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We model the three-dimensional interaction of compressible materials separated by sharp
interfaces. We simulate fluid and hyperelastic solid flows in a fully Eulerian framework. The
scheme is the same for all materials and can handle large deformations and frictionless
contacts. Necessary conditions for hyperbolicity of the hyperelastic neohookean model
in three dimensions are proved thanks to an explicit computation of the characteristic
speeds. We present stiff multimaterial interactions including air–helium and water–air
shock interactions, projectile-shield impacts in air and rebounds.

1. Introduction

The study of three-dimensional multimaterial phenomena requires efficient numerical modeling and simulation. These
problems are insoluble by traditional theoretical and experimental approaches and hazardous to study in the laboratory. 
Nevertheless, their accurate and efficient simulation is crucial to reduce environmental impact in many industrial domains. 
Numerical model research in this field is particularly active because of the formidable difficulty in applying classical ap-
proaches based on ad hoc models and schemes to multi-physics contexts.

In what follows we focus on phenomena that involve gases, liquids and elastic materials undergoing rapid evolution and 
large deformations in three space dimensions. For this reason, we privilege a fully Eulerian approach and a monolithic model 
that describes each material by the same set of conservation equations and an appropriate thermodynamically consistent 
constitutive law different for each material [15]. For specific applications, typically in presence of mostly radial phenomena, 
Lagrangian or Lagrangian–Eulerian approaches may be more pertinent, see [20,13,6,21].

Fully Eulerian hyperbolic conservative models for continuum mechanics were introduced in [15,26,27] and their nu-
merical analysis started in [12,24]. In [12] the authors propose a scheme, the ghost-fluid method, that allows an implicit 
capturing of the material interfaces. Moreover, they devise a locally non-conservative Godunov solver at the interface that 
is stable and non-oscillatory. This scheme relies on the definition of a ghost medium that requires the storage of additional 
variables at the material interfaces, where the solution of two Riemann problems, each relative to a different material, is 
necessary. A different method was proposed in [24] where a conservative cut-cell technique was developed for hyperelastic 
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and plastic multimaterial simulations. A specific feature of this numerical model is that the deviations of the deformation 
gradient with respect to the irrotational compatibility condition and to continuity equation are explicitly penalized in the 
governing equations. This scheme is at the base of many other subsequent works in the literature.

Another approach is introduced in [11] for hyperelastic solid and fluid interactions. The authors design a conservative 
non-equilibrium mixture model that relaxes to the desired multimaterial conservation laws. In this approach one compro-
mises on the sharpness of the material interface to avoid oscillations and to apply an HLLC solver previously developed for a 
single material in [14]. Further developments of this method include plasticity modeling [10] and an hyperbolic sub-system 
splitting procedure [9] where each sub-system has only three waves instead of seven.

The analysis and the simulation of three-dimensional hyperelastic models present specific difficulties due to the seven-
wave pattern and to the inherent hyperbolicity constraint. In [4] an approximation of the Riemann problem based on 
characteristic tracing is employed to simulate the one-dimensional projection of the seven-wave pattern typical of a three-
dimensional hyperelastic constitutive law. This approach has further been developed in [3] to deal with actual multimaterial 
interfaces thanks to a variant of the ghost-fluid method, with applications to one-dimensional as well as two-dimensional 
deformations of multiple hyperelastic sliding materials. A fully conservative cut-cell three-dimensional Eulerian method 
is then presented in [5] for simulating multiple compressible solid and fluid components where internal boundaries are 
tracked using level set functions. A different discretization scheme is adopted in [17], where the simulation of elastic and 
plastic two-dimensional flows is based on a hybrid centered-difference WENO method and a ghost-fluid approach at the 
interface. The authors employ a fourth-order centered-difference stencil away from discontinuities that requires no explicit 
calculation of the local hyperbolic characteristic information. As a result, the scheme is constructed in a general way to 
allow for possibly different constitutive relations. In the same spirit, a conventional third-order WENO scheme and a ghost-
fluid method are applied in [2] to actual three-dimensional simulations of hyperelastic and plastic impacts and penetration 
with adaptive mesh refinement. It is known that approximate Riemann solvers for such problems may lead to inaccurate 
intermediate states as noted in [23,4]. However, these local inaccuracies do not seem to significantly pollute the solution 
when compared to exact test cases [14,11,16].

Hence, the typical features of integration schemes for Eulerian formulations of the hyperelastic conservation laws are: 
i) tracking of internal boundaries by a level set function; ii) approximate Riemann solver to compute numerical fluxes;
iii) ghost-material approach to compute numerical fluxes at the material interface. In this respect, the present study details
a twofold contribution to the simulation of complex three-dimensional hyperelastic phenomena. Firstly, we show under 
usual assumptions that the hyperelastic neohookean model employed satisfies the necessary conditions for hyperbolicity 
by explicitly computing the analytic wave speeds of small perturbations. Secondly, we simplify the computations of the 
numerical fluxes at the material interface such that no ghost material is defined and no mixture model is needed to obtain 
a non-oscillatory scheme, extending to three space dimensions the method presented in [16]. Thanks to this method, we 
are able to explicitly determine the internal boundary conditions modeling shock–bubble interactions, three-dimensional 
impacts and rebounds of hyperelastic materials immersed in a fluid.

2. The model

This model was already discussed in [15,26,27,24,7,11]. We follow here the formulation presented in [16] where a neo-
hookean model was investigated and extend it to three dimensions.

2.1. Forward and backward characteristics

Let �0 ⊂ R
3 be the reference (or initial) configuration of a continuous medium and �t ⊂ R

3 the deformed configuration 
at time t . In order to describe the evolution of this medium in the Lagrangian frame we define the forward characteristics 
X(ξ, t) as the image at time t in the deformed configuration of a material point ξ belonging to the initial configuration, 
i.e., X : �0 × [0, T ] −→ �t , (ξ, t) �→ X(ξ, t) (see Fig. 1). The corresponding Eulerian velocity field u is defined as u : �t ×
[0, T ] −→R

3, (x, t) �→ u(x, t) where{
Xt(ξ, t) = u(X(ξ, t), t)

X(ξ,0) = ξ
(1)

To describe the continuous medium in the Eulerian frame, we introduce the backward characteristics Y (x, t) (see [7]) that 
for a time t and a point x in the deformed configuration, gives the corresponding initial point ξ in the initial configuration, 
i.e., Y : �t × [0, T ] −→ �0, (x, t) �→ Y (x, t) (see Fig. 1). Since Y (X(ξ, t), t) = ξ , differentiating with respect to time and space
in turn we have:{

Yt + u · ∇xY = 0

Y (x,0) = x
(2)

and

[∇ξ X(ξ, t)] = [∇xY (x, t)]−1. (3)



Fig. 1. Forward and backward characteristics.

The relation (2) is the Eulerian equivalent of the characteristic equation (1). In addition, equation (3) allows to compute 
the gradient of the deformation in the Eulerian frame via Y .

2.2. Eulerian model

The local form of the governing equations of mass, momentum and energy conservation in the deformed configuration �t
can be written as⎧⎪⎨

⎪⎩
ρt + divx(ρu) = 0

(ρu)t + divx(ρu ⊗ u − σ) = 0

(ρe)t + divx(ρeu − σ T u) = 0

(4)

The physical variables are the density ρ(x, t), the velocity u(x, t), the total energy per unit mass e(x, t) and the Cauchy 
stress tensor in the physical domain σ(x, t). To close these systems a constitutive law is needed to detail the relationship 
between the stress tensors and the other physical variables.

2.3. Hyperelastic models

The classical results of this section can be found in the textbook [18]. Let us define ε = e − 1
2 |u|2 the internal energy per 

unit mass. In the hyperelastic context, ε is a function of the deformation tensor ∇ξ X and the entropy s.
The energy has to be Galilean invariant and we focus in this paper on the isotropic case. It can be proved that the mate-

rial is Galilean invariant and isotropic if, and only if, ε is expressed as a function of the invariants of the right Cauchy–Green 
tensor C(ξ, t) = [∇ξ X]T [∇ξ X] or equivalently of the invariants of the left Cauchy–Green tensor B(ξ, t) = [∇ξ X][∇ξ X]T . The 
three dimensional invariants often considered in the literature are Tr(·), Tr(Cof(·)) = (Tr(·)2 − Tr(·2))/2 and Det(·).

We assume that ε is the sum of εvol, a term depending on volume variation and entropy, and εiso a term accounting for 
isochoric deformation. Hence the internal energy is given by

ε = εvol(ρ, s) + εiso(Tr(B),Tr(B
−1

)) (5)

where in three dimensions we have

B(x, t) = [∇xY ]−1[∇xY ]−T / J
2
3 (x, t) J (x, t) = det([∇xY ])−1 (6)

Tensor B accounts for isochoric deformations since det(B) = 1. In general the term relative to an isochoric transformation 
may also depend on entropy. Here, we will limit the discussion to materials where the isochoric term is independent of the 
entropy, as in the case of idealized crystals (metals, ceramic).

The Cauchy stress tensor σ(x, t) is then given by (see [18] for the details)

σ(x, t) = −ρ2 ∂εvol

∂ρ

∣∣∣
s
(ρ, s)I + 2 J−1

(
σ iso − Tr(σ iso)

3
I

)
(7)

where

σ iso = ∂εiso

∂α
B − ∂εiso

∂β
B

−1
(8)

and α, β denote the first and second arguments of εiso, respectively.
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2.4. Overall model

Together with equations of mass, momentum and energy conservation (4), the additional equation (2) is required in 
order to record the deformation in the Eulerian frame. However, since σ will directly depend on ∇xY (5)–(7) we take the 
gradient of (2) as a governing equation and obtain the system in conservative form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + divx(ρu) = 0

(ρu)t + divx(ρu ⊗ u − σ) = 0

(∇xY )t + ∇x(u · ∇xY ) = 0

(ρe)t + divx(ρeu − σ T u) = 0

(9)

where some fluxes of ∇xY are zero (see equation (13)). The initial density ρ(x, 0), the initial velocity u(x, 0), the initial 
total energy e(x, 0) and ∇xY (x, 0) = I are given together with appropriate boundary conditions. This system is known in the 
literature as the inverse deformation gradient formulation.

We choose a general constitutive law that models gas, fluids and elastic solids. The internal energy per unit mass ε =
e − 1

2 |u|2 is defined as

ε(ρ, s,∇xY ) =

neohookean elastic solid︷ ︸︸ ︷
κ(s)

γ − 1

(
1

ρ
− b

)1−γ

− aρ︸ ︷︷ ︸
van der Waals gas

+ p∞
ρ

︸ ︷︷ ︸
stiffened gas

+ χ

ρ0
(Tr(B) − 3) (10)

where B is defined in (6). We obtain according to (7)

σ(ρ, s,∇xY ) = −p(ρ, s)I + 2χ J−1

(
B − Tr(B)

3
I

)
(11)

where

p(ρ, s) = −p∞ − aρ2 + κ(s)

(
1

ρ
− b

)−γ

(12)

Here κ(s) = exp

(
s

cv

)
and cv , γ , p∞ , a, b, χ are positive constants that characterize a given material. Parameters a and 

b correspond to the van der Waals parameters, p∞ accounts for fluid or solid materials where intermolecular forces are 
present (see for example [14,11]). The last term in the energy expression models a neohookean elastic solid where the 
constant χ is the shear elastic modulus. For very large deformations, more complete models (Mooney-Rivlin, Ogden) take 
into account an additional invariant in the energy function in three dimensions. Without loosing in generality, here we stick 
to a neohookean model as it leads to simpler expressions in the following developments.

3. Numerical scheme

Let x = (x1, x2, x3) be the coordinates in the canonical basis of R3, u = (u1, u2, u3) the velocity components, Y i
, j the 

components of the tensor [∇xY ] and σ i j the components of the stress tensor σ . Equations (9) become

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1
ρu2
ρu3

Y 1
,1

Y 2
,1

Y 3
,1

Y 1
,2

Y 2
,2

Y 3
,2

Y 1
,3

Y 2
,3

Y 3
,3

ρe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu1
(ρu1)2

ρ − σ 11

ρu1ρu2
ρ − σ 21

ρu1ρu3
ρ − σ 31

ρu1 Y 1
,1+ρu2 Y 1

,2+ρu3 Y 1
,3

ρ
ρu1 Y 2

,1+ρu2 Y 2
,2+ρu3 Y 2

,3
ρ

ρu1 Y 3
,1+ρu2 Y 3

,2+ρu3 Y 3
,3

ρ

0
0
0
0
0
0

ρu1ρe−(σ 11ρu1+σ 21ρu2+σ 31ρu3)
ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,1

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu2
ρu1ρu2

ρ − σ 12

(ρu2)2

ρ − σ 22

ρu2ρu3
ρ − σ 32

0
0
0

ρu1 Y 1
,1+ρu2 Y 1

,2+ρu3 Y 1
,3

ρ
ρu1 Y 2

,1+ρu2 Y 2
,2+ρu3 Y 2

,3
ρ

ρu1 Y 3
,1+ρu2 Y 3

,2+ρu3 Y 3
,3

ρ

0
0
0

ρu2ρe−(σ 12ρu1+σ 22ρu2+σ 32ρu3)
ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,2

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu3
ρu1ρu3

ρ − σ 13

ρu2ρu3
ρ − σ 23

(ρu3)2

ρ − σ 33

0
0
0
0
0
0

ρu1 Y 1
,1+ρu2 Y 1

,2+ρu3 Y 1
,3

ρ
ρu1 Y 2

,1+ρu2 Y 2
,2+ρu3 Y 2

,3
ρ

ρu1 Y 3
,1+ρu2 Y 3

,2+ρu3 Y 3
,3

ρ
ρu3ρe−(σ 13ρu1+σ 23ρu2+σ 33ρu3)

ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)



Fig. 2. Discretization on the control volume �i, j,k . Two-dimensional sections of the computational cell are projected on planes (xy), (yz) and (zx).

This system can be written in the compact form


t + (G1(
)),1 + (G2(
)),2 + (G3(
)),3 = 0 (14)

We discretize (14) with a finite volume method on a Cartesian mesh. Let �xi be the grid spacing in the xi direction and 
�i, j,k the control volume centered at the node (i�x1, j�x2, k�x3). The semi-discretization in space of (14) on �i, j,k gives

(
i, j,k)t + G1
i+1/2, j,k − G1

i−1/2, j,k

�x1
+ G2

i, j+1/2,k − G2
i, j−1/2,k

�x2
+ G3

i, j,k+1/2 − G3
i, j,k−1/2

�x3
= 0 (15)

where 
i, j,k is the value of the conservative variable integrated on �i, j,k . In Fig. 2 are shown sections in two dimensions of 
the three-dimensional computational cell projected on their respective parallel planes.

The fluxes in (15) will be computed by approximate one-dimensional Riemann solvers in the direction orthogonal to the 
cell sides of the Cartesian mesh. Therefore, we have

G1
i−1/2, j,k ≈ F(
i−1, j,k;
i, j,k) G1

i+1/2, j,k ≈ F(
i, j,k;
i+1, j,k) (16)

G2
i, j−1/2,k ≈ F(
i, j−1,k;
i, j,k) G2

i, j+1/2,k ≈ F(
i, j,k;
i, j+1,k) (17)

G3
i, j,k−1/2 ≈ F(
i, j,k−1;
i, j,k)1 G3

i, j,k+1/2 ≈ F(
i, j,k;
i, j,k+1) (18)

where F(· ; ·) is a numerical flux function that will be specified in the following.



The fluxes in (13) are the same in the three spatial directions. Let us consider the one-dimensional problem in the x1
direction


t + (G1(
)),1 = 0 (19)

where we have (Y i
,2)t = (Y i

,3)t = 0. These equations introduce six characteristics in (19) whose speeds are 0. This means 
also that Y i

,2 and Y i
,3 are just constant parameters in the other equations of the system. Therefore, in the next sections we 

focus on the wave structure of the following one-dimensional problem

�t + (F (�)),1 = 0 (20)

where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1
ρu2
ρu3

Y 1
,1

Y 2
,1

Y 3
,1

ρe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F (�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu1
(ρu1)2

ρ − σ 11

ρu1ρu2
ρ − σ 21

ρu1ρu3
ρ − σ 31

ρu1Y 1
,1+ρu2Y 1

,2+ρu3Y 1
,3

ρ
ρu1Y 2

,1+ρu2Y 2
,2+ρu3Y 2

,3
ρ

ρu1Y 3
,1+ρu2Y 3

,2+ρu3Y 3
,3

ρ
ρu1ρe−(σ 11ρu1+σ 21ρu2+σ 31ρu3)

ρ .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4. Characteristic speeds

In this section we extend in three dimensions the criterion given in [16] to analytically compute the wave speeds. Also,
we prove that when we consider a neohookean constitutive law, the wave speeds are real for any deformation under usual 
assumptions.

4.1. General case

The governing equations (20) are closed with the constitutive law (5)–(7) which defines σ as a non-linear function of the 
unknowns. In this adiabatic and inviscid model, it can be shown that entropy is just transported along the characteristics 
for smooth solutions. Since the wave velocities are locally defined by infinitesimal smooth variations of the conservative 
variables � , the energy equation can be simply replaced by st + u · ∇s = 0. Thus, instead of (20), we study the following 
quasi-linear system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1
ρu2
ρu3

Y 1
,1

Y 2
,1

Y 3
,1
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

− (ρu1)2

ρ2
2ρu1

ρ 0 0 −σ 11
,1 −σ 11

,2 −σ 11
,3 −σ 11

,s

−ρu1ρu2
ρ2

ρu2
ρ

ρu1
ρ 0 −σ 21

,1 −σ 21
,2 −σ 21

,3 −σ 21
,s

−ρu1ρu3
ρ2

ρu3
ρ 0 ρu1

ρ −σ 31
,1 −σ 31

,2 −σ 31
,3 −σ 31

,s

−ρu1Y 1
,1+ρu2Y 1

,2+ρu3Y 1
,3

ρ2

Y 1
,1
ρ

Y 1
,2
ρ

Y 1
,3
ρ

ρu1
ρ 0 0 0

−ρu1Y 2
,1+ρu2Y 2

,2+ρu3Y 2
,3

ρ2

Y 2
,1
ρ

Y 2
,1
ρ

Y 2
,3
ρ 0 ρu1

ρ 0 0

−ρu1Y 3
,1+ρu2Y 3

,2+ρu3Y 3
,3

ρ2

Y 3
,1
ρ

Y 3
,1
ρ

Y 3
,3
ρ 0 0 ρu1

ρ 0

0 0 0 0 0 0 0 ρu1
ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1
ρu2
ρu3

Y 1
,1

Y 2
,1

Y 3
,1
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where σ i j
,1, σ i j

,2, σ i j
,3, and σ i j

,s denote the derivative of σ i j with respect to Y 1
,1, Y 2

,1, Y 3
,1 and s respectively. We denote by Jac

the matrix appearing in (21).
We introduce the notation

� = [∇σ ][∇Y ] :=
⎛
⎜⎝σ 11

,1 σ 11
,2 σ 11

,3

σ 21
,1 σ 21

,2 σ 21
,3

σ 31
,1 σ 31

,2 σ 31
,3

⎞
⎟⎠

⎛
⎜⎝Y 1

,1 Y 1
,2 Y 1

,3

Y 2
,1 Y 2

,2 Y 2
,3

Y 3
,1 Y 3

,2 Y 3
,3

⎞
⎟⎠ (22)

The characteristic polynomial of Jac can be written under the form

P (λ) = (λ − u1)
2

ρ3
((ρ(u1 − λ)2)3 + Tr(�)(ρ(u1 − λ)2)2 + Tr(Cof((�))(ρ(u1 − λ)2) + Det(�))



so that the eigenvalues of Jac are

�E =
{

u1, u1, u1 ±
√

α1

ρ
, u1 ±

√
α2

ρ
, u1 ±

√
α3

ρ

}
(23)

where α1, α2 and α3 are the roots of the polynomial of third order

X3 + Tr(�)X2 + Tr(Cof((�))X + Det(�) = 0 (24)

Therefore, the necessary conditions for system (20) to be hyperbolic are α1 > 0, α2 > 0 and α3 > 0. In [25] it is shown that 
these conditions are also sufficient to ensure that a complete system of eigenvectors of the Jacobian matrix exists.

Roots of third order polynomial

With the change of variables X = Z − Tr(�)/3, equation (24) reduces to

Z 3 +P Z +Q = 0 (25)

where

P = Tr(Cof((�)) − Tr(�)2

3
Q = 2Tr(�)3

27
− Tr(�)Tr(Cof((�))

3
+ Det(�) (26)

The three solutions are reals if �3D = 4P3 + 27Q2 ≤ 0 (which implies P ≤ 0) and are given by

αk = 2

√−P
3

cos

(
1

3
arccos

(
−sign(Q)

√
1 − �3D

4P3

)
+ 2kπ

3

)
− Tr(�)

3
k = 1,2,3 (27)

Moreover, the αi are positive if Tr(�) < 0, Tr(Cof((�)) > 0 and Det(�) < 0. In the particular case where �3D = 0 we obtain 
a solution of multiplicity two

α1 = 3Q
P

− Tr(�)

3
α2 = α3 = −3Q

2P
− Tr(�)

3
(28)

4.2. Hyperbolicity of the neohookean model

The internal energy ε with the neohookean model reads

ε = εiso(ρ, s) + χ

ρ0
(Tr(B) − 3) (29)

Let A be

Aij = (−1)i+ j(K1i K1 j + K2i K2 j + K3i K3 j) (30)

where

K11 = Y 2
,2Y 3

,3 − Y 3
,2Y 2

,3 K21 = Y 1
,2Y 3

,3 − Y 3
,2Y 1

,3 K31 = Y 1
,2Y 2

,3 − Y 2
,2Y 1

,3

K12 = Y 2
,1Y 3

,3 − Y 3
,1Y 2

,3 K22 = Y 1
,1Y 3

,3 − Y 3
,1Y 1

,3 K32 = Y 1
,1Y 2

,3 − Y 2
,1Y 1

,3

K13 = Y 2
,1Y 3

,2 − Y 3
,1Y 2

,2 K23 = Y 1
,1Y 3

,2 − Y 3
,1Y 1

,2 K33 = Y 1
,1Y 2

,2 − Y 2
,1Y 1

,2

We can show that J−1 B = A J
1
3 . Therefore the expression of the stress tensor σ (11) becomes

σ = −p(ρ, s)I + 2χ J
1
3

(
A − Tr(A)

3
I

)
(31)

Using the square of the sound speed c2(ρ, s) = ∂ p
∂ρ

∣∣∣
s
, (22) changes into

� = 2

9
χ J 1/3

⎛
⎝ D1 D2 Jβ2 + 6A12 D2 Jβ3 + 6A13

6A12 −3β2 J A12 − 9A11 −3β3 J A12
6A13 −3β2 J A13 −3β3 J A13 − 9A11

⎞
⎠ − ρc2

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ (32)

where

D1 = −2A11 − 5A22 − 5A33 D2 = −2A11 + A22 + A33

β2 = K11Y 1
,2 − K21Y 2

,2 + K31Y 3
,2 β3 = K11Y 1

,3 − K21Y 2
,3 + K31Y 3

,3

and we have the relation β2 A12 + β3 A13 = 0.



Thus, it follows that

Tr(�) = −
(
ρc2 + 10

9
χ J

1
3 (4A11 + A22 + A33)

)
(33)

Tr(Cof(�)) = 4χ J
1
3

(
A11ρc2 + 1

9
χ J

1
3 (C1 + 11A2

11 + 5A11(A22 + A33))

)
(34)

det(�) = −(2χ J
1
3 )2 A11

(
A11ρc2 + 2

9
χ J

1
3 C1

)
(35)

where

C1 = 2A2
11 + (A12)

2 + (A13)
2 + 5(A11 A22 − (A12)

2 + A11 A33 − (A13)
2)

We have that C1 ≥ 0 because

A11 A22 − (A12)
2 = (K12 K21 − K11 K22)

2 + (K12 K31 − K11 K32)
2 + (K22 K31 − K21 K32)

2 ≥ 0

A11 A33 − (A13)
2 = (K13 K21 − K11 K23)

2 + (K13 K31 − K11 K33)
2 + (K23 K31 − K21 K33)

2 ≥ 0

Since Aii ≥ 0, it follows that Tr(�) ≤ 0, Tr(Cof((�)) > 0 and Det(�) < 0. The reduced parameters are then given by

P = −1

3

((
ρc2 − 2

9
χ J

1
3 C2

)2

+ 4

3
(2χ J

1
3 )2C3

)
(36)

Q = − 2

27

(
ρc2 − 2

9
χ J

1
3 C2

)((
ρc2 − 2

9
χ J

1
3 C2

)2

+ 2(2χ J
1
3 )2C3

)
(37)

�3D = −1

9

(
4

3
(2χ J

1
3 )2C3

)2
((

ρc2 − 2

9
χ J

1
3 C2

)2

+ 16

9
(2χ J

1
3 )2C3

)
(38)

where

C2 = 7A11 − 5(A22 + A33) C3 = (A12)
2 + (A13)

2 ≥ 0

As C3 ≥ 0 we obtain that P ≤ 0 and �3D ≤ 0. Also, the sign of Q is equal to the sign of 2
9 χ J

1
3 C2 − ρc2.

This result shows that the necessary conditions for the neohookean model to be hyperbolic are satisfied, since the wave 
speeds given by (23) and (27) are real for any deformation, under the usual assumptions c2 > 0 and χ ≥ 0.

4.3. Small deformations

We investigate the simplifications of the wave speeds for small deformations. In this case ∇Y ≈ I and Aij = δi j . Hence, 
we have

C1 = 12 C2 = 3 C3 = 0

and (33)–(35) reduce to

Tr(�) = −
(
ρc2 + 20

3
χ

)
≤ 0

Tr(Cof(�)) = 4χ

(
ρc2 + 11

3
χ

)
≥ 0

det(�) = −4χ2
(
ρc2 + 8

3
χ

)
≤ 0

The reduced parameters are given by

P = −1

3

(
ρc2 + 2

3
χ

)2

Q = − 2

27

(
ρc2 + 2

3
χ

)3

�3D = 0

Then, using (23) and (28), the waves speeds are given by



Fig. 3. HLLC solver wave pattern.

�E =
{

u1, u1, u1 ±
√

c2 + 4

3

2χ

ρ
, u1 ±

√
2χ

ρ
, u1 ±

√
2χ

ρ

}
(39)

Therefore, in the small deformation limit the speeds corresponding to transverse waves coincide, as in the classical theory 
of linear elasticity.

5. Numerical flux

In this section we first introduce the HLLC solver employed for a single material. Then we specify the numerical flux for
the multimaterial case.

5.1. HLLC solver

We consider equation (20) with the initial condition

�(x, t = 0) =
{

�l if x ≤ 0
�r if x > 0.

(40)

The numerical flux function F(�l; �r) at the cell interface x = 0 is determined based on the solution of the HLLC [29]
approximate Riemann problem, similarly to what is done in [14,16]. Even though the exact wave pattern involves seven 
distinct waves, see (23), the approximate solver approaches the solution using three waves (the contact discontinuity u�

1, 
the fastest leftward and rightward waves sl and sr ), thus inducing only two intermediate states �− and �+ (see Fig. 3).

Let define the intermediate states �− and �+ and their related fluxes as

�− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ−
ρ−u−

1
ρ−u−

2
ρ−u−

3
(Y 1

,1)
−

(Y 2
,1)

−

(Y 3
,1)

−
(ρe)−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ−u−
1

ρ−(u−
1 )2 − (σ 11)�

ρ−u−
1 u−

2 − (σ 21)�

ρ−u−
1 u−

3 − (σ 31)�

u−
1 (Y 1

,1)
− + u−

2 (Y 1
,2)

− + u−
3 (Y 1

,3)
−

u−
1 (Y 2

,1)
− + u−

2 (Y 2
,2)

− + u−
3 (Y 2

,3)
−

u−
1 (Y 3

,1)
− + u−

2 (Y 3
,2)

− + u−
3 (Y 3

,3)
−

u−
1 (ρe)− − ((σ 11)�u−

1 + (σ 21)�u−
2 + (σ 31)�u−

3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

�+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ+
ρ+u+

1

ρ+u+
2

ρ+u+
3

(Y 1
,1)

+

(Y 2
,1)

+

(Y 3
,1)

+
(ρe)+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ+u+
1

ρ+(u+
1 )2 − (σ 11)�

ρ+u+
1 u+

2 − (σ 21)�

ρ+u+
1 u+

3 − (σ 31)�

u+
1 (Y 1

,1)
+ + u+

2 (Y 1
,2)

+ + u+
3 (Y 1

,3)
+

u+
1 (Y 2

,1)
+ + u+

2 (Y 2
,2)

+ + u+
3 (Y 2

,3)
+

u+
1 (Y 3

,1)
+ + u+

2 (Y 3
,2)

+ + u+
3 (Y 3

,3)
+

u+
1 (ρe)+ − ((σ 11)�u+

1 + (σ 21)�u+
2 + (σ 31)�u+

3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

Here the stresses (σ 11)�, (σ 21)� and (σ 31)� are independent unknowns.



The HLLC scheme is based on the assumption that every wave is a shock and therefore Rankine–Hugoniot relations give⎧⎪⎨
⎪⎩

F (�r) −F+ = sr(�r − �+)

F+ −F− = u1(�
+ − �−)

F− − F (�l) = sl(�
− − �l)

(43)

We introduce the notations

Q l = F (�l) − sl�l Q r = F (�r) − sr�r (44)

and we denote by Q i
l (respectively Q i

r ) the i-th component of Q l (respectively Q r ). In the following, except when otherwise 
explicitly stated, we take u−

1 = u+
1 = u�

1.
The Rankine–Hugoniot relations (43) lead to

ρ− = Q 1
l

u−
1 − sl

ρ+ = Q 1
r

u+
1 − sr

(45)

(Y 1
,1)

− = Q 5
l − u−

2 (Y 1
,2)

− − u−
3 (Y 1

,3)
−

u−
1 − sl

(Y 1
,1)

+ = Q 5
r − u+

2 (Y 1
,2)

+ − u+
3 (Y 1

,3)
+

u+
1 − sr

(46)

(Y 2
,1)

− = Q 6
l − u−

2 (Y 2
,2)

− − u−
3 (Y 2

,3)
−

u−
1 − sl

(Y 2
,1)

+ = Q 6
r − u+

2 (Y 2
,2)

+ − u+
3 (Y 2

,3)
+

u+
1 − sr

(47)

(Y 3
,1)

− = Q 7
l − u−

2 (Y 3
,2)

− − u−
3 (Y 3

,3)
−

u−
1 − sl

(Y 3
,1)

+ = Q 7
r − u+

2 (Y 3
,2)

+ − u+
3 (Y 3

,3)
+

u+
1 − sr

(48)

(ρe)− = Q 8
l + (σ 11)�u−

1 + (σ 21)�u−
2 + (σ 31)�u−

3

u−
1 − sl

(ρe)+ = Q 8
r + (σ 11)�u+

1 + (σ 21)�u+
2 + (σ 31)�u+

3

u+
1 − sr

(49)

The relations for the velocities u±
i and the stresses (σ i1)� are linked and are described in the three following cases.

(1) In the case where both �l and �r are solid states (χ �= 0), all velocity and stress components are continuous across the 
contact discontinuity. Hence, it follows that

u−
1 = u+

1 = u�
1 = Q 2

l − Q 2
r

Q 1
l − Q 1

r
(σ 11)� = Q 2

l Q 1
r − Q 1

l Q 2
r

Q 1
l − Q 1

r
(50)

u−
2 = u+

2 = u�
2 = Q 3

l − Q 3
r

Q 1
l − Q 1

r
(σ 21)� = Q 3

l Q 1
r − Q 1

l Q 3
r

Q 1
l − Q 1

r
(51)

u−
3 = u+

3 = u�
3 = Q 4

l − Q 4
r

Q 1
l − Q 1

r
(σ 31)� = Q 4

l Q 1
r − Q 1

l Q 4
r

Q 1
l − Q 1

r
(52)

(2) When at least one of the states �l or �r is fluid (χ = 0) or in the case where both �l and �r are solid states (χ �= 0) 
with a frictionless contact, we have that u1 and σ 11 are continuous. Hence, equation (50) is still verified. However since 
σ 21 and σ 31 vanish at the interface, the transverse velocities u2 and u3 can be discontinuous. It follows that equations 
(51)–(52) are replaced by

u−
2 = Q 3

l

Q 1
l

u+
2 = Q 3

r

Q 1
r

(σ 21)� = 0 (53)

u−
3 = Q 4

l

Q 1
l

u+
3 = Q 4

r

Q 1
r

(σ 31)� = 0 (54)

(3) If �l and �r are solid states (χ �= 0) relative to two different objects in frictionless contact, a rebound with material 
contact takes place when the normal velocities of the states �l and �r are such that ur > ul . In this case σ 11, σ 21 and 
σ 31 vanish and the velocities u1, u2 and u3 are discontinuous. The stress components σ 11, σ 21 and σ 31 are negligible 
based on the hypothesis that when ur > ul , a tiny film of gas is instantaneously formed between the two solids at 
a negligible pressure compared to the stress in the elastic materials. Hence, equations (53)–(54) are still verified and 
equations (50) are replaced by

u−
1 = Q 2

l

Q 1
l

u+
1 = Q 2

r

Q 1
r

(σ 11)� = 0 (55)



Similarly to [16], from equations (43) we consistently obtain

(Y i
,2)

± = (Y i
,2)l + (Y i

,2)r

2

and

(Y i
,3)

± = (Y i
,3)l + (Y i

,3)r

2
.

Finally, the robustness of the scheme is strongly influenced by the estimation of sl and sr . We use the estimate presented 
in [8] which is a simple way to obtain robust speed estimates:

sl = min((u1 − λ)l, (u1 − λ)r) sr = max((u1 + λ)l, (u1 + λ)r).

where λ =
√

max αi
ρ .

Equations (45)–(55) completely define the intermediate states �± and their associated fluxes F± . The numerical flux at 
the cell interface x = 0 is then given by

F(�l;�r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F (�l) if 0 ≤ sl

F− if sl ≤ 0 ≤ u�
1

F+ if u�
1 ≤ 0 ≤ sr

F (�r) if sr ≤ 0

(56)

where F is defined in (20).
Finally, the waves corresponding to the degenerate characteristics in Y i

,2 and Y i
,3 do not contribute to the numerical flux 

in the direction 1. The variables Y i
,2 and Y i

,3 are updated in time when the fluxes in the directions 2 and 3, respectively, are 
computed.

5.2. Multimaterial solver

The multimaterial solver is detailed in one dimension for sake of clarity and is the same as in [16]. In three dimensions 
we use the same method in all directions. We consider a case where the interface separating materials with different 
constitutive laws is located between the cell centers k − 1 and k. The main idea of the multimaterial solver is that, instead 
of (56) we take

F l
k−1/2 = F− F r

k−1/2 = F+ (57)

(see Fig. 4, equations (41) and (42)).
As for ghost-fluid methods, the scheme is locally non-conservative since F− �= F+ , but it is consistent since F± are 

regular enough functions of the states to the left and to the right of the interface and F+ = F− when those states are 
identical. In [16] it is shown that the error in conservation is negligible as the number of cell interfaces for which a 
non-conservative numerical flux is employed is always negligible compared to the total number of mesh cells.

A special care is needed at the multimaterial interface. To avoid the singularity due to the discontinuity of Y and to keep 
the interface sharp, the computation of (Y i

,2)± and (Y i
,3)

± is one-sided:

(Y i
,2)

− = (Y i
,2)l (Y i

,2)
+ = (Y i

,2)r (58)

(Y i
,3)

− = (Y i
,3)l (Y i

,3)
+ = (Y i

,3)r (59)

This can be seen as an extension by continuity of Y i
,2 and Y i

,3 relative to each material.

5.3. Extension to second-order in each space direction

The scheme is extended to second-order accuracy using a piecewise-linear slope reconstruction in space, with minmod 
limiter. For the cells separated by the multimaterial interface, the stencil used to compute the slopes is smaller. We calculate 
these slopes using the corresponding intermediate state of the multimaterial Riemann problem. For example, if cells k − 1
and k do not belong to the same medium, the slope of cell k − 1 is computed using �k−2, �k−1 and the intermediate state 
to the left of the contact discontinuity. This state is determined thanks to the solution of an approximate Riemann problem 
between �k−1 and �k , without slope reconstruction.



Fig. 4. Fluxes at the material discontinuity.

Table 1
Test cases description.

TC Media ρ [kg m−3] u1 [m s−1] p [Pa] γ a b p∞ [Pa] χ [Pa]

1 Air (pre-shock) 1.225 0 101 325 1.4 0 0 0 0
Air (post-shock) 1.6861 −113.534 159 059
Helium 0.2228 0 101 325 1.648 0 0 0 0

2 Water (pre-shock) 1000 0 105 4.4 0 0 6 · 108 0
Water (post-shock) 1230 −432.69 109

Air 1.2 0 105 1.4 5 10−3 0 0

3
4
5
6

Copper (plate) 8900 0 105 4.22 0 0 3.42 · 1010 5 · 1010

Copper (projectile) 8900 up 105

Air 1 0 105 1.4 0 0 0 0

5.4. Interface advection and time integration

Coherently with a fully Eulerian approach, a level set function is used to follow the interface separating different mate-
rials. The level set function is transported with the velocity field by the equation:

ϕt + u · ∇ϕ = 0 (60)

This equation is approximated with a WENO 5 scheme [19].
The conservation equations and the interface advection are explicitly integrated in time by a Runge–Kutta 2 scheme. The 

interface position is advected using the material velocity field. For numerical stability, the integration step is limited by the 
fastest characteristics over the grid points. Hence, the interface position will belong to the same interval between two grid 
points for more than one time step. When the physical interface overcomes a grid point, the corresponding conservative 
variables, say �k , do not correspond anymore to the material present at that grid point before the integration step. When the 
physical interface moves to the right, then we take �k = �− , whereas if it moves to the left �k = �+ . In three dimensions 
this is done direction by direction taking the resulting average for the conservative variables.

6. Numerical results

We show in this section three-dimensional shock–bubble interactions and impacts in air. In particular, we simulate elastic 
rebounds in two and three dimensions. Computation are performed with an MPI parallel code.

Table 1 shows the material properties and initial conditions relative to each test case.



Fig. 5. Sketch of the initial configuration for the shock–bubble interaction TC1. The computational domain is [247.5,470] × [0,89] × [0,89] mm3.

Fig. 6. Interaction of a Mach 1.22 shock propagating in air through an helium bubble (TC1). Pictures at t = 62 μs, 110 μs, 163 μs, 264 μs, 471 μs, 735 μs.
From left to right, top to bottom.



Fig. 7. Sketch of the initial configuration for shock-bubble interaction TC2. The computational domain is [−0.2,1] × [0,1] × [0,1] m3.

Fig. 8. Interaction of a Mach 1.422 water shock and an air bubble (TC2). Interface and schlieren on the plane z = 0.5 at time t = 37 μs, 73 μs, 110 μs,
132 μs, 147 μs, 195 μs. From left to right, top to bottom.



Fig. 9. Sketch of the 3D initial configuration for the impact test case TC3 where a projectile impinges on a cylindrical plate with a velocity of 800 m s−1. 
The computational domain is [−0.5, 0.5]3 m3.

6.1. Shock–bubble interaction

We consider two shock-bubble interaction test cases involving different fluids. The boundary conditions are fixed at the 
initial values for inlet and homogeneous Neumann conditions are imposed at outlet. Reflection conditions are imposed for 
all the other boundaries.

Air–helium shock–bubble interaction
TC1 is the propagation in air of a Mach 1.22 shock through an helium bubble. The initial configuration and the physical 

parameters are described in Fig. 5 and in Table 1. The computation is performed on a 1000 × 400 × 400 mesh and lasts 
for 50 h on 300 processors. The zero iso-value of the level set function and schlieren on the horizontal plane through the 
center of the bubble are presented at different times on Fig. 6.

The results are qualitatively similar to those presented in the literature in two dimensions, see for example [28,12,22,16].

Air–water shock–bubble interaction
TC2 involves a van der Waals gas bubble and a Mach 1.422 shock in water modeled by a stiffened gas constitutive law. 

The initial configuration and the physical parameters are described in Fig. 7 and in Table 1. This test case is more severe 
compared to the previous one since it presents larger density ratios. The mesh is 480 × 400 × 400 and the computation 
lasts 15 h on 96 processors. The results are presented in Fig. 8, where we show the zero of the level set function and the 
schlieren on the vertical plane through the center of the bubble.

The bubble is strongly compressed, it changes topology and swirls similarly to what happens in two dimensions, see 
[1,16].

6.2. Impact

We present an impact simulation of a 800 m s−1 projectile on a plate in air (TC3). The initial configuration and the 
physical parameters are described in Fig. 9 and in Table 1. In this simulation the projectile and the plate are adjacent at 
initial time. The projectile and the plate are a single material and they are described by the same level set. In other words 
they will necessarily stick together for the whole simulation. Homogeneous Neumann conditions are imposed at the borders. 
The computation is performed on a 6003 mesh and uses 216 processors for 60 h.

The results are shown on Fig. 10. The elastic material is deformed and oscillates while being displaced rightward. 
Schlieren images on the planes x = 0.03, y = 0 and z = 0 are presented. Compared to the two dimensional test case [16]
the deformation is less evident as the mass ratio between the projectile and the plate is smaller.

For this test case we present in Table 2 the convergence of the mass and energy conservation errors as functions of the 
grid refinement. The errors are computed by relative L1 norms in space and time. The simulations last until the fluxes are 
zero across the domain boundaries for a mesh of 1003. This time represents 25% of the total computational time (fourth 



Fig. 10. Impact of a projectile on a plate (TC3). Interface and schlieren at t = 24 μs, 43 μs, 88 μs, 178 μs, 355 μs, 710 μs. From left to right, top to bottom.

Table 2
Mass and energy conservation L1 errors in space and time in percentage of the total
mass and energy, respectively, for mesh sizes of 1003, 2003 and 4003 (TC3).

L1 error 1003 2003 4003

Mass conservation (%) 0.6117 0.2602 0.1145
Energy conservation (%) 0.6155 0.2596 0.1137
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Table 3
L1-norm error in space and time of |ρ − ρ0 det(∇xY )| in percentage of ρ and 
L1-Frobenius norm in space and time of ∇x × (∇xY ) for mesh sizes of 1003, 2003

and 4003 (TC3).

L1 error 1003 2003 4003

|ρ − ρ0 det(∇xY )| (%) 0.2300 0.1456 0.0511
‖∇x × ∇xY ‖ 0.1716 0.1258 0.0768

Fig. 11. Sketch of the 2D initial configuration for impact and rebound test case TC4 where a copper disk impinges on a copper layer at velocity 500 m s−1. 
The computational domain is [−1, 1]2 m2.

snapshot in Fig. 10). It can be observed that the conservation errors coherently decrease as the mesh is refined with a 
rate close to 1, as expected. However, for large elongations of the material, like in the case of rubbers, conservation errors 
may occur due to the level set discretization. For long filaments, it may occur that when a structure is smaller than a 
computational cell, the isoline zero of the level set function disappears, and with it, the material contained.

Also, we show in Table 3 the relative error between ρ and ρ0 det(∇xY ), and the Frobenius norm of ∇x × ∇xY for several 
mesh sizes. For these computations, we only consider solid cells situated at a distance of 0.025 m from the interface in 
order to avoid the singularity of the inverse deformation tensor at the border of the elastic solids. The simulations last 
about half the total computational time (fifth snapshot in Fig. 10). It can be seen that the errors decrease as the mesh is 
refined, at a rate that is of about 1 for the density, and slightly smaller for ∇x × ∇xY , as expected because of the additional 
differentiation.

6.3. Rebounds

We now focus on cases similar to impacts except that the projectile is not initially adjacent to the plate and can rebound. 
Here we do not consider the modeling of the full relevant physics at the scales induced by the arbitrarily small gap between 
the objects getting in contact. However, in terms of numerical modeling this case may need special care in the solution of 
the Riemann problem when the projectile and the plate get in material contact. Material contact is defined as a configuration 
where the level sets pertaining to the projectile and the plate are separated by less than a grid point. We model this 
phenomenon as a frictionless contact where both the normal and the tangential stresses vanish. This allows a discontinuity 
in both normal and tangential velocities in the solution of the Riemann problem, see equations (53), (54) and (55).

Two-dimensional rebounds
First (TC4), we simulate the solution in two dimensions as the meshes that can be afforded are significantly finer. As 

depicted on Fig. 11, the first test case is relative to a copper disk moving toward a copper layer on the east boundary. The 
surrounding fluid is air. The east border of the computational domain acts as a rigid wall where the displacement vanishes 
in the normal direction. The other borders are modeled by homogeneous Neumann conditions.

The gap between the disk and the plate measures 10−2 m and the disk travels at a speed of 500 m s−1. A few snapshots 
of the solution are presented on Fig. 12. The computations are run on 20002 and 40002 meshes. The computations last 10 h 
and 12 h on 144 and 324 processors, respectively.

In the case where the mesh is 20002, the rebound takes place thanks to a material contact of the disk with the copper 
layer. An high speed shock and the corresponding jet emerge from the impact. When the mesh size increases to 40002 cells, 
no contact occurs at the rebound and a thin layer of air cells still separates the two materials. The flow and deformation 
features observed for a 20002 mesh are overall retrieved for a 40002 mesh.



Fig. 12. Impact and rebound of a projectile on a layer in two dimensions (TC4). Velocity and schlieren at time t = 21 μs, t = 450 μs and t = 900 μs from
top to bottom. The mesh is 20002 on the left and 40002 on the right.



Fig. 13. Pressure on the line y = 0 in the range x ∈ [−0.4,1] at time t = 450 μs.

Fig. 14. Sketch of the 2D initial configuration for impact and rebound test case TC5 where a projectile impinges a plate at velocity 800 m s−1. The compu-
tational domain is [−0.5, 0.5]2 m2.

The pressure through y = 0 for both meshes is presented on Fig. 13. We can observe a significant pressure peak at the 
contact interface compressing the material and therefore the surrounding fluid that is ejected from the contact region at 
high speed.

TC5 is relative to the impact of a the projectile at 800 m s−1 initially detached from a shield in two dimensions. The 
initial configuration and the physical parameters of the two-dimensional simulation are described in Fig. 14 and in Table 1. 
The computation is performed on a 40002 mesh and uses 242 processors for 6 h.

Here the disk actually rebounds on an shock layer created in front of the disk. This layer has a thickness of a few grid 
points. Again a high speed shock forms at the impact. The speed of this shock is of the order of that of the fast waves in 
the elastic solid. These results show that the overall scheme is robust on very fine meshes for stiff numerical simulations 
(see Fig. 15).



Fig. 15. Impact and rebound of a projectile on a plate in two dimensions (TC5). Interface and schlieren at t = 50 μs, 83 μs, 99 μs, 149 μs, 199 μs, 298 μs,
497 μs, 710 μs. From left to right, top to bottom.



Fig. 16. Sketch of the initial configuration for the impact test case TC6 where a projectile impinges a shield at velocity 800 m s−1 and rebounds. The 
computational domain is [−0.5, 0.5]3 m3.

Three-dimensional rebound
The initial configuration and the physical parameters of the three-dimensional rebound (TC6) are described in Fig. 16

and in Table 1. The computation is performed on a 4003 mesh and uses 216 processors for 24 hours.
Overall the physics of the interaction is similar to what observed in two dimensions. In the figure the level set 

of the shield is in blue, whereas as the sphere is red. The level sets are also projected on the visualized planes (see 
Fig. 17).

7. Conclusions and future work

We have presented a three-dimensional multimaterial model that describes the dynamics of the interaction between 
gas, liquids and neohookean materials. This model is hyperbolic and reduces to the well known linear model in the small-
deformation limit. The numerical scheme is based on an approximate Riemann solver that is able to model multimaterial 
interfaces with possibly frictionless contacts. The scheme is simple to implement, stable and robust, as shown by the stiff 
test cases presented.

The explicit solver proposed is constrained by the time scale of the elastic waves. For problems such as impacts 
or in general fast-dynamical processes, this is the relevant scale of the physical phenomenon. For physical phenom-
ena that take place on the time scale determined by the material velocity, the stability condition limits the application 
of such time-dependent approaches. Also, the significantly different time scales present in multimaterial phenomena 
introduce accuracy and efficiency problems that are well known in low-speed compressible fluids. Future work will 
include exploration of these issues for compressible multimaterial flows, as well as, enriching the model with plastic-
ity.
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Fig. 17. Impact of a projectile on a shield (TC6). Interface and schlieren on the planes x = 0.025 and y = z = 0 at t = 107 μs, 166 μs, 206 μs, 256 μs, 383 μs,
710 μs. From left to right, top to bottom. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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