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Abstract 21 

 22 

Many natural phenomena in geophysics and hydrogeology involve the flow of non-23 

Newtonian fluids through natural rough-walled fractures. Therefore, there is considerable 24 

interest in predicting the pressure drop generated by complex flow in these media under a 25 

given set of boundary conditions. However, this task is markedly more challenging than the 26 

Newtonian case given the coupling of geometrical and rheological parameters in the flow 27 

law. The main contribution of this paper is to propose a simple method to predict the flow of 28 

commonly used Carreau and yield stress fluids through fractures. To do so, an expression 29 

relating the “in-situ” shear viscosity of the fluid to the bulk shear-viscosity parameters is 30 

obtained. Then, this “in-situ” viscosity is entered in the macroscopic laws to predict the flow 31 

rate-pressure gradient relations. Experiments with yield stress and Carreau fluids in two 32 

replicas of natural fractures covering a wide range of injection flow rates are presented and 33 

compared to the predictions of the proposed method. Our results show that the use of a 34 

constant shift parameter to relate “in-situ” and bulk shear viscosity is no longer valid in the 35 

presence of a yield stress or a plateau viscosity. Consequently, properly representing the 36 

dependence of the shift parameter on the flow rate is crucial to obtain accurate predictions. 37 

The proposed method predicts the pressure drop in a rough-walled fracture at a given 38 

injection flow rate by only using the shear rheology of the fluid, the hydraulic aperture of the 39 

fracture and the inertial coefficients as inputs. 40 

  41 
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1. Introduction 42 

 43 

The flow of complex fluids through rough-walled rock fractures is involved in many 44 

economically important industrial applications, such as soil remediation, hydrogeology or 45 

Enhanced Oil Recovery (EOR) [Radilla et al., 2013; Tosco et al., 2013; Coussot, 2014]. 46 

Numerous complex fluids are shear-thinning, showing a decrease in shear viscosity as the 47 

applied shear rate is increased. Shear-thinning fluids are extensively used in petroleum 48 

engineering and soil remediation to improve the microscopic sweep of the reservoir through 49 

stabilization of the injection front [Lake, 1989; Silva et al., 2012; Wever et al., 2011]. For 50 

instance, shear-thinning drilling fluids containing the biopolymer xanthan [Zhong et al., 51 

2008; Truex et al., 2015] and other polymers such as polyacrylamide [Ball and Pitts, 1984], 52 

carboxymethylcellulose [Zhang et al., 2016] and guar gum [Hernández-Espriú et al., 2013] 53 

are widely used in EOR.  54 

 55 

In some cases, fluids with shear-rate dependent viscosity also present a yield stress, i.e. a 56 

threshold value in terms of shear stress below which they do not flow. Many complex fluids 57 

used in industrial applications exhibit yield stress behaviour, e.g. polymer solutions, waxy 58 

crude oils, volcanic lavas, emulsions, colloid suspensions, foams, etc. [Coussot, 2005; 59 

Dimitriou and McKinley, 2015; Roustaei et al., 2016; Talon et al., 2014 ; Lavrov, 2013; 60 

Coussot, 2014].Common examples of yield stress shear-thinning fluids are the slurries or 61 

cement grouts injected to reinforce soils, the heavy oils or the drilling fluids injected into 62 

rocks for the reinforcement of wells [Lavrov, 2013; Coussot, 2014]. Indeed, drilling fluids are 63 

often designed so as to have a yield stress in order to prevent cutting from settling when 64 

circulation stops [Lavrov, 2013]. Also, a number of fracturing fluids used in hydraulic 65 
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fracturing exhibit a yield stress designed to enhance proppant transport [Talon et al., 2014; 66 

Roustaei et al., 2016] and present shear-thinning behaviour [Lavrov, 2015; Perkowska et al., 67 

2016]. 68 

 69 

For these reasons, the flow of shear-thinning fluids in porous media, and in particular that of 70 

yield stress fluids, has become a field of great research interest [Chevalier et al., 2013; 71 

Chevalier et al., 2014; Coussot, 2014; Talon et al., 2014; Rodríguez de Castro et al., 2016]. 72 

However, although recent advances have been made [Chevalier et al., 2013; Chevalier et al., 73 

2014], obtaining a macroscopic law to predict pressure drop as a function of flow rate has 74 

proved to be a stumbling-block. Also, despite its broad interest, a serious lack of 75 

experimental works involving the flow of yield stress fluids was reported by Lavrov [2013] 76 

and Coussot [2014]. 77 

 78 

Inspired by the growing scope of industrial applications in which shear-thinning and yield 79 

stress fluids are injected through rough-walled fractures, the objective of this work is to 80 

present a simple method to predict the pressure losses generated during single-phase flow. 81 

The accuracy of the resulting predictions is then evaluated through comparison with 82 

experimental data. To do so, a series of flow experiments with concentrated aqueous 83 

solutions of xanthan biopolymer presenting a yield stress were carried out by measuring the 84 

pressure drop as a function of the injection flow rate during the flow through two replicas of 85 

rough-walled natural fractures (granite and Vosges sandstone). Furthermore, previously 86 

presented experimental data involving the flow of shear-thinning with no yield stress are also 87 

compared with the predictions obtained with the proposed method. 88 
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 89 

The single-phase flow of incompressible Newtonian fluids through porous media is governed 90 

by Darcy’s law [Darcy, 1856]. In the case of one-directional steady flow through a horizontal 91 

porous media, this law is written as: 92 

 93 

∇P =
μ

K

Q

A
=

μ

K
u 

(1) 

∇P =
∆P

L
 being the pressure gradient, ∆P the absolute value of the pressure drop over a 94 

distance L, Q the volumetric flow rate, A the cross-sectional area, u = Q/A the average 95 

velocity, μ the viscosity of the injected fluid, and K the intrinsic permeability. This model is 96 

restricted to creeping flow in which inertial forces are negligible compared to viscous forces 97 

[Schneebeli, 1955; Hubbert, 1956; Scheidegger, 1960; Chauveteau and Thirriot, 1967]. 98 

Nonlinearity of fluid flow stems from inertial pressure losses generated by the repeated 99 

accelerations and decelerations due to rapid changes in flow velocity and direction along the 100 

flow path. Both theoretical and empirical models taking into account the extra pressure losses 101 

due to inertial effects were presented in the literature [Miskimins et al., 2005]. The results of 102 

these studies confirm the existence of a strong inertial regime and a weak inertial regime. The 103 

nonlinear behaviors associated to those regimes can be described respectively by a quadratic 104 

and a cubic function of the average velocity. Forchheimer’s empirical law [Forchheimer, 105 

1901] is commonly used to model the strong inertial regime through addition of a quadratic 106 

flow rate term to Darcy’s law: 107 

 108 

 109 
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∇P =
μ

K
u + βρu2 (2) 

where ρ is the fluid density and β is the inertial coefficient. Forchheimer’s law has been 110 

experimentally validated [Dullien and Azzam, 1973; Geertsma, 1974; MacDonald et al., 111 

1979; Rasoloarijaona and Auriault, 1994; Javadi et al., 2014; Rodríguez de Castro and 112 

Radilla, 2016a] and has found some theoretical justifications [Cvetkovic, 1986; Giorgi, 1997; 113 

Chen et al., 2001]. In the case of the weak inertial regime, which occurs at moderate values 114 

of the Reynolds number, deviations from the linear relationship between flow rate and 115 

pressure loss were shown to follow a cubic function of the mean velocity in the porous media 116 

[Mei and Auriault, 1991; Firdaouss et al., 1997; Fourar et al., 2004; Rocha and Cruz, 2010]. 117 

 118 

∇P =
μ

K
u +

dρ2

μ
u3 

(3) 

 119 

where d is a dimensionless inertial coefficient. Reynolds number can be specifically defined 120 

for weak inertia cubic law as [Radilla et al., 2013; Rodríguez de Castro and Radilla, 2016a].  121 

 122 

Rec = √Kd
ρ

μ

Q

A
 

(4) 

Cubic law was obtained from numerical simulations in a 2D periodic porous medium 123 

[Barrère et al., 1990; Fidarous and Guermond, 1995; Amaral Souto and Moyne, 1997] and 124 

also by using the homogenization technique for isotropic homogeneous porous media [Mei 125 
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and Auriault, 1991; Wodie and Levy, 1991]. This law was shown to be in agreement with 126 

experimental data [Firdaous et al., 1997; Rodríguez de Castro and Radilla, 2016a]. 127 

 128 

Using the asymptotic expansions method in a thin cylindrical channel with oscillating walls 129 

and averaging over the channel diameter, Buès et al. [2004] and Panfilov and Fouar [2006] 130 

presented a macroscopic flow equation which proved to be in good agreement with numerical 131 

simulations in rectangular and cylindrical fractures at high flow rates. This flow equation was 132 

expressed in the form of a full cubic law: 133 

 134 

∇P =
μ

K
u + βρu2 +

dρ2

𝜇
u3 

(5) 

where β and d are the inertial coefficients which may be positive or negative, depending on 135 

the channel geometry. β and d were shown to be independent of the shear rheology of the 136 

injected fluid in previous numerical [Firdaouss et al., 1997; Yadzchi and Luding, 2012; Tosco 137 

et al., 2013] and experimental works [Rodríguez de Castro and Radilla, 2016a; Rodríguez de 138 

Castro and Radilla, 2016b]. In this full cubic law, the quadratic term describes the pure 139 

inertia effect caused by an irreversible loss of kinetic energy due to flow acceleration and the 140 

cubic term corresponds to a cross viscous–inertia effect caused by the streamline deformation 141 

due to inertia forces. This macroscopic flow equation is valid not only in the Darcian flow 142 

regime but also, to some limited extent, for the non-Darcian flow regimes. β and d can be 143 

obtained either through fitting to experimental data [Dukhan et al., 2014; Rodríguez de 144 

Castro and Radilla, 2016a, 2016b] or through theoretical predictions obtained from porosity, 145 

permeability and roughness of the porous medium [Cornell and Katz, 1953; Geertsma, 1974; 146 

Neasham, 1977; Noman and Archer, 1987; López, 2004, Agnaou et al., 2016]. 147 
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 148 

Analogously to the case of cubic law, Reynolds number can be defined for full cubic law as 149 

[Radilla et al., 2013; Rodríguez de Castro and Radilla, 2016a]: 150 

 151 

Refc =
Kβρu

μ
 

(6) 

 152 

Previous experimental works demonstrated that Darcy’s law fails to predict pressure drops in 153 

fractures when inertial effects are relevant [Zimmerman et al., 2004; Radilla et al., 2013; 154 

Javadi et al., 2014; Rodríguez de Castro and Radilla, 2016a, 2016b]. Zimmerman et al. 155 

[2004] presented experimental data on non-creeping flow through a rock fracture, showing 156 

good agreement with Forchheimer’s model. The same authors also proved, via numerical 157 

solution of the Navier-Stokes equations, the existence of the weak inertia regime for 158 

moderate values of Reynolds numbers. Radilla et al. [2013] modelled single-phase flow 159 

experiments by means of the full cubic law and presented an elegant method to compare 160 

fractures in terms of hydraulic behaviour versus flow regime using the intrinsic 161 

hydrodynamic parameters. Besides, a geometrical model for non-linear fluid flow through 162 

rough fractures was proposed and evaluated through numerical simulations by Javadi et al. 163 

[2010]. More recently, Roustaei et al. [2016] numerically investigated the 2D-flow of a yield 164 

stress fluid along an uneven fracture, showing that important Darcy-type flow law lead to 165 

important errors in the case of short fractures due to self-selection of the flowing region and 166 

the existence of fouling layers of unyielded fluid.  167 

 168 
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Several authors showed that the intrinsic permeability K and the cross-sectional area A used 169 

in Eqs (1) to (5) can be written as functions of the hydraulic aperture of the fracture h 170 

[Witherspoon et al., 1980; Brown, 1987; Zimmerman and Yeo, 2000; Brush and Thomson, 171 

2003]: 172 

 173 

K =
h2

12
 

(7) 

 174 

A = hw (8) 

The aperture distribution of rough-walled rock fractures always presents a strong 175 

heterogeneity, due to the wide range of aperture sizes and the significant number of contact 176 

points [Witherspoon et al., 1980; Xiong et al., 2011; Javidi et al., 2014; Wang et al., 2016]. 177 

The hydraulic behaviour through a fracture is known to be heavily dependent upon the 178 

apertures distribution [Isakov et al., 2001; Javidi et al., 2014; Wang et al., 2016]. This is 179 

explained by the tendency of the fluid to flow through the paths with the largest apertures. 180 

Moreover, within a given path, the hydraulic behaviour of fracture would be controlled by the 181 

small apertures and constrictions [Tsang and Tsang, 1987; Neuzil and Tracy, 1981]. 182 

 183 

Several attempts have been made to obtain a macroscopic law linking the injection flow rate 184 

to the resulting pressure drop during the flow of yield stress fluids in porous media [Pascal, 185 

1983; Al-Fariss and Pinder, 1987; Chase and Dachavijit, 2005; Coussot, 2014]. A major 186 

drawback of most available expressions is the existence of experimentally adjustable 187 
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parameters with no clear physical meaning as inputs, which impedes direct computational 188 

predictions. As an alternative, some pore-network approaches have also been proposed [Chen 189 

et al., 2005; Sochi and Blunt, 2008]. The main advantage of pore-network models is that they 190 

provide a reasonably realistic description of the reality in which the number of flow paths 191 

through the porous media increases with the applied pressure gradient. Nonetheless, these 192 

effects need experimental validation. Also, pore-network methods do not lead to analytical 193 

∇P-u expressions, which is particularly aggravating in applications involving a wide range of 194 

injection flow rates. An important difference between Newtonian and complex fluids is the 195 

coupling of geometrical and rheological parameters in the flow law [Roustaei et al., 2016]. 196 

Indeed, a non-toxic method of porosimetry has been proposed, which is based on the 197 

injection of yield stress fluids through porous media and takes advantage of the mentioned 198 

coupling [Ambari et al., 1990; Malvault, 2013; Oukhlef et al. 2014; Rodríguez de Castro, 199 

2014; Rodríguez de Castro et al., 2014; Rodríguez de Castro et al., 2016a]. 200 

 201 

The literature survey conducted by Lavrov [2013] revealed the severe lack of research on 202 

fracture flow of non-Newtonian fluids, especially regarding yield-stress fluids. The earlier 203 

works of Di Federico [Di Federico, 1997; Di Federico, 1998; Di Federico, 2001] mainly 204 

focused on defining and estimating the equivalent aperture for flow of a non-Newtonian fluid 205 

in a variable aperture fracture, without experimental validation. Also, Silliman [1989] 206 

provided different aperture estimates for variable aperture fractures. Only a few experimental 207 

works exist for the flow of yield stress fluids in porous media [Al-Fariss and Pinder, 1987; 208 

Chase and Dachavijit, 2005; Chevalier et al., 2013; Chevalier et al., 2014; Rodríguez de 209 

Castro, 2016a], and the ranges of variation of u are usually narrow. These experimental 210 

works show that the relationship between ∇P and u is of the same form as the constitutive 211 

equation of the fluid, i.e. ∇P = ∇P0 + Cun with ∇P0 being the critical pressure gradient below 212 
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which no flow occurs, n being the flow index of the fluid and C being a parameter that 213 

depends on the porous medium and the boundary conditions. Chevalier et al. [2014] used an 214 

NMR imaging technique to show that the velocity density distribution of a yield stress fluid 215 

flowing through a packed bed was similar to that of a Newtonian fluid due to the minor role 216 

played by the constitutive equation of the fluid in rapidly varying pore geometry. On the basis 217 

of these results, the latter authors propose explicit (but complex) expressions with physical 218 

meaning to calculate ∇P0 and C. Concerning multiphase flow, Boronin et al., [2015] 219 

developed a model for the displacement of yield-stress fluids in a vertical Hele-Shaw cell and 220 

used it to investigate the joint effect of viscous fingering, yielding and gravitational slumping, 221 

showing that unyielded fluid zones develop as a result of viscous fingering generated when a 222 

yield stress fluid is displaced by a low-viscosity Newtonian one. 223 

 224 

Recently, Rodríguez de Castro and Radilla [2016a] conducted non-Darcian flow experiments 225 

of shear-thinning fluids without yield stress in rough-walled fractures, showing that the 226 

inertial pressure losses do not depend on fluid’s rheology. These authors proposed a method 227 

to predict the pressure losses generated during non-Darcian shear-thinning flow from the 228 

values of K, γ and β obtained during creeping Newtonian flow and the shear-viscosity 229 

parameters of the fluid. Their predictions showed good agreement with experimental data. 230 

However, a major drawback was the use of an experimentally obtained shift parameter to 231 

relate the apparent viscosity of the fluid in the porous medium to its bulk viscosity. Indeed, 232 

the calculation of the mentioned shift parameter involved carrying out preliminary Darcian 233 

shear-thinning flow experiments, so predicting its value is of considerable interest. Another 234 

interesting prospect consisted in extending this prediction method to the case of shear-235 

thinning fluids with yield stress. The same authors also proposed a simple method to predict 236 

non-Darcian flow of Carreau fluids through packed beads [Rodríguez de Castro and Radilla, 237 
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2016b]. However, the flow of yield stress fluids was not tackled in these works and no 238 

estimate of the shift parameter relating the apparent viscosity of the fluid in the porous 239 

medium to its bulk viscosity was provided either. 240 

 241 

Many applications require the flow rate in a fracture to be predicted from the applied pressure 242 

gradient and known fracture size and fluid rheology. In particular, understanding the flow of 243 

drilling fluids with yield stress through a rough-walled fracture is of vital importance in order 244 

to design the additives used to stop the fluid loss when a fracture is hit during drilling 245 

[Lavrov, 2013]. In this work, a simple approach is proposed to extend Darcy’s and full cubic 246 

laws to the case of yield stress and Carreau fluids. In order to achieve this goal, flow 247 

experiments with concentrated aqueous polymer solutions have been conducted using 248 

replicas of natural fractures. Particular attention will be paid to investigating how yield stress 249 

affects the relationships between flow rate and pressure losses in rough-walled rock fractures.  250 

 251 

2. Predicting the flow of yield stress fluids and Carreau fluids in porous media 252 

 253 

The shear-thinning behaviour of semi-dilute polymer solutions widely used in EOR and soil 254 

remediation is commonly represented by the empirical Carreau model [Carreau, 1972] based 255 

on molecular network theory [Sorbie, 1989; López et al., 2003; Rodríguez de Castro et al., 256 

2016b]. The Carreau equation is often presented as 
μ−μ∞

μ0−μ∞
= [1 + (λγ̇)2]

n−1

2 ,where μ is the 257 

viscosity at a given shear rate γ̇,  μ0 and  μ∞ are the zero shear rate and infinite shear rate 258 

viscosities, respectively, n is the power-law index, and λ is the time constant. n is inferior to 259 

unity for shear-thinning fluids. The values of μ0,  μ∞, n and λ are determined by the polymer 260 



14 
 

concentration under given pressure and temperature conditions. In the region far from the low 261 

shear viscosity plateau, i.e. when  γ̇ ≫
1

λ
, Carreau’s law leads to the following expression 262 

[Rodríguez de Castro and Radilla, 2016a]: 263 

μ ≈ μ∞ + (μ0 − μ∞)λn−1γ̇n−1 = μ∞ + cγ̇n−1 (9) 

with c= (μ0 − μ∞)λn−1. Given that all the shear rates involved in the flow experiments with 264 

Carreau fluids analysed in this work are sufficiently high, only the high shear rates version of 265 

Carreau’s equation (Eq. 9) will be considered subsequently.  266 

Some concentrated polymer solutions present a yield stress, as shown in previous works 267 

[Song et al., 2006; Carnali, 1991; Withcomb and Macosko, 1978; Economides and Nolte, 268 

2000; Khodja, 2008; Benmouffok-Benbelkacem et al., 2010]. The steady-state shear flow of 269 

concentrated polymer solutions has been proved to be well described by the Herschel–270 

Bulkley law [Herschel and Bulkley, 1926]. This empirical law can be written as follows: 271 

 272 

{
τ = τ0 + aγ̇n         for           τ > τ0

    γ̇ = 0                   for           τ ≤ τ0
 (10) 

where τ0 is the yield stress, a is the consistency and n is the flow index of the fluid. In the 273 

case of shear-thinning yield stress fluids, n is inferior to unity. The three parameters are 274 

generally obtained by fitting the data obtained by measuring the shear rate  γ̇ as a function of 275 

the applied shear stress τ using a rheometer. 276 

 277 

A practical approach to study the flow of complex fluids with shear-rate-dependent viscosity 278 

through a porous medium consists in defining an equivalent viscosity μeq as being the 279 
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quantity that must replace the viscosity in Darcy’s law to result in the same pressure drop 280 

actually measured [Tosco et al., 2013]. In the case of a rectangular fracture, μeq is expressed 281 

as: 282 

 283 

μeq  = K
∇P

u
=

h2

12

∇P

u
 (11) 

It should be noted that both inertial and viscous effects are encompassed in μeq. In order to 284 

analyse the viscous effects separately, the “in situ” shear viscosity μpm in the porous medium 285 

must be calculated. To do such calculation from the constitutive equation of the fluid, an 286 

apparent shear rate in the porous medium has to be determined first. The apparent shear rate 287 

γ̇pm of shear-thinning fluids flowing through a porous medium can be defined by dividing the 288 

mean velocity u by a characteristic microscopic length of the porous media [Chauveteau, 289 

1982; Sorbie et al., 1989; Perrin et al., 2006; Tosco et al., 2013; Rodríguez de Castro et al., 290 

2016b]. This microscopic length is usually taken as √Kε with ε being the porosity of the 291 

porous medium. From the definition of cross-sectional area (Eq. 7), it is expected that 292 

porosity is close to unity in the particular case of fractures. Therefore, γ̇pm can be defined as: 293 

 294 

γ̇pm = α
u

√K
= α

2√3u

h
 (12) 

 295 

where α is a empirical shift factor known to be a function of both the bulk rheology of the 296 

fluid and the porous media [Chauveteau, 1982; Sorbie et al., 1989; López et al., 2003; López, 297 

2004; Comba et al., 2011]. Previous research showed that γ̇pm corresponds to the wall shear 298 
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rate in the average pore throat diameter [Chauveteau and Zaitoun, 1981; Chauveteau, 1982; 299 

Sheng, 2011]. 300 

 301 

The usual approach to determine the value α consists in overlaying the porous medium μeq 302 

vs. γ̇app with the bulk μeq vs. γ̇ curves as closely as possible and noting the scale change in 303 

shear rate required to obtain the best fit. This criterion to select α was proposed by Sorbie et 304 

al. [1989] as a pragmatic alternative to the original one previously proposed by Chauveteau 305 

[1982], and was subsequently used by other authors [González et al., 2005; Amundarain et 306 

al., 2009]. It should be noted that a good overlay between both curves is only possible in the 307 

low flow rates region where no significant inertial effects occur, assuming no wall slip [Tosco 308 

et al., 2013; Rodríguez de Castro and Radilla, 2016a]. Keeping in mind the objective to 309 

propose a prediction method, expressions for the calculation of α must be provided so as to 310 

avoid the need to perform α-determination experiments. 311 

 312 

In the case of Carreau fluids flowing at moderate and high shear rates μpm can be obtained 313 

from Eqs. (9) and (12): 314 

 315 

μpm,Carreau = μ∞ + c (α
2√3u

h
)

n−1

 
(13) 

Analogously, in the case of Herschel-Bulkley fluids, μpm can be obtained from Eqs. (10) and 316 

(12): 317 

 318 
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μpm,ysf =
τ0h

α2√3u
+ a (α

2√3u

h
)

n−1

 
(14) 

 319 

Although Eqs. (12-14), which are based on the bundle-of-capillaries model, were originally 320 

proposed for the flow of non-Newtonian fluids through packed beads, the apparent viscosity 321 

was found to correlate reasonably well in porous media with complex pre geometry and 322 

topology [Sorbie et al., 1989]. 323 

Let us focus now on the determination of the wall shear rate in rectangular channels. For the 324 

steady 2D-flow of an incompressible fluid through a rectangular channel, the wall shear stress 325 

τw is related to the pressure gradient ∇P as follows [Pipe et al., 2008]: 326 

 327 

τw =
wh

2(w + h)
∇P 

 

(15) 

 328 

For the calculation of ∇P in Eq. (15), the fractures will be modelled as being rectangular 329 

channels of width w and depth h. As explained above, γ̇pm corresponds to the wall shear rate 330 

in the average pore throat diameter [Chauveteau and Zaitoun, 1981; Chauveteau, 1982; 331 

Sheng, 2011]. In the case of a rough-walled fracture, the average pore throat diameter can be 332 

assimilated to the hydraulic aperture. Therefore, γ̇pm can be interpreted as the wall shear rate 333 

in a section of aperture h. The wall shear stress in a section of aperture h can be calculated 334 

from Eq. (15), by using Eqs. (1) and (13) for the case of Carreau fluids: 335 

 336 
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 337 

τw =
6w

(w + h)

u

h
[μ∞ + cγ̇pm

n−1] =
6w

(w + h)

u

h
[μ∞ + 2n−13

n−1
2 c (α

u

h
)

n−1

] 

 

(16) 

 338 

And using Eqs. (1) and (14) for the case of Herschel-Bulkley fluids, Eq. (15) can be written 339 

as: 340 

τw =
6w

(w + h)

u

h
(

τ0

γ̇pm
+ aγ̇pm

n−1) =
√3w

(w + h)α
[τ0 + 2n3

n
2a (α

u

h
)

n

] 

 

(17) 

 341 

For a constant viscosity fluid, the wall shear rate is given by γ̇w,Newtonian =
6u

h
. However, for 342 

incompressible flows of liquids with a shear-rate-dependent viscosity, the calculation of γ̇w is 343 

more complex given that the velocity profile is no longer parabolic [Pipe et al., 2008]. An 344 

apparent shear rate γ̇app can thus be defined as:  345 

 346 

γ̇app =
6u

h
 (18) 

 347 

The true wall shear rate can be found using the Weissenberg–Rabinowitsch–Mooney 348 

equation [Macosko, 1994; Pipe et al., 2008]: 349 

 350 
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γ̇w =
γ̇app

3
[2 +

d(lnγ̇app)

d(lnτw)
] (19) 

 351 

Therefore, the next equation can be obtained from Eqs. (16), (18) and (19) for a Carreau 352 

fluid: 353 

γ̇w,Carreau =
2u

h
(2 +

2√3αhnμ∞u + 2n3n 2⁄ ah(αu)n

2√3αhnμ∞u + 2n3n 2⁄ ahn(αu)n
) (20) 

 354 

Analogously, the next equation can be obtained from Eqs. (17), (18) and (19) for a Herschel-355 

Bulkley fluid: 356 

γ̇w,ysf =
2u

h
(2 +

a + 2−n3−n 2⁄ τ0 (α
u
h

)
−n

an
) 

(21) 

 357 

For a Carreau fluid, γ̇pm = γ̇w,Carreau, so Eqs. (12) and (20) lead to the following expression: 358 

 359 

α =
6√3αhnμ∞u + 2n3

n
2ah(1 + 2𝑛)(αu)n

6αhnμ∞u + 2n3
n+1

2 ahn(αu)n

 
(22) 

 360 

In the case of a Herschel-Bulkley fluid (γ̇pm = γ̇w,ysf), Eqs. 12 and 21 lead to: 361 

 362 
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α =
1

√3
(2 +

a + 2−n3−n 2⁄ τ0 (α
u
h

)
−n

an
) 

(23) 

 363 

From Eqs. (22) and (23), it can be deduced that α is not a constant parameter in the case of 364 

Carreau fluids and yield stress fluids, but depends on u. For the simpler case of a power-law 365 

fluid (τ0=0), Eq. (23) leads to: 366 

 367 

α =
1

√3
(2 +

1

n
) (25) 

which becomes α = √3 for a Newtonian fluid. Therefore, α is a constant parameter only if 368 

τ0 = 0 and μ∞ = 0. 369 

 370 

Given that α depends on u for both Carreau and yield stress fluids, Eqs. (22) and (23) are 371 

only relevant in the cases μ∞= 0 and τ0= 0 , respectively. For μ∞≠0 and τ0≠0, Eq. (19) 372 

becomes: 373 

 374 

γ̇w =
γ̇app

3
[2 +

d(lnγ̇app)
du

du

∂(lnτw)
∂u

du +
∂(lnτw)

∂α
dα

] =
γ̇app

3
[2 +

d(lnγ̇app)
du

∂(lnτw)
∂u

+
∂(lnτw)

∂α
dα
du

] 

(26) 

where α is a function of u. 375 

 376 
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Therefore, for a Carreau fluid, Eq. (20) becomes: 377 

γ̇w,Carreau =
2u

h
[2 +

α (2√3μ∞uα + 2n3
n
2ah (

uα
h

)
n

)

2√3μ∞α2 + 2n3
n
2ahnα (

uα
h

)
n

+ 2n+13
n
2ah(n − 1)u (

uα
h

)
n ∂α

∂u

] 
(27) 

 378 

Also, for a Herschel-Bulkley fluid, Eq. (21) becomes: 379 

 380 

γ̇w,ysf =
2u

h
[2 +

α (τ0 + 2n3
n
2a (

uα
h

)
n

)

2n3
n
2anα (

uα
h

)
n

− 2u (τ0 − 2n3
n
2a(n − 1) (

uα
h

)
n

)
∂α
∂u

] 
(28) 

 381 

Consequently, the following differential equation has to be solved in order to determine α as 382 

a function of u for a Carreau fluid: 383 

 384 

α =
1

√3
[2 +

α (2√3μ∞uα + 2n3
n
2ah (

uα
h

)
n

)

2√3μ∞uα2 + 2n3
n
2ahnα (

uα
h

)
n

+ 2n+13
n
2ah(n − 1)u (

uα
h

)
n ∂α

∂u

] 
(29) 

 385 

And for a Herschel-Bulkley fluid: 386 

 387 

α =
1

√3
[2 +

α (τ0 + 2n3
n
2a (

uα
h

)
n

)

2n3
n
2anα (

uα
h

)
n

− 2u (τ0 − 2n3
n
2a(n − 1) (

uα
h

)
n

)
∂α
∂u

] 
(30) 

 388 

Eqs. (29) and (30) can be numerically solved within a given range of u to obtain the relation 389 

between α and u. Then, the obtained relation can be used in Eq. (13) for a Carreau fluid and 390 

in Eq. (14) for a Herschel-Bulkley fluid to obtain μpm,Carreau and μpm,ysf, respectively. Once 391 
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μpm,Carreau and μpm,ysf have been determined, they can be entered in Eq. (1), Eq. (2), Eq. (3) 392 

and Eq. (5), leading to the extension of Darcy’s law (Eq. 31), Forchheimer’s law (Eq. 32) and 393 

full cubic law (Eq. 33) to Carreau and yield stress fluids: 394 

 395 

∇P =
μpm

K
u =

12μpm

h2
u 

(31) 

 396 

∇P =
μpm

K
u + βρu2 =

12μpm

h2
u + βρu2 

(32) 

 397 

∇P =
μpm

K
u + βρu2 +

γρ2

μpm
u3 =

12μpm

h2
u + βρu2 +

γρ2

μpm
u3 

(33) 

 398 

It is remarked that 
12μpm

h2 u =
2√3τ0

h

1

α
+

2n+13
n+1

2 a

hn+1 αn−1un = C1
1

α
+ C2αn−1un in the case of 399 

Herschel-Bulkley fluids, with C1 =
2√3τ0

h
 and C2 =

2n+13
n+1

2 a

hn+1 . Therefore, Eqs. (31) to (33) 400 

present a limiting pressure gradient [Roustaei et al., 2016] of value C1
1

α
. In the preceding 401 

expressions, μpm corresponds to μpm,Carreau or μpm,ysf depending on the type of fluid being 402 

considered. 403 

 404 

 405 
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 406 

It should be noted that elongational flows during the injection of solutions of polymers 407 

presenting a certain degree of flexibility through porous media are known to induce extra 408 

pressure losses with respect to pure shear flow [Rodríguez et al,. 1993; Müller and Sáez, 409 

1999; Nguyen and Kausch, 1999; Seright et al., 2011; Amundarain et al., 2009). These extra 410 

pressure losses were attributed to the formation of transient entanglements of polymer 411 

molecules due to the action of the extensional component of the flow. In the present 412 

approach, we first hypothesize that the differences between the total pressure drops measured 413 

during the flow of the investigated complex fluids through rough-walled rock fractures and 414 

the viscous pressure drop as predicted from the shear viscosity of the fluid can be explained 415 

in terms of inertial effects generated in the porous medium flow. This hypothesis is then 416 

validated through analysis of the experimental results. 417 

 418 

3. Materials and Methods 419 

 420 

In this section, we present the experimental procedure and the materials used to carry out the 421 

flow experiments with a yield stress fluid specifically performed in the framework of the 422 

present study. However, the proposed method to predict ∇P as a function of u in rough-423 

walled fractures is also compared with previously presented experimental data [Rodríguez de 424 

Castro and Radilla, 2016a] in order to assess its efficiency in the case of Carreau fluids. 425 

 426 

3.1. Experimental setup and procedure 427 

 428 
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A series of experiments was conducted injecting a concentrated aqueous polymer solution 429 

through two transparent epoxy resin replicas of natural rough-walled rock fractures. The 430 

original fractures used in this work are a Vosges sandstone sample with dimensions 26 cm 431 

long and w = 14.8 cm wide, and a granite sample with dimensions 33 cm long and w = 15.5 432 

cm wide. Details of the fabrication process of these fracture replicas can be found elsewhere 433 

[Isakov et al., 2001; Nowamooz et al., 2013]. The aperture maps of both fractures obtained by 434 

Nowamooz et al. [2013] have been included as supporting information of the present article 435 

(Figures S1 and S2), showing the high spatial variability. The latter authors analysed in detail 436 

the aperture variability and distribution of the fractures using an image processing procedure 437 

based on the attenuation law of Beer-Lamber. They showed that the smallest apertures are 438 

located at the centre and the largest apertures are located near the inlet and the outlet of the 439 

fractures. Moreover, the apertures of the Vosges sandstone fracture are more variable at 440 

lower half than at the upper half, while the spatial variability appears to be relatively high 441 

across the entire granite fracture area. This results in a more heterogeneous aperture map for 442 

the granite fracture. Moreover, Nowamooz et al. [2013] showed that the spatial variability of 443 

the fracture aperture field, especially the constricted areas at the centre of the fractures, 444 

resulted in the creation preferential paths for the flow of the fluid. These effects are expected 445 

to be more important in the case of shear-thinning fluids and yield stress fluids as the pressure 446 

loss sensitivity to aperture is higher (shear viscosity depends on the local aperture) [Roustaei 447 

et al., 2016]. 448 

 449 

Two different configurations were used depending on the involved flow rates. For the lowest 450 

flow rates, ranging from 0.06 L/h to 6 L/h, the injection circuit was open and the fluid was 451 

injected through the fractures at the selected flow rate using a dual piston pump (Prep Digital 452 

HPCL pump, A.I.T., France). For the highest flow rates, ranging from 9 L/h to 250 L/h, the 453 
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circuit was closed. In this case, the fluid was injected from a tank situated upstream of the 454 

fracture using a volumetric pump (EcoMoineau M Series, PCM, France), and its flow rate 455 

was measured with a positive displacement flow meter (Model LSM45, Oval, Japan). The 456 

injected fluid was continuously recirculated to the upstream tank after passing through the 457 

fracture. A differential pressure sensor (DP15 Variable Reluctance Pressure Sensor, 458 

Validyne, USA) was used to measure the pressure drop over a distance of L = 20.5 cm in the 459 

case of the Vosges sandstone fracture and L = 27 cm in the case of the granite fracture. A 460 

sketch of the experimental setup is shown in Figure 1. The range of the piston pump was 461 

from 6 x 10-3 to 6 L/h with an accuracy of ±2% while the volumetric pump was able to 462 

provide flow rates ranging from 0 to 300 L/h. The range of the flow meter installed at the 463 

outlet of the volumetric pump was from 7 to 500 L/h with an accuracy of ±1% and the range 464 

of the pressure sensor was adjusted by installing different membranes from 0-1400 Pa to 0-465 

56000 Pa with an accuracy of ±0.3% of the full scale 466 

 467 

 468 

Figure 1. Sketch of the experimental setup used in the present experiments. 469 
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 470 

The procedure followed in our experiments was similar to the one followed by Rodríguez de 471 

Castro and Radilla [2016a], but the covered range of injection flow rates was considerably 472 

wider. In this procedure, the fractures were saturated with CO2 (more water-miscible gas than 473 

air) prior to saturation with polymer solution in order to avoid air trapping during the 474 

experiments. Once saturated with polymer solution, a set of forty-five different flow rates 475 

ranging from 0.06 to 250 L/h were imposed for the flow through the fracture and the 476 

corresponding pressure drops were measured. It can be observed that the range of u used in 477 

this work is significantly wider than those used in some preceding works (Sabiri and Comiti, 478 

1994), which permits a better assessment of the proposed prediction methods (over ~ 3.6 479 

orders of magnitude). Each step was repeated four times and the uncertainty related to the 480 

repeatability of the pressure drop and the accuracy of the involved instruments was calculated 481 

as ±2σ, with σ being an estimate of the relative standard deviation of the measurements (95% 482 

confidence interval). The room temperature during the experiments was 20ºC ± 1. 483 

 484 

3.2. Fluid Properties 485 

 486 

Filtered water and a xanthan gum aqueous solution with polymer concentration Cp = 7000 487 

ppm were used as injected fluid in the present experiments. Xanthan gum is an important 488 

industrial biopolymer commonly obtained through fermentation of Xanthomonas campestris 489 

bacteria [Garcia-Ochoa et al., 2000; Palarinaj and Javarman, 2011; Wadhai and Dixit, 490 

2011]. This biopolymer is widely used as viscosity-enhancing additive in the food and 491 

cosmetics industries, as zerovalent iron for groundwater remediation and as part of the 492 

formulation of drilling muds in EOR [Garcia-Ochoa et al., 2000; Amundarain et al., 2009; 493 
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Palarinaj and Javarman, 2011; Wadhai and Dixit, 2011; Xin et al., 2015]. In solution state, 494 

an isolated xanthan macromolecule is more or less rigid and is of typically 1 μm of contour 495 

length [Mongruel and Cloitre, 2003] and a transverse size of approximately 2 nm. Song 496 

[2007] presented additional information about the chemical composition, structure and other 497 

physico-chemical properties of this biopolymer. Xanthan gum solutions are one of the main 498 

examples of inelastic, shear-thinning fluids in contrast to linear flexible polymers as 499 

polyacrylamide [Jones andWalters 1989; Sorbie 1991a] which are highly viscoelastic. Due to 500 

the stiffness of its molecule, xanthan semidilute aqueous solutions develop a high viscosity 501 

level and a very pronounced shear-thinning behavior. Therefore, xanthan gum solutions have 502 

been reported to present an apparent yield stress [Song et al., 2006; Carnali, 1991;Withcomb 503 

and Macosko, 1978; Khodja, 2008; Benmouffok-Benbelkacem et al., 2010] even if strictly 504 

speaking, they should be referred to as pseudo-yield stress fluids. The Herschel–Bulkley 505 

model [Herschel and Bulkley, 1926] has been proved to describe the steady-state shear flow 506 

of concentrated xanthan gum solutions [Song et al., 2006; Rodríguez de Castro et al., 2014, 507 

2016a]. 508 

 509 

Sixty litres of polymer solution were prepared by dissolving xanthan gum in filtered water 510 

containing 400 ppm of NaN3 as a bactericide. The xanthan gum powders were progressively 511 

dissolved in water while gently mixing with a custom-made overhead device. Once prepared, 512 

the polymer solution was characterized by means of a stress controlled rheometer (ARG2, TA 513 

Instruments) equipped with cone-plate geometry at a constant temperature of 19ºC ± 1, 514 

following a procedure previously presented in the literature [Rodríguez de Castro et al., 2014, 515 

2016a, 2016b]. The obtained rheograms are provided as supporting information (Figure S3). 516 

Eq. (10) was used to fit the rheograms following the procedure presented by Rodríguez de 517 

Castro et al. [2014] and obtaining τ0 = 7.4 Pa, a = 0.37 Pa sn and n = 0.52. A viscosity of 518 



28 
 

0.001 Pa s was measured for the solvent (water) and the densities ρ of both the water and the 519 

xanthan gum solution were taken as 1000 kg/m3.  520 

 521 

Moreover, a set of effluent fluid samples were collected at the outlet of the fractures after 522 

injection at the highest flow rate. The effluent rheograms were determined and compared to 523 

that of the inflowing fluid in order to assess polymer degradation and retention of the 524 

polymer on the fracture walls. No significant difference was observed between the 525 

rheograms, so polymer degradation and significant polymer retention were proved to be 526 

negligible. Moreover, no air macro bubbles were observed in the injected fluid. Also, the 527 

rheograms of a degassed fluid sample and an undegassed fluid sample were measured and 528 

compared in order to evaluate the influence of residual air micro bubbles, showing no 529 

significant difference. 530 

 531 

The Carreau fluids used in the non-Darcian shear-thinning flow experiments in rough-walled 532 

fractures performed by [Rodríguez de Castro and Radilla, 2016a] were three xanthan gum 533 

aqueous solutions with polymer concentrations of 200 ppm, 500 ppm and 700 ppm, 534 

respectively. The corresponding rheological parameters used in Eq. (9) for these fluids were 535 

[c = 4.8 × 10-3 Pa sn, μ∞ = 1.1 × 10-3 Pa s, n = 6.6 × 10-1] for Cp = 200 ppm, [c = 2.4 × 10-3 Pa 536 

sn, μ∞ = 1.1 × 10-3 Pa s, n = 5.8 × 10-1] for Cp = 500 ppm and [c = 4.2 × 10-3 Pa sn, μ∞ = 1.1 × 537 

10-3 Pa s, n = 5.2 × 10-1] for Cp = 700 ppm. 538 

  539 
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4. Results 540 

 541 

The flow experiments were conducted for both fluids (water and yield stress fluid) and were 542 

repeated four times. For each fluid, a total of a hundred and eighty (four repetitions for each 543 

of the forty-five flow rates) were completed. The hundred and eighty measures for a given 544 

fluid-fracture pair were considered to be an experimental set. 545 

 546 

4.1. Non-Darcian flow of a Newtonian fluid: obtaining K, 𝛄 and 𝛃 from experiments 547 

 548 

The experimental sets of ∇P as a function of u for water injection (Cp = 0 ppm) through both 549 

fractures are included as supporting information (Figure S4). Higher pressure losses were 550 

obtained for the less permeable fracture (Vosges sandstone), as expected, and non-linear 551 

relations between u and ∇P were observed in both cases steaming from inertial effects at high 552 

flow rates. It is known that directly fitting Eq. (5) to the whole set of data results in 553 

overestimation of permeability [Du Plessis and Masliyah, 1988; Dukhan et al., 2014]. 554 

Indeed, by fitting the whole set of data to the polynomial law, a part of the pressure drop 555 

would be attributed to inertial effects even at the lowest flow rates, which is not realistic. 556 

Consequently, the viscous pressure loss would be underestimated leading to permeability 557 

overestimation. To avoid this issue, the procedure proposed by Rodríguez de Castro and 558 

Radilla [2016a] was followed to determine h and K in the present experiments. This 559 

procedure is divided into two-steps: 560 

1) In this step, the hydraulic apertures hj obtained by only using the first j experimental data 561 

(starting with the lowest flow rates) are calculated by minimizing the sum ∑ (∇Pi −
j
i=1562 
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12Qiμ

hj
3w

)
2

 for j = 1…N, with N being the number of experimental data and μ being the 563 

measured dynamic viscosity of water at the room temperature (0.001 Pa s).  564 

 565 

2) Then, the quality of the N fits obtained by using the N values of hj calculated in the 566 

preceding step is evaluated by using the merit function F(j) =

∑ ||

∇Pi−
12Qiμ

hj
3w

∇Pi
||

j
i=1

j
 for j = 1…N. 567 

After that, the value of j minimizing F(j) was determined. The corresponding hj value was 568 

selected as the hydraulic aperture of the fracture from which K was calculated using Eq. (7).  569 

 570 

The obtained values for the granite fracture were K = 6.1 x 10-8 m2 (±2%) and h = 8.5 x 10-4 571 

m (±2%), while for the Vosges sandstone fracture the computed values were K = 2.1 x 10-8 572 

m2 (±1%) and h = 5.0 x 10-4 m (±1%). Once permeability was determined, the (Qi, ∇Pi, ) data 573 

were fitted to a full cubic law (Eq. 5) through a standard least squares method using the value 574 

of K calculated in the previous step and obtaining the values of d and β. The computed values 575 

were d = 2.5 x 10-5 (±5%) and β = 0 m-1 for the granite fracture, and d = 2.2 x 10-5 (±2%) and 576 

β = 1.5(±2%) m-1 for the granite fracture. Percentages represent ±2σ, with σ being an 577 

estimate of the relative standard deviation of the measurements (95% confidence interval). 578 

 579 

4.2. Equivalent and shear viscosity relations 580 

 581 

Eq. (30) was numerically solved within the involved range of u for both fractures using an 582 

implicit Runge-Kutta method. From (23), it can be deduced that α becomes the constant 583 

value 
1

√3
(2 +

1

n
) for Herschel-Bulkley shear-thinning fluids (0 < n < 1) flowing at very high 584 
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values of u, i.e. when u ≫
τ0hn

2n3n 2⁄ αn. Given that the shift parameter is known to be greater than 585 

unity [Chauveteau, 1982; Sorbie et al., 1989; López, 2003; Comba et al., 2011], the 586 

preceding condition will be respected if u ≫ u∗ =
τ0hn

2n3n 2⁄ . Consequently, the boundary 587 

condition α (u = 105 u∗) = 
1

√3
(2 +

1

n
) was used to numerically solve Eq. (30). The resulting α 588 

versus u functions are presented in Figure 2(b) and 1(d). 589 

 590 

Analogously, Eq. (29) was numerically solved within the range of u used by Rodríguez de 591 

Castro and Radilla [2016a] for both fractures. From (22), it can be deduced that α becomes 592 

the constant value √3 for Carreau shear-thinning fluids (0 < n < 1) flowing at very high 593 

values of u, i.e. when u ≫ [
2nαn−1h1−n

6μ∞
Max (3

n−1

2 , 3
n+1

2 c)]

1

1−n
.Since the shift parameter is 594 

known to be greater than unity, the preceding condition will be respected if u ≫595 

u∗ = [
2nh1−n

6μ∞
Max (3

n−1

2 , 3
n+1

2 c)]

1

1−n
. Therefore, the boundary condition α (u = 105 u∗) = √3 596 

was used to numerically solve Eq. (29). The resulting α versus u functions are presented in 597 

Figure 2(a) and 1(c). 598 

 599 

It can be noted that the relation between α and u strongly depends on polymer concentration 600 

as shown in Figure 2. Indeed, the dependence of α on u is weaker for the low polymer 601 

concentration as expected from their less pronounced shear-thinning behaviour. It is also 602 

remarked that this dependence of α on u is less significant as u increases and α approaches 603 

the limit value lim
𝑢→∞

α(u). This implies that assuming a constant value of α should lead to 604 

acceptable levels of accuracy in the prediction of the ∇P-u relations within the high-u region. 605 
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 606 

 607 

Figure 2. α(u) functions as numerically obtained from Eqs. (29) and (30). (a,c) correspond to 608 

the Carreau fluids used by Rodríguez de Castro and Radilla [2016a]. (b,d) correspond to the 609 

7000 ppm solution used in the present experiments. Solid lines represent the computed α(u) 610 

functions and dashed lines represent lim
u→∞

α(u). Purple lines correspond to the 200 ppm 611 

Carreau fluid, green lines to the 500 ppm Carreau fluid, red lines to the 700 ppm Carreau 612 

fluid and black lines to the 7000 ppm yield stress fluid. 613 

 614 

μpm,ysf was computed for the flow of the 7000 ppm solution through each fracture using Eq. 615 

(13). Two different approaches were followed: 1) the constant value α =
1

√3
(2 +

1

n
) was used 616 

in Eq. (13) and 2) the α(u) function obtained as explained above was used in Eq. (13). The 617 

results of both approaches are presented in Figure 3, together with μeq as obtained with Eq. 618 
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(11) from the ∇P-u measurements. In this figure, it can be observed that μeq is close to 619 

μpm,ysf at high values u for both the constant α and the variable-α methods. However, this is 620 

not the case at low and moderate values of u for which μeq approaches clearly better μpm,ysf 621 

with the variable-α method. It should be highlighted that xanthan gum may induce a depleted 622 

layer close to pore walls with a lesser concentration in that region. This produces an apparent 623 

wall slip which leads to a reduced average viscosity in the pores, mainly at low values of u 624 

[Chauveteau, 1982; Sorbie, 1991b]. However, in the case of the present fractures, the 625 

dimensions of the macromolecules is negligible with respect to the fracture apertures so this 626 

effect is not observed and μeq is very close to μpm,ysf even at low values of u. This shows that 627 

that the effect of fluid-solid interactions (e.g. polymer mechanical degradation and apparent 628 

wall slip) on the relationship between viscosity and shear rate is negligible [González et al., 629 

2005; Amundarain et al., 2009; Rodríguez de Castro et al., 2016b]. Also, it is expected that 630 

μeq > μpm,ysf at high values of u in the presence of important inertial effects [Tosco et al., 631 

2013; Rodríguez de Castro and Radilla, 2016a]. The fact that no important deviation of μeq 632 

with respect to μpm,ysf is observed in the present experiments reflects that inertial effects are 633 

not significant. Moreover, Figure 3 shows that the shear rates involved in the flow through 634 

the Vosges sandstone fracture are higher than those involved in the flow through the granite 635 

fracture. This is coherent with the highest values of u and the lowest permeability of the 636 

Vosges sandstone fracture. 637 

 638 

 639 
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 640 

Figure 3. μeq and μpm,ysf for the yield stress fluids used in the present experiments. Symbols 641 

represent μeq and solid lines represent μpm. (a) Corresponds to α =
1

√3
(2 +

1

n
). (b) 642 

Correspond to the α(u) functions presented in Figure 2. 643 

 644 

It should be noted that the two-parameter power law model used in most of the preceding 645 

works dealing with shear-thinning fluids [Chhabra and Srinivas, 1991; Rao and Chhabra, 646 

1993; Sabiri and Comiti, 1994; Smit and du Plessis, 1997; Tiu et al. 1997; Machac et al., 647 

1998; Chhabra et al., 2001; Broniarz-Press et al., 2007] is not appropriate to study non-648 

Darcian flow as the involved shear rates are high and close to the upper Newtonian plateau of 649 

viscosity [Woudberg et al., 2006; Fayed et al., 2016], which is not taken into account by this 650 

model. In contrast, the empirical Carreau model [Carreau, 1972] can accurately predict the 651 

variation in the viscosity at all shear rates and is known to successfully represent the shear-652 
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thinning behaviour of xanthan gum semi-dilute solutions [Sorbie et al., 1989; López et al., 653 

2003; Rodríguez de Castro et al., 2016b; Rodríguez de Castro and Radilla, 2016a]. Although 654 

Herschel-Bulkley model does not include an upper Newtonian plateau viscosity, there is less 655 

concern in the case of this type of fluids. Indeed, as can be observed in figures 3 and S3, the 656 

high levels of viscosity presented by the concentrated solutions injected in the present 657 

experiments are far from the upper plateau in all cases. This is in contrast with the results of 658 

Rodríguez de Castro and Radilla [2016a] for less concentrated xanthan gum solutions. 659 

 660 

4.3. Effects of yield stress on Reynolds number 661 

 662 

In previous works, it was shown that Reynolds number is not directly proportional to u for 663 

shear-thinning fluids, in contrast to the Newtonian case [Rodríguez de Castro and Radilla, 664 

2016a, 2016b]. Indeed, according to Eqs. (13) and (14), an increase in u implies a decrease in 665 

viscosity which implies in turn an extra increase in Reynolds number. In this work, the effect 666 

of yield stress on the Re-u relationship was also analysed. To do so, the Reynolds numbers 667 

obtained for the imposed values of u were calculated through Eq. (4) in the case of the granite 668 

fracture and Eq. (6) in the case of the Vosges sandstone fracture. μpm was used for the 669 

calculation of Reynolds number. It is highlighted that μpm accounts only for viscous effects 670 

and is consistent with the definition of Reynolds number as the ratio of inertial to viscous 671 

forces, in contrast to μeq that accounts also for inertial effects. The results are presented in 672 

Figure 4. In this figure, it can be observed that Reynolds number is close to zero at low values 673 

of u for the flow of the yield stress fluid in both fractures. 674 

 675 
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 676 

Figure 4. (a) Rec vs. u for the granite fracture (b) Refc vs. u for the Vosges sandstone fracture. 677 

 678 

From Figure 4, one can also deduce that the non-linear dependence of Re on u previously 679 

reported for Carreau fluids is also observed for shear-thinning yield stress fluids. 680 

Furthermore, as reflected in the same figure, there is a threshold value in terms of u below 681 

which Re is very close to zero for the injection of yield stress fluids. This threshold value 682 

arises from the yield stress of the fluid. In fact, for a yield stress fluid, viscosity approaches 683 

infinity at low shear rates leading to very low values of Re. Also, the critical value of Re for 684 

the transition to non-Darcian regime was reported to be close to Rec = 0.3 for the granite 685 

fracture and Refc = 0.05 for the Vosges sandstone fracture [Rodríguez de Castro and Radilla, 686 

2016a]. As can be seen in Figure 4, the Re obtained for the present experiments are lower 687 

than these critical values in both fractures, so no important inertial effects are expected. The 688 

ratio between inertial and viscous pressure losses was calculated from Eq. (33) as 
∆Pinertial

∆Pviscous
=689 
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βρu+
γρ2

μpm
u2

12μpm

h2

 leading to values of 
∆Pinertial

∆Pviscous
 < 7.1 x 10-3 for the granite fracture and 

∆Pinertial

∆Pviscous
 < 3.1 690 

x 10-2 for the Vosges sandstone fracture. This confirms that inertial pressure losses are not 691 

relatively important, in contrast to the experiments with Carreau fluids performed by 692 

[Rodríguez de Castro and Radilla, 2016a]. 693 

 694 

4.4. Experimental validation of the proposed prediction methods 695 

 696 

Eq. (33) was used to predict the relation between ∇P and u for the injection of the 7000 ppm 697 

solution through the fractures. The β and d values in Eqs. (2-5) do not depend on polymer 698 

concentration as shown by Rodríguez de Castro and Radilla [2016a, 2016b], so the values 699 

obtained from water injection (subsection 4.1) were used. The obtained predictions are 700 

presented in Figure 5 together with the experimental results of measurements performed in 701 

the present work. In this figure, the errors bars correspond to a 95% confidence interval as 702 

explained in subsection 3.1. The results are presented in a log-log scale in order to allow 703 

visibility of all the range of measurements and in a linear scale so as to show that the form of 704 

the curves is the same as that of the rheogram of a yield stress fluid (Figure S3). From these 705 

results, the accuracy of the proposed methods for the prediction of ∇P as a function of u 706 

during the flow of yield stress fluids through rough-walled fractures can be assessed. Figure 5 707 

shows that the variable- α approach provides more accurate predictions within the low and 708 

moderate u regions, which is in agreement with the arguments presented above. However, a 709 

less important difference is obtained between both methods for the highest values of u. It is 710 

observed that the variable-α method successfully predicts the ∇P-u relationship for the flow 711 

of the yield stress fluid through both fractures, even though the obtained predictions are 712 

slightly less accurate in the case of the Vosges sandstone. 713 
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 714 

 715 

Figure 5. ∇P as a function of u corresponding to (a,b) Granite and (c,d) Vosges sandstone 716 

fractures. Symbols represent experimental data, red solid lines represent predictions using Eq. 717 

(33) with the α(u) functions presented in Figure 2 and blue dashed lines represent predictions 718 

using Eq. (33) with α =
1

√3
(2 +

1

n
). 719 

 720 

With the objective of assessing the accuracy of the proposed predictions in the case of 721 

Carreau fluids, Eq. (33) was also used to predict the u-∇P relations for the injection of the 722 

three Carreau fluids used by Rodríguez de Castro and Radilla [2016a], and the results were 723 

compared to their experimental data in Figure 6. The average deviations between predictions 724 

and experiments corresponding to the whole range of explored u for all tested fluids and 725 

fractures are included as supporting information of this article (Table S1). As can be seen in 726 
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Figure 6, the predictions coming from both methods (constant-α and variable-α) methods are 727 

almost identical in all cases. This is explained by the proximity of all the α values to the limit 728 

value √3 (Figure 2) within the range of imposed u. Furthermore, the low and moderate u 729 

regions were not explored by [Rodríguez de Castro and Radilla, 2016a], while it is precisely 730 

in these regions where more important differences are expected between both approaches. 731 

However, the predictions obtained for the covered range of u is in very good agreement with 732 

the experimental data, apart from the 500 ppm – granite pair which will need further study. 733 

Moreover, it is also remarked that Eq. (33) successfully takes into account the inertial effects, 734 

which are important for the flow of the injected Carreau fluids at the involved values of u. 735 

 736 

 737 

 738 



40 
 

 739 

Figure 6. ∇P as a function of u corresponding the injection of the three Carreau fluids used 740 

by Rodríguez de Castro and Radilla [2016a] through (a,b,c) Granite and (d,e,f) Vosges 741 

sandstone fractures. Symbols represent experimental data, red solid lines represent 742 

predictions using Eq. (33) with the α(u) functions presented in Figure 2 and blue dashed lines 743 

represent predictions using Eq. (33) with α = √3. 744 

 745 

 746 
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5. Discussion 747 

 748 

As explained in subsection 3.2., the concentrated xanthan gum solutions used in our 749 

experiments present an apparent yield stress, so they should be referred to as pseudo-yield 750 

stress fluids. In this regard, Lipscomb and Denn [1984] showed that the classical lubrication 751 

approximation, which essentially assumes that flow is locally fully-developed, can be applied 752 

to this type of fluids, while it cannot be successfully applied to ideal yield stress fluids with a 753 

real yield stress. These authors argued that rigid plug regions should not exist in complex 754 

geometries according to classical lubrication. Indeed, this theory predicts that plug-velocity 755 

changes slowly as aperture varies, so the plug region cannot be truly unyielded for continuity 756 

reasons. The latter is known as lubrication paradox [Lipscomb and Denn, 1984; Frigaard and 757 

Ryan, 2004; Lavrov, 2013]. However, as showed by Lipscomb and Denn [1984], both real 758 

and pseudo-yield stress fluids may exhibit a near-plug-like region in a complex flow field. 759 

For fully developed flows, the depth of the plug as a function of ∇P is given by [Lipscomb 760 

and Denn, 1984]: 761 

 762 

h0 =
2τ0

∇P
 

 

(34) 

As a first simple approach similar to the one presented by Auradou [2008], we will assume 763 

that the fracture space can be modelled as being a bundle of parallel rectangular canals of 764 

length L, width wi and aperture hi, with wi » hi. hi is expected to vary along the flow paths. 765 

However, given the strong dependence of ∇P on the canal aperture in the case of shear-766 

thinning fluids, we will also assume that the pressure drop along a percolating path is located 767 
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exclusively in the section of smallest aperture h0. By doing so, it can be deduced that the 768 

fluid will flow through a percolating path only if the minimum local aperture is superior to h0 769 

as given by Eq. (34). Therefore, the number of percolating pathways is expected to increase 770 

as ∇P and u increase. h0 has been presented as a function of u for the present flow 771 

experiments with yield stress fluids in Figure 7. This figure shows that h0 decreases with u, 772 

as expected. Indeed, only the pathways with the highest apertures participate in the flow at 773 

the lowest values of u, while pathways with smaller values of h0 are progressively 774 

incorporated as u increases. According to this simple approach, the flow pathways including 775 

the minimum apertures of the fracture would not participate in the flow, even at the highest u, 776 

so unyielded fluid regions would exist (in agreement with Frigaard and Ryan [2004]). 777 

 778 

 779 

Figure 7. h0 as a function of u for the flow of the yield stress fluid through the (a) granite 780 

fracture and the (b) Vosges sandstone fracture. The experimental data are represented as void 781 
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symbols. Red solid lines represent the maximum fracture apertures, black solid lines 782 

represent the minimum fracture apertures and blue dashed lines represent the average fracture 783 

apertures as measured by Nowamooz et al. [2013] (see complementary figures). 784 

 785 

If we focus on the Darcian flow of a yield stress fluid (μpm = μpm,ysf), Eq. (31) gives the 786 

pressure gradient through a rough-walled fracture of hydraulic aperture h as a function of the 787 

Herschel-Bulkley law parameters: τ0, a and n. This equation can be re-written as: 788 

 789 

∇P =
C1

α
+ C2αn−1un 

 

(35) 

 790 

with C1 =
2√3τ0

h
 and C2 =

2n+13
n+1

2 a

hn+1 . 791 

 792 

In the high flow rates region, i.e. when u ≫
τ0hn

2n3n 2⁄ , α can be considered a constant value α =793 

1

√3
(2 +

1

n
) and Eq. (31) leads to: 794 

 795 

∇P = ∇P0 + Cun 

 

(36) 

 796 
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with ∇P0 =
6nτ0

h(2n+1)
 and C =

6an(
2+4n

hn
)n

h+2hn
. This is in agreement with the results of Talon et al. 797 

[2014], who stated that u scales linearly as (∇P − ∇P0) in the case of a Bingham fluid (n = 1) 798 

flowing at high u through a one-dimensional channel. Also, Nash and Rees [2017] showed 799 

that the manner in which flow begins once the threshold pressure gradient is exceeded 800 

strongly depends on the channel size distribution of the porous media. The same authors 801 

[Talon et al., 2014; Nash and Rees, 2017] proved that ∇P0 is higher than the actual threshold 802 

pressure, which is consistent with our results given that α increases as u tends to zero (Figure 803 

2). Roustaei et al. [2016] numerically showed that unyielded plug regions appear close to the 804 

fracture wall and in the deeper layers (fouling layers) when injecting yield stress fluids in 805 

short fractures, especially at low values of u. These researchers showed that Darcy-type flow 806 

laws are limited to H/L≪1, H being a half of the difference between the maximum and the 807 

minimum aperture of the fractures. In the case of the granite sandstone used in the present 808 

work H/L = 6.2 x 10-3 while H/L = 5.5 x 10-3 for the granite sandstone as shown in supporting 809 

figures, so a Darcy-type approach is expected to be valid. 810 

 811 

Lavrov [2015] developed analytical solutions for the flow of truncated power law fluids 812 

through smooth-walled fractures. Truncated power-law fluids, unlike Carreau fluids, enable a 813 

closed-form solution for the flow between plane parallel walls while exhibiting more realistic 814 

behaviour than simple power-law fluids for commonly used polymer solutions. However, 815 

truncated power-law fails to model the real behaviour of these complex fluids at shear rates 816 

lying within the transition region between the shear-thinning region and the upper Newtonian 817 

plateau. Therefore, this model is not expected to provide accurate predictions in the wide 818 

range of shear-rates explored in the present experiments. 819 
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 820 

One may wonder whether the proposed procedure is simpler than performing a numerical 821 

solution to the actual flow equations, without invoking a bundle-of-capillaries approximation. 822 

In this sense, it should be highlighted that performing a numerical solution to the actual flow 823 

equations would imply using the size distribution of the flow paths as an input for the model. 824 

This information on the size distribution of the flow paths is rarely available in real 825 

applications, while the average aperture of the fracture can be more easily estimated or 826 

measured from water flow experiments. It is reminded that the objective of this work is to 827 

present a simple method to predict the pressure drop for the flow of shear-thinning fluids 828 

through tough-walled rock fractures. Therefore, using hardly accessible inputs as needed to 829 

perform a numerical solution to the actual flow equations is not a valid approach. 830 

 831 

Also, it is noted that in our experiments with yield stress fluids, the total pressure drop 832 

through the fractures was successfully predicted from the values of K, γ and β obtained from 833 

water injection without any significant deviation. Therefore, elongational viscosity effects 834 

have been shown to be negligible in the case of the present experiments with yield stress 835 

fluids as they were with the Carreau fluids used by [Rodríguez de Castro and Radilla, 836 

2016a].  837 
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6. Summary and conclusions 838 

 839 

A simple method to extend Darcy’s law, weak inertia cubic law and full cubic law to the flow 840 

of yield stress fluids and Carreau fluids in rough-walled natural fractures has been presented 841 

in the present work. In this method, the values of the shift parameter α between the μpm 842 

measured in the rheometer and the μeq observed during the flow in the porous media is 843 

predicted through identification of the apparent shear rate with the maximum wall shear rate 844 

in a section with aperture h. The inputs of the method are only the shear rheology parameters 845 

of the fluid, the hydraulic aperture of the fracture and the inertial coefficients γ and β. On the 846 

basis of our results, an efficient protocol to predict ∇P as a function of u is proposed here: 847 

1) Determine the shear-rheology parameters of the fluid: (τ0, a, n) for Herschel-Bulkley 848 

fluids or (μ∞, c, n) for Carreau fluids. 849 

2) Mesure h, β and γ from Newtonian-flow experiments. Alternatively, h can be deduced 850 

from the aperture distribution [Zimmerman et al., 1991], which can be obtained 851 

through image analysis [Nowamooz et al., 2013]. 852 

3) Calculate the values of α(u) 853 

3.1) When low and moderate values of u are involved, solve the differential 854 

equation (29) or (30) to obtain α(u). 855 

3.2) When only high values of u are involved (u ≫
τ0hn

2n3n 2⁄  for yield stress 856 

fluids or u ≫ [
2nh1−n

6μ∞
Max (3

n−1

2 , 3
n+1

2 c)]

1

1−n
 for Carreau fluids), use a constant 857 

value α =
1

√3
(2 +

1

n
) for Hershel-Bulkley fluids or α = √3 for Carreau fluids. 858 

4) Use Eq. (13) or (14) to calculate μpm,Carreau or μpm,ysf 859 
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5) Use Eq. (33) to calculate ∇P as a function of u, with  γ = 0 in the case of 860 

Forchheimer’s law (strong inertia regime), β = 0 in the case of a cubic law (weak 861 

inertia regime), β = 0 and γ = 0 in the case of Darcy’s law (creeping flow). 862 

 863 

Flow experiments of yield stress fluids covering a wide range of u (~ 3.6 orders of 864 

magnitude) have been performed and compared with the predictions of the proposed method, 865 

showing good agreement. It has been observed that the existence of a yield stress reduces 866 

significantly the value of Reynolds, so the inertial effects are negligible within the explored 867 

range of u. Consequently, Darcy’s law provide accurate u-∇P predictions in contrast to the 868 

case of less concentrated solutions with no yield stress [Rodríguez de Castro and Radilla, 869 

2016a]. Also, the experimental results obtained in the non-Darcian shear-thinning flow 870 

experiments through rough-walled fractures conducted by [Rodríguez de Castro and Radilla, 871 

2016a] have been compared with the predictions of the proposed method, showing good 872 

agreement also in the case of Carreau fluids. It should be noted that good predictions of the 873 

pressure drop-flow rate relations are obtained by only using the global parameters h, β and γ 874 

as inputs. Therefore, no significant effects of the aperture distributions of the fractures have 875 

been observed. 876 

 877 

The variable-α approach leads to a very good overlap between μpm and the μeq over the wide 878 

range of u investigated in this work. Our results can be included in computational studies of 879 

large-scale nonlinear flow in fractured rocks, as suggested in the works of Javadi et al. 880 

[2014]. These conclusions must now be extended to other types of rough-walled rock 881 

fractures. 882 
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