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a b s t r a c t

The reflection and transmission of light from a slab containing a turbid medium provide a scattering effective phase function from which the true optical 
anisotropy factor may not be always easily retrieved. From the statistical Poissonian theory and thanks to approximations about the optical path related to 
the first scattering events, a simplified relationship is established between angular phase function and ef-fective phase function. Therefore, with a 
modified Gegenbauer or a Two-Terms Henyey-Greenstein phase function, some adjustable analytic functions are proposed in order to fit the 
measurements linked to the true effective phase function. An efficiency of the approximate analytical function is proved, thanks to the light modelling by 
Monte Carlo method, for optical thickness lower or equal to 2. This is confirmed by comparisons of the anisotropy retrieval with other methods. 
Concerning applications, several fits were made on experimental effective phase functions corresponding to goniometric measurements from usual 
diffusing materials and biological tissues.

1. Introduction

The detection of the diffused light from turbid media interests a
lot of scientific field, such as biomedical [1,2] and biovegetal [3],
and also atmospheric [4] and oceanic [5] studies. The scattering
modelling uses bulk parameters such as the absorption coefficient
ma and the scattering coefficient ms [6]. The coefficients ma and ms
are the probabilities for a photon to be absorbed or scattered per
length unit, respectively. Another important parameter is the an-
isotropy coefficient g, from which the reduced scattering coeffi-
cient m's¼ms(1-g) can be obtained [6]. The parameter g is the mean
cosine of the angular deviation θ, while m's represents the prob-
ability of an isotropic scattering event per length unit. The values
of g and ms have both influences on light transport close to the
injection point, whereas the value of m's is sufficient to describe the
light scattering far from the source [7–10]. When only ms is known,
the value of g must be retrieved to simulate the light propagation.
Moreover, when only m's is known, the retrieval of ms needs the
value of g. The computing of g linked to a turbid medium can be
seen as an important task.

Note that very close to the source, the modelling of the photon
transport asks more information than only g. Therefore, the
probability density of angular deviation, called the angular phase
function p(θ), is often directly searched with a goniometric mea-
surement [11–18] on different kind of samples, such as diffusing
liquids [13–16] or biological tissues [11,12,17,18]. This function is
necessary for the simulations of various turbid media [19–24]
(for instance blood sample [20], human skin [21], or fruit tissues

[22–24]). Moreover, it gives the anisotropy coefficient g and other
interesting factors [25,26], such as the parameter γ¼(1-f2)/(1-g)
which uses the first two moments of the phase function, g and f2
(see Eq. 3), and may inversely characterize the weight of the large
angle backscattering events. A very small volume of turbid med-
ium, in such a way that just one scattering event exists, allows to
obtain p(θ) from the measurements of the intensities scattered I
(θ). This geometrical condition corresponds to a threshold length
l�1/ms (i.e. a dimensionless length such as lms�1). However, the
geometrical form generally used for samples is the slab geometry,
and its great transverse length does not permit to have a di-
mensionless length lms equal to 1. Nevertheless, this single scat-
tering event condition is approached for a thickness d such as
dms«1 [11], i.e. a very thin slab which cannot always be realized.

In fact, the normalized distribution I(θ) is an effective phase
function, that characterizes the multi scattering events. The stu-
dies on the effective phase function have been reported by several
investigations [16,27–32]. The numerical simulations of this ef-
fective phase function by Monte Carlo [16,27–29] or adding-dou-
bling [30] methods depend on the choice of the angular phase
function. These numerical methods give often accurate results, but
either need a large computing time or may not be enough flexible.
Therefore, analytical solutions have been considered in order to
provide an estimated value of the anisotropy [16,27,31], or to re-
trieve angular phase function [32]. These analytical methods don't
take into account the specific geometry of a slab.

In this paper, an approximate analytical solution is proposed to
represent the effective phase function observed at the boundaries
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of a thin slab having an optical thickness such as dms�0.5–2.5. It is
used to fit the effective phase functions simulated by Monte Carlo
code, and a comparison of the retrieved anisotropy coefficient is
performed with the ones given by other analytical methods.
Moreover, the fit is also applied on several set of experimental data
obtained from the literature.

2. Anisotropy computed from analytical solutions

The anisotropy can be retrieved from simple analytical solu-
tions described below, which are related to a slab geometry (ex-
ample: Kubelka-Munk solution) or not. The dimensionless optical
length τ, used as parameter, is the product between the scattering
coefficient ms and a length. This length refers either to the thick-
ness of a slab (d), or the depth coordinate (z) or the path-length of
the light (l) when the slab geometry is not taken into account to
build the analytical solution. Afterward in the others sections, the
optical lengths linked to d and l will be represented by τ and τ(n),
respectively.

2.1. Analytical theory of Kubelka-Munk

The Kubelka-Munk theory is the equation of radiative transport
for only one dimension z. The slab geometry can be adapted to this
theory if the illumination source is isotropic, without specular
reflection [33]. From this assumption, the total reflectance

RT ¼ ∫ θ θ θ( ) ( )
π

π
p d.sineff/2

and transmittance TT¼ ∫ θ θ θ( ) ( )
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where peff(θ) is the effective phase function, a¼0.5(1þRT
2-TT2)/RT,

and b¼(a2�1)1/2. For a slab of optical thickness τ, a thickness d,
and for maoom's, the anisotropy coefficient can be estimated by
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2.2. Analytical solutions of the effective phase function

An angular phase function of a single scattering event can be
seen through the formula:

∑θ θ( ) = ( + ) ( )
( )=

∞

p f Pcos 2k 1 cos
3k

k k
0

where Pk are the Legendre polynomials and fk are the character-
istic moments. When the multi-scattering events are taken into
account inside a turbid medium, the angular probability density
has to be replaced by an effective phase function. A general ana-
lytical expression of the effective phase function, depending on the
path-length l and the scattering coefficient ms (or the dimension-
less path-length τ¼msl), has been established from two studies
[27] and [32]. This solution is based on the radiative transport
equation and on the Poissonian Compounds theory. The main
difference between these two studies is the incorporation or not of
the unscattered part, δ(cosθ�1), inside the function distribution.
The expression of the effective phase function related to an optical
length τ is then from [32]
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or from [27]
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where the relationship between these two distribution functions
is
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From the simple solution ( )peff
a , the anisotropy g¼ f1 related to the

optical path-length τ can be found by

)( ∫ τ μ μ μ τ= ( ) + ( )
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The solution ( )peff
a can be approached by the Henyey-Greenstein

function when its parameter g is replaced by gG with G¼[(τ�1)
eτ�1]/(eτ-τ�1) [27] (moreover l is replaced by the depth z,
i.e. τ Emsz). Therefore, another estimation of g is
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These solutions are based on the following property: the ef-
fective anisotropy g(n) of n scattering events is a product
g(n)¼∏j¼1-n g(j), where g(j) is the anisotropy of the scattering
event (j). This rule is also available for any moment fk. If g(j) is a
constant factor, then g(n)¼gn. But the number of scattering events
n and the optical thickness τ of a medium are often correlated,
such as τ�n. Owing to this approximation, another estimation of
anisotropy has been suggested [31,16]
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These analytical approaches of the effective phase function do
not take into account the influence of the boundaries of the
medium, such as the ones of a slab geometry. The distribution of
the single scattering event, occurring in a thin slab of optical
thickness τ, was given by [34] and [35]:
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where p(1)(θ) is an angular phase function, and with the as-
sumption maooms. For a small thickness such as τ¼1/10, these
equations may be seen as the expression of the effective phase
function, and can be used to retrieve the anisotropy coefficient.

In the next section, an approximate analytical solution of the
effective phase function is proposed that takes into account the
Poissonian Compounds theory linked to the multi-scattering and
the slab geometry (with 1/10oτo2). The goal is to use this
analytical function to fit an experimental curve and to retrieve the
anisotropy parameter.

3. Approximate analytical solution of the effective phase
function in a slab

3.1. Statistical consideration

For the scattering events, the statistical approach can be used.
In Fig. 1(a–c), the probability of n scattering events (1rnr4)
according to the anisotropy is computed by Monte Carlo for a thin
slab (300 mm) with an absorption coefficient ma¼0.01 mm�1 and
the use of a Henyey-Greenstein phase function [36]. The source



(106 photons) illuminates normally the sample surface and there is
no refractive index mismatch between the medium and the out-
side. The Monte Carlo code was established following the princi-
ples described by the Ref [19]. Particularly, a random variable ξ,
0oξo1, is computed in such way that the integral of the angular

density function is ( )∫ θ θ′ ′=
θ

−
p dcos

cos

1
ξ. Note that the azimuthal

angle φ is chosen randomly between [0, 2π].
Three optical thicknesses are considered: τ¼1.05, 1.5 and 3.

For τo3, the probabilities decrease with the number of events,
while for τ¼3 the probability of a single scattering event (n¼1)
is not the largest. Moreover, these probabilities are never con-
stants with respect to the anisotropy coefficient. This is related
to the influence of the angular deviation θ on the optical path
inside the slab, and also illustrates that the distribution of
scattering events linked to reflectance (cosθo0) is different of
the transmittance one (cosθ40). Whatever the cases, the values
of probability for anisotropy limit gl¼1 are e-ττn/n!(1-e-τ)�1, i.e.
the Poisson probability of n order over the opposite probability
of 0 event. Even if the Poissonian statistic may be applied for
go1, the optical thickness has to be replaced by another di-
mensionless length, related to τ and cosθ, to define the mean of
the Poisson statistic.

The Poissonian distribution can be associated with p(n)(θ), the
effective phase function of the nth scattering event, in order to give
the distribution of the nth scattering event:
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where τ(n)(τ, cosθ) is an optical path-length estimated and re-
lated to the nth scattering event. The effective angular phase
function p(n)(θ), which is related to the anisotropy coefficient g, is
an angular phase function p'(θ) having as asymmetry parameter
gn. This assumption uses the principle previously cited (g(n)¼gn),
and has been validated by simulations using Henyey-Greenstein
function till n�50 [29]. Note the fact that the distribution of the
single scattering event n¼1 has been already described by the
Eqs. (10 and 11). Therefore, the Eqs. (12 and 13) concern only the
order n41.

3.2. Approximation of the optical path-length

The dimensionless parameter τ(n41) can be seen such as the
dimensionless length linked to a schematic trajectory of a photon
transport when there are at least two scattering events. For a
scattering event nth, τ(n) should be dependent on several deflection

angles θ(n). But, as the approach used in [37], a scattering event can
be related to a strong scattering (S), which modifies the direction, or
to a forward scattering (F) for which the assumption

( )( )τ θ θ τ− ~( ) −/cos n n 1 can be made. The series of these events (F, S)

can be arranged in similar manner than a limited development, but
differently with respect to the paths. The transmitted light may
follow the distribution {1st event F or 1st event S, 2nd event F&S, 3th

event S&F&F, etc…}, whereas the reflected part may follow {1st

event S, 2nd event F &S, 3th event F&S&F, etc…}.
As long as there is only one event S, the dimensionless optical

path can be described by two segments (see Fig. 2(a,b)). For a small
optical thickness τo1, the dimensionless length of these two seg-
ments is defined by xτþxτ/|cosθ| (reflectance case) or xτþ(1-x)τ/
|cosθ| (transmittance case), where 0oxo1. In these conditions,
τ(n41) can be estimated by the average value of these dimensionless

lengths τ(n41) ¼oxτþxτ/|cosθ|4x:0-1 ¼ ∫ [ τ + τ | θ |]x x / cos dx
0

1
or

τ(n41) ¼oxτþ(1-x)τ/|cosθ|4x:0-1 ¼ ∫ [ τ + ( − )τ | θ |]x 1 x / cos dx
0

1
,

and the two formulae give the same expression τ(n41)¼1/2(τþτ/
|cosθ|) (see Fig. 2(a)).

For an optical thickness 1oτo3, τ(n41) can be estimated with
the help of the mean value of the first scattering event path-length
oτ(n¼1)4¼τ0¼1 [38]. If this first event is F, the optical depth of
F&S (and F&S&F, F&F&S, F&S&F&F,.) can be approached by (see
Fig. 2(b))
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If the first event is S (see Fig. 2(b)), the optical depth of (S&F,
S&F&F, S&F&F&F,.) can be approached by

τ τ τ τ τ θ θ≈ ′ + [( − ′) +( − )] ( > < ′ < ) ( )( ) x x x1 /cos , cos 0, 0 1 16c 0 0 0

The cases τ(a), τ(b), and τ(c) were limited here to n¼2, 2rnr4,
and 3rnr4, respectively. By integrating x' between 0 and 1,
several estimated optical depth oτ(n41)(τ,cosθ)4 are obtained:
for the transmittance case τ(3rnr4)(τ,cosθ40)¼0.5þ(τ�0.5)
/cosθ; τ(n¼2)(τ,cosθ40)¼0.5(τþ1)þ0.5(τ�1)/cosθ (as shown in
Fig. 2(c)), and for the reflectance case τ(2rnr4)(τ,cosθo0)¼0.5
(τþ1)þ0.5(τþ1)/|cosθ| (Fig. 2(d)).

3.3. Test with Henyey-Greenstein phase function

To validate the Eqs. (12) and (13) with the approximate di-
mensionless lengths Eqs. (14)–(16), a comparison was made with

Fig. 1. Probabilities of n (1, 2, 3, and 4) scattering events (number of n scattering events/number of scattering events) versus anisotropy were computed thanks to Monte
Carlo simulations made for a slab using a Henyey-Greenstein function, an absorption ma¼0.01 mm�1 and according to an optical thickness of (a) τ¼1.05, (b) τ¼1.5, and
(c) τ¼3. The dotted lines show the values of e-ττn/n!(1-e-τ)�1.



the probabilities of n events, computed from the Monte Carlo si-
mulations previously described in Section 3.1. Note that the
quantity of exit photon captured over an angle θm (with an un-
certainty of 70.05°), when n iterations have been run, is pro-
portional to the product between sinθmΔθm and the probability
density function of n events. The Henyey-Greenstein functions pHG
used for the Eqs. (10)–(13) were such as p(n)(θ)¼pHG

(n)(θ, g)¼
pHG

(1)(θ, gn), where g is the anisotropy coefficient. To perform the
comparisons, two constants Cf and Cb have been multiplied to the

Eqs. (10)–(12) and (11)–(13), respectively. The case g¼0.76 is
considered in the Fig. 3. It is shown the efficiency of the fits for θ
inferior to 60°, especially for the forward part (cosθ40), and even
till 90° concerning n¼1. The error of fit is maximum for n41
around 80°.

Afterward, the use of the addition of Eqs. (12) and (13) to fit all
the range of the measured angular distribution needs just one
constant C¼ Cf ¼Cb to be multiplied. It was found that the best
compromise is to limit the order n till 3 regarding the forward

Fig. 2. Schema of dimensionless optical path length considered in this study. The black lines correspond to approximate and average path-lengths. (a) τo1, (b) τ41, path-
lengths linked to the reflectance and transmittance cases. (c) τ41, average path-length linked to transmittance case, (d) τ41, average path-length linked to reflectance case.
τ0¼1 is the mean value of the first scattering event path-length.

Fig. 3. For an anisotropy of 0.76, probabilities of n (1, 2, 3, and 4) scattering events versus the exit angle computed from either simulations described in Fig. 1 (symbols) or the
approximate effective phase function Eqs. (12) and (13) (lines). (a) τ¼1.05, (b) τ¼1.5, and (c) τ¼3.



part. Therefore, an analytical phase function valid for a few scat-
tering events may be given by:
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Note that in the fitting algorithm, angles ranging from 75° to
115° were excluded for the error estimation.

3.4. Retrieval of the modified Gegenbauer phase function

The Henyey-Greenstein phase function is an empirical function
who characterizes the angular distribution, but where the back-
ward part is neglected compared to the forward part. Moreover, a
high peak forward, often observed, cannot be accurately re-
produced by this Henyey-Greenstein function. The improvement
of this function has been proposed with the Gegenbauer function
[39] or the modified phase functions [25,28,40] in order to take
into account the peak-forward or the backward part, respectively.
Adding a term proportional to cos2θ [25], the use of Two-Terms
Henyey-Greenstein functions (called pTTHG) [28] are examples of
modified phase function. A modified phase function considered
here is the modified Gegenbauer phase function:
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where 3 parameters must be chosen. It should be noted that for
α¼0.5, pMGK gives the modified Henyey-Greenstein function pMHG

as the one defined by [25].
To incorporate partially this modified Gegenbauer function

inside the Eqs. (17) and (18), several approximations can be made.
The enhancement of the peak forward can be essentially observed
for the first event (n¼1). So even if p(1)(θ)¼pMGK(θ, gGK, α, f ), the
other functions p(n)(θ) can always be built according to the He-
nyey-Greenstein functions. For n41 the parameter α of p(n)(θ) is
changed to 0.5, while gGK is replaced by the power n of the ani-
sotropy coefficient of pMHG(θ,gGK,α¼0.5,f¼1). Moreover, to be well
adapted to the previously cited principles, i.e. Eq. (3) and
fk
(n)(j)¼∏j¼1-n fk(j), the coefficient f and the term proportional to

cos2θmust be modified for n41. It was found that p(n)(θ) could be
written for n superior to 1 such as
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where g is the anisotropy coefficient of p(1):
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and where h1(n,f,g) and h2(n,f,g) are:

( )( )= + − −
( )

⎛
⎝⎜

⎡⎣ ⎤⎦
⎞
⎠⎟h n f g fg f f g, ,

5
2

2/5 1
22

n n n
1

2 2

( ) = − − + ( − ) −
( )

⎛
⎝⎜

⎡⎣ ⎤⎦
⎞
⎠⎟h n f g f fg f f g, , 1

5
2

2/5 1 .
23

n n n n
2

2 2

For a small value (1-f), h1(n,f,g) and h2(n,f,g) can be approxi-
mated by:
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From the same principles (Eq. (3) and fk
(n)(j)¼∏j¼1-n fk(j)), the

Two-Terms Henyey-Greenstein phase function corresponding to
an order n, pTTHG(n)(θ), has been already given in the study [28]. As
made above, pTTHG(n)(θ) can also be approximated for a small value
(1-f ) by:
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where gb is a negative coefficient. Then, the approximate effective
phase function using p(n)(θ), defined by the Eqs. (20), (21), (24)
and (25) or the Eqs. (21) and (26), may be used as analytical model
for fit methods.

4. Results

4.1. Henyey-Greenstein phase function

With the same set of simulations as the one used in Section 3.1,
several simulated effective phase functions I(θ) were considered
according to different values of optical thickness (τ¼0.6, 1.05, 1.2,
1.5, 1.8, 2.4, 3). With the help of Trust-Region method, the fits of I
(θ) by analytical functions were performed. Fig. 4 shows different
cases of fit with the fixed parameters α¼0.5 and f¼1. For an op-
tical thickness of τ¼0.6 and for g¼0.86, the fit is made either by
the phase function p1(τ,θ) Eqs. (10) and (11) or by the approximate
effective phase function peff(τ,θ) (Eqs. (17) and (18) for τo1), as
shown in Fig. 4(a) and (b), respectively. The best retrieval is given
by the approximate function with a retrieved anisotropy 0.856
while the phase function p1(τ,θ) gives 0.8023. For an optical
thickness larger than 1, the fits made with peff(τ,θ) were correct till
τ¼2.4. Fig. 4(c) shows a good fit for τ¼1.5, while in the Fig. 4(d) is
plotted a fit with a lower correlation R²¼0.96 obtained when τ¼3.

In order to evaluate more precisely the efficiency of fit by the
approximate effective phase function (Eqs. (17) and (18)) for τ41,
comparisons were made between the retrieved anisotropies ob-
tained from the fit or from other analytical methods (Eqs. (7)–(9)).

Fig. 5 shows that the retrieval of anisotropy made with the fit
method is the best for τo2. For τ42, the anisotropies estimated
by Eqs. (8) and (9) are better, especially for the Eq. (9). The error
linked to the method of Eq. (8) is always limited whatever τ. The
two other methods, Eqs. (2) and (7), are not efficient, except for
the cases (τ¼1, g¼0.56) and (τ42, g¼0.86), respectively. It was
also observed in Fig. 5 that the effective anisotropy

( )∫ ∫θ θ θ θ θ= ( )g I d I dcos cos cos / cos coseff is a wrong estimation of the
true anisotropy when τZ1.

4.2. Modified Gegenbauer phase function

Another set of simulations was made by Monte Carlo using
different modified Gegenbauer angular phase functions (Eq. (19)).
The measured effective distributions I(θ) were fitted by the ap-
proximate effective phase function with the use of Eqs. (20,21,24
and 25). Fig. 6 depicts several results obtained when τ¼1.2, for
f¼1 (Fig. 6(a)–(b)) and f¼0.9 (Fig. 6(c)–(d)). All the correlations R²
of fit were superior to 0.99. The orders of magnitude of α and f
estimated using peff were the same than the true ones used in the
Eq. (19).



A comparison of the retrieved anisotropies was performed
between the computing methods (Eqs. (2),(8) and (9)) and the fit
methods using either Eq. (20) (MGK) or Eq. (20) with α fixed to 0.5
(MHG). The results considered for three anisotropy categories
(�0.56, �0.7, �0.86) are shown in Table 1. For τ¼1.2 and f¼1, the
fit by MGK gives low errors especially when α≠0.5. The errors for
the fits methods (MHG or MGK) increase when 0.85ofo1, but are
close to the ones obtained with the Eq. (8). Nevertheless, for a
specific case (fo1, α¼0.5 and τ¼1.8), the fit method shows errors
smaller than the other methods. The Kubelka-Munk method
(Eq. (2)) gives best results when fo1 (for τ¼1.2), which can be
explained by the fact that the Kubelka-Munk theory becomes
more interesting when the angular asymmetry is reduced [41].

A good correlation R² of fit is obtained with the help of this
approximate "effective" phase function when τo2, which permits
to retrieve efficiently the anisotropy coefficient. It can be used for
different profile shapes with the use of a modified Gegenbauer
function. Therefore, an application of this solution can be made on
real measurements. In the next section several experimental

effective phase functions obtained from the literature are studied
thanks to the analytical solutions.

4.3. Fit on experiments data

Several fits were made here on data based on experimental
points copied from the studies [12,18,30]. First, the diffusions ob-
tained from materials often used to build phantoms or be light
diffusers [30] are tested with the fitting method. Then, biological
tissues [12,18] are considered.

4.3.1. Fit on bulk diffusing materials
Two effective phase functions were measured by Leyre et al. [30]

for two samples: TiO2 particles inside silicone oil and LDPE (Low-
Density PolyEthylene). The optical thickness of the slab containing
the TiO2 particles, estimated from the regular transmittance, was
τ¼0.85, and the one of LDPE was τ¼1.85. Because all the angle
range [0, 180°] is considered, a peak of backscattering around the
region [160°–180°] appears for the two cases (Fig. 7).

Fig. 4. Effective phase functions (semi-logarithm) obtained by simulations using Henyey-Greenstein function (g¼gHG¼0.86). (a) Fit by Eqs. (10) and (11) with τ¼0.6. (b) Fit
by Eqs. (17) and (18) with τ¼0.6. (c) Fit by Eqs. (17) and (18) with τ¼1.5. (d) Fit by Eqs. (17) and (18) with τ¼3. Fit correlation R² and retrieved anisotropy are shown.

Fig. 5. Comparison between the retrieved anisotropies according to the optical thickness τ, when the true anisotropy gtrue is 0.56 (a), 0.71 (b), and 0.86 (c). The effective
phase function peff was Henyey-Greenstein and the absorption coefficient was 0.01 mm�1. The retrieval methods were: the computing of the effective anisotropy (geff), the fit
by the Eqs. (17) and (18) (gFit), the computing of the Eq. (2) (gKM), Eq. (7) (ga), Eq. (8) (gb) and Eq. (9) (gc).



It can be explained by the effect of Fresnel reflection occurring at
the surfaces.

First, the region [�160°–180°] was excluded from the estimation
error concerning the fits made by Eqs. (17) and (18) and (20) (called
fit 1 in Fig. 7(a)–(c)). For τ¼0.85, the fit 1 of the data linked to the

sample TiO2 gave small coefficients f¼0.75 and α¼0.225. The re-
trieved anisotropy 0.56 was slightly inferior to the expected value
�0.6. Concerning LDPE sample (τ¼1.85), great values of coeffi-
cients α�0.9, f�0.99 and gGK�0.87 were computed. The order of
magnitude of these parameters were close to those given by [30].

Fig. 6. Effective phase functions (semi-logarithm) obtained by simulations using modified Gegenbauer function (τ¼1.2). Fit by Eqs. (17), (18) and (20) with (a) α¼0.01,
gGK¼0.93 and f¼1. (b) α¼0.8, gGK¼0.62 and f¼1. (c) α¼0.5, gGK¼0.778 and f¼0.9. (d) α¼0.01, gGK¼0.97 and f¼0.9. Fit correlation R² and retrieved parameters are shown.

Table 1
Errors in the retrieval of anisotropy coefficient obtained thanks to fits using Eq. (20) with α¼0.5 (MHG) or not (MGK), the computing of the Eq. (2) (gKM), (8) (gb), and (9) (gc)
and the computing of the effective anisotropy (geff).

τ 1-f α g true Error Fit MHG Error Fit MGK Error gKM Error geff Error gb Error gc

1 0.15 0.5 0.56000 8.98% 13.20% 1.38% 26.61% 5.74% 26.68%
1 0.1 0.5 0.56000 6.85% 11.05% 1.40% 26.11% 5.28% 26.18%
1.2 0.1 0.5 0.56000 4.29% 8.32% 5.72% 31.85% 6.63% 19.98%
1.8 0.1 0.5 0.56000 4.80% 2.64% 16.99% 46.19% 8.40% 8.30%
1.2 0.05 0.001 0.56372 11.73% 8.53% 2.72% 31.83% 6.81% 20.05%
1.2 0.1 0.001 0.55919 13.27% 8.80% 3.32% 31.70% 6.45% 19.82%
1.2 0 0.8 0.56121 1.35% 0.80% 8.21% 31.90% 6.75% 20.06%
1.2 0 0.2 0.56286 5.12% 2.97% 6.49% 31.06% 6.06% 19.28%
1.2 0 0.001 0.56684 10.13% 3.26% 5.27% 30.57% 5.83% 18.89%

1 0.15 0.5 0.70000 7.57% 8.57% 0.97% 18.65% 4.68% 18.69%
1 0.1 0.5 0.70000 5.82% 7.81% 4.18% 18.31% 4.39% 18.36%
1.2 0.1 0.5 0.70000 3.62% 3.63% 7.46% 21.57% 4.59% 13.33%
1.8 0.1 0.5 0.70000 2.09% 2.21% 12.15% 32.82% 6.12% 6.06%
1.2 0.05 0.001 0.69881 10.09% 6.09% 4.38% 23.63% 6.23% 15.21%
1.2 0.1 0.001 0.69214 9.28% 10.44% 0.93% 25.52% 7.51% 16.82%
1.2 0 0.8 0.71040 2.34% 0.49% 10.56% 21.56% 5.04% 13.53%
1.2 0 0.2 0.70671 3.86% 0.25% 7.86% 21.23% 4.61% 13.15%
1.2 0 0.001 0.70811 8.28% 2.43% 6.29% 20.62% 4.18% 12.63%

1 0.15 0.5 0.86000
1 0.1 0.5 0.86000 5.26% 6.73% 1.85% 12.00% 4.82% 12.03%
1.2 0.1 0.5 0.86000 4.48% 5.81% 0.40% 13.53% 4.74% 9.15%
1.8 0.1 0.5 0.86000 1.52% 2.40% 0.91% 18.29% 4.45% 4.42%
1.2 0.05 0.001 0.86238 2.44% 3.65% 5.55% 26.03% 14.32% 20.27%
1.2 0.1 0.001 0.86000
1.2 0 0.8 0.86279 0.75% 0.89% 7.81% 10.21% 2.40% 6.31%
1.2 0 0.2 0.86747 2.01% 0.99% 4.70% 9.47% 2.03% 5.75%
1.2 0 0.001 0.86470 1.11% 3.21% 2.21% 12.69% 4.29% 8.50%



Fig. 7. Effective phase functions measured by [30]. (a) and (b): slab containing TiO2 (τ¼0.85), (c) and (d) slab containing LDPE (τ¼1.85). (a) and (c): Fit by Eqs. (17), (18) and
(20) (Red lines) and by Eqs. (17), (18), (20) and (26) (Green lines). (b) and (d): Fit by Eqs. (17), (18) and (26) (Gray lines). The retrieved parameters are shown for each fit. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 8. Effective phase functions measured by [12]. Slab containing bovine dentine with tubules and measured light polarization parallel and perpendicular to plane of
scattering, respectively. (1oτo4). (a) Fit by Eqs. (17), (18) and (20) for τ¼2. (b) Fit by Eqs. (17), (18) and (20) for an optimized value of τ¼1.404. The correlation R² and
deviation RMSE of the fits, and the retrieved parameters are shown.

Fig. 9. Effective phase functions measured by [18]. Slabs containing tissue samples of (a) Pancreas, (b) Liver, and (c) Muscle (τ¼0.6). Fit by Eqs. (17), (18) and (26) with α¼0.5
fixed for p(1). The correlation R² and deviation RMSE of the fits, and the retrieved parameters are shown.



Second, in order to have a fit on the whole range of angle, a
correction function was added to the reflectance part of the
approximate solution (Eq. (17)):

τ θ τ θ τ θ( < ) = ( < ) + ( − > = ) ( )
τ−p p re p f,cos 0 ,cos 0 , cos 0, 1 27eff

corr
eff eff

where peff(τ,-cosθ40, f¼1) is the Eq. (18), in using -cosθ instead
of cosθ, and where r is a new parameter that the Trust-Region
algorithm has to search. With this corrected effective phase
function, the fit of the points may be carried out up to 180° (fit 2 in
Fig. 7(a)–(c)). The effects obtained on the retrieval of anisotropy
were a slight increase (þ0.023) and a very small decrease
(�0.008) of values for the cases TiO2 and LDPE, respectively. There
is no improvement in the retrieval of anisotropy (�0.93) for the
case LDPE with the corrected function Eq. (27).

If this strong backscattering peak is not seen as due to the
Fresnel reflection on the slab surfaces, then the angular phase
function related to the bulk material must take into account this
effect. The function pTTHG

(n)(θ) (Eq. (26)) can be used rather than
the modified function. This angular phase function is able to yield
a strong backscattering, especially around 180°. Fig. 7(b) and
(d) depict the new fit obtained for TiO2 and LDPE, respectively. The
retrieved anisotropy linked to the case TiO2 increases notably up to
0.65, while the one linked to LDPE remains close to 0.94.

4.3.2. Fit on biological tissues
Samples of bovine dentine (thickness�19 mm) were studied at

633 nm by Zijp et al. [12]. The swine tissues ex vivo of pancreas,
liver and muscle (thickness�60 mm, ms�100 mm�1) were studied
at 1064 nm by Saccomandi et al. [18].

Regarding the bovine dentine, the scattering coefficient was
estimated approximately by �200 mm�1 or �50 mm�1 accord-
ing to [12] and [42], respectively. So the optical thickness τmay be
between 1 and 3.8. The experimental profile used here was the
one where the tubules and the light polarization were parallel and
perpendicular to plane of scattering, respectively. First, a fit by Eqs.
(17), (18) and (20) was made for τ¼2 (Fig. 8(a)). Second, another
fit was performed where τ was considered as an unknown para-
meter to be found (Fig. 8(b)). The value of the retrieved optical
thickness τ was 1.4. In both cases τ¼2 or 1.4, the parameters
f�0.8 and α�0.25 were small, giving an anisotropy �0.73. Note
that the anisotropies of bovine dentine estimated by [12],
�0.470.1, were obtained for a starting angle of �20° and with a
Henyey-Greenstein model. With these limits, the fitting method
provided a retrieved anisotropy of 0.57 for τ¼2, i.e. larger than the
mean value 0.4.

Concerning the Liver, Pancreas, and Muscle tissues, the scat-
tering light measurements were based on a specific goniometric
technique, where only 7 angles are used. The functions pTTHG(n)(θ)
were used in order to retrieve the same type of parameters
(gforward, gbackward and f) as those considered in the study [18]. The
fits were made with α¼0.5 and τ¼0.6, and the correlations R²
obtained were larger than 0.99 (Fig. 9). The values of gforward

(0.958, 0.964, 0.968) estimated from [18] by a fit with pTTHG
(1)(θ)

are close to those obtained by the Eqs. (17), (18) and (26) (0.969,
0.973, 0.970). But there are small gap between the sets of para-
meters gb and f: (gb��0.4, f�0.90) and (gb��0.3, f�0.97) for the
curves fitted with pTTHG

(1)(θ) and peff(τ, θ), respectively. That gives
a difference of �0.12 for the retrieved anisotropies. The value of
the anisotropy found here for the liver (0.94) is close to the one
found by [43] for porcine liver with a double integrating sphere
and inverse Mote Carlo: 0.93.

5. Conclusion

The multi-scattering occurring in a slab prevents often the

direct measurement of the phase function, even if the optical
thickness is around 1. An effective phase function is proposed
considering both the Poissonian statistic of the scattering events
and an approximation of the optical path length. This analytical
function depends on the optical thickness of the slab and on the
choice of an angular phase function (such as Modified Gegenbauer,
Modified Henyey-Greenstein or Two-Terms Henyey-Greenstein
functions). This solution is tested with results obtained by Monte
Carlo simulations and its efficiency to retrieve the anisotropy is
compared with other analytical methods. The threshold of the
approximation corresponds to an optical thickness of the slab less
than 2.

The approximate effective phase function using Modified Ge-
genbauer or Two-Terms Henyey-Greenstein functions allows to
study real intensity measurements related to a goniometric tech-
nique. Moreover, the perturbation of the Fresnel reflection due to
the surfaces can be slightly corrected. Nevertheless, the choice of
the angular phase function p(θ) inside the model may have a small
effect on the retrieval of anisotropy coefficient. The fit with the
approximate effective phase function is also made from intensity
measurements related to biological tissues. The retrieved aniso-
tropies can be compared with the ones obtained thanks to a fit
with an angular phase function. As expected, the values of the
estimated coefficient are larger when the effective phase function
is used.

In conclusion, an analytical approached method is described
here for the fast estimation of the anisotropy coefficients of turbid
media, and also others parameters required for an angular phase
function predefined, when the tissue thickness is around the value
of mean free-path or slightly larger.
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