and 𝑤 = 20 , where 𝜎 = 1 . 182 applies according to 
Table 1 , 𝑓 = 0 . 20 and 𝑤 = 20 ( 𝜎 = 1 . 242 ) to demonstrate the effect of 
the volume fraction, 𝑓 = 0 . 20 and 𝑤 = 50 ( 𝜎 = 1 . 376 ), to illustrate the 
influence of the aspect ratio. Of course, the orientation distribution is 
the same ( 𝑎 𝑋𝑋 = 1∕3 ) in all cases initially and tends to be the same 
( 𝑎 𝑋𝑋 = 1 ) at large times, but Fig. 7 shows that significant differences 
can be observed at intermediate times, although all curves are still very 
close to each other at small times. At any time, the orientation is more 
pronounced (less isotropic) with the coupled model than with the stan- 
dard Jeffery prediction. Fig. 7 also shows that an increase in the fiber 
volume fraction tends to increase a XX , but this effect is moderate (the 
curve for 𝑓 = 0 . 30 and 𝑤 = 20 , not shown for clarity, would be very 
close to the 𝑓 = 0 . 20 and 𝑤 = 20 curve), whereas an increase of the fiber 
aspect ratio increases a XX more strongly. Thus, for shear flows of fiber- 



Fig. 7. Time evolution of the a XX component of the orientation tensor when sim- 
ple shear is applied along the X -axis (with 𝛾̇ = 1 s −1 ) and the effective anisotropic 
fluid is either accounted for (solid lines) or ignored (standard Jeffery prediction, 
dashed line). Three combinations of fiber volume fractions f and aspect ratios w 

are considered, as indicated. 

filled polymers, noticeable differences can be obtained in the final ori- 
entation state if the flow implies a significant anisotropy and if the total 
applied shear is not enough for reaching the fully aligned terminal state. 

7. Concluding remarks

A model has been proposed, where the evolution of the orientation 
of each fiber is coupled to the orientations of the surrounding fibers in 
the flow of a fiber-filled fluid and includes the effects of the fiber volume 
fraction and aspect ratio. This has been performed by accounting for the 
effective behavior of the fiber-filled fluid, which is anisotropic although 
the fibers are embedded in an isotropic Newtonian fluid. The rotation 
of a fiber in these conditions could be predicted by using a dumbbell 
model, which allowed an extension of Jeffery’s equation to anisotropic 
cases. This involved the numerical evaluation of the drag force applied 
on a sphere in an orthotropic incompressible fluid, and a simple fit has 
been proposed for its practical use in the coupled model. The assumed 
equivalence between the rotations of a fiber and of a dumbbell in a 
anisotropic fluid has been validated directly by finite element simula- 
tions. This work calls for the following remarks: 

(i) The proposed model relies on some important assumptions. First, 
an effect of the fibers surrounding a given fiber is accounted for, 
but merely through the anisotropy they induce, not by the direct 
interactions they may have with the fiber considered. In other 
words, fiber-to-fiber contacts are neglected here, and this may 
be acceptable in two cases: when the fiber volume fraction is 
not too large, and when the fibers are sufficiently aligned (a de- 
crease of the number of contacts has been observed by Mezher 
et al. [29] , for instance). The first condition is closely related to 
the limit where the Mori-Tanaka model used here is reliable, so 
that large fiber volume fractions should be considered cautiously, 
and other homogenization models may be preferred in such cases. 
The second circumstance is increasingly likely to occur when the 
orientation distribution moves away from the isotropic case. For- 
tunately, this is rapidly obtained in simple shear with the coupled 
model. 

(ii) The use of the fitted coefficient 𝜎, as proposed in Section 4.2 , is 
convenient in practice, because it leads to a simple and fast ap- 
plication of the coupled model, but it may give a crude approx- 
imation of the drag tensor in some circumstances, as illustrated 
in Fig. 5 b. A direct use of the whole set of computed values of 
the drag tensor (obtained with some uncertainty through a nu- 
merical simulation, though) might be more satisfactory, but this 

would lead to a more complex scheme. In particular, the drag 
tensor would have to be updated at each time step, because the 
orientation tensor evolves, whereas 𝜎 is constant. This might be 
performed with a suitable interpolation procedure using the re- 
sults of the finite element simulations. 

(iii) For practical reasons, the numerical simulation of the injection of 
fiber-filled polymers relies on the second-order orientation tensor 
to condense the orientation distribution function. As mentioned 
in Section 3 , this has the consequence that the effective behavior 
of the fiber-filled fluid is orthotropic, which simplifies the evalua- 
tion of the drag tensor (reduced to 3 finite element simulations). 
In general, complex, flows of fiber-filled fluids, the orientation 
distribution function may not have three orthogonal symmetry 
planes, and the effective behavior would not be orthotropic, but 
of a more general anisotropy type instead. In these conditions, the 
numerical evaluation and tabulation of the drag tensor would be 
a formidable task. 

(iv) The fiber aspect ratio appears at two places in the present coupled 
model. First, it has a strong effect on the effective anisotropic 
behavior of the fiber-filled fluid, as shown in Section 3 , especially 
through the elongational viscosity of the reference unidirectional 
case. The effects induced on the drag tensor have been taken into 
account in this study, and they are reflected by the variations of 𝜎
in each column of Table 1 . The aspect ratio comes also into play 
through coefficient k in the general Jeffery equation (25) , but it 
is missing in (13) , where an infinite aspect ratio is assumed. This 
is justified by the negligible effect of w in (25) when reasonably 
large values are used, as shown in Section 5 , and by the next point 
below. 

(v) A tri-dumbbell model has been proposed in [3] , which reproduces 
Jeffery’s equation for a general ellipsoid in an isotropic fluid, and 
we explored its extension to the present context of an anisotropic 
fluid like we did for the simple dumbbell in Section 2 , in order to 
account for a finite aspect ratio. This involved extremely complex 
analytical expressions (not reported here) with, finally, numerical 
values for reasonably large aspect ratios very close to the predic- 
tions of the considerably simpler mono-dumbbell model used in 
the present paper. 

(vi) There is no two-dimensional analog to the effect of anisotropy 
described in this paper. In such a simplified case, one would con- 
sider a distribution of orientations along the unit circle rather 
than on the unit sphere. This might appear as an ideal simple test 
case, but taking into account the anisotropy of the fiber-filled 
fluid would have no effect at all, unfortunately. The fundamen- 
tal reason is that the viscosities along the two principal axes of 
the orientation tensor would be equal, although the two prin- 
cipal values of this tensor can have different values (with their 
sum being equal to 1). This property of an incompressible two- 
dimensional fluid has been shown by Fletcher [30] and, as a re- 
sult, the drag tensor (and its inverse) has its two principal values 
equal. In other words, the drag is isotropic in two dimensions. 
Actually, the equivalent to the Jeffery solution is available for 
a two-dimensional anisotropic problem: the rotation of a rigid 
ellipse is merely independent of the surrounding anisotropy, as 
shown in [30] . 
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