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A B S T R A C T

A Monte Carlo code is built taking into account macroscopic spheroid cavities inside a turbid medium, i.e. in mixing Multi-Layer Monte Carlo (MLMC) 
and Monte Carlo Ray Tracing (MCRT). That simulates a tissue with a strong and heterogeneous porosity, such as flesh tissues of fruit or bone tissues. 
This kind of tissue, which has two scales of porosity (microscopic and macroscopic), differs notably of the homogeneous and continuous model used in the 
usual radiative transfer equation. The influence of the presence of spheroids can be observed on the shape of the effective phase function, on the effect related 
to the time-resolved diffusion solution or also on the scattering coefficient retrieved by means of the Beer–Lambert relationship. For instance, the reduced 
scattering coefficients retrieved thanks to time-resolved transmittance from MLMC-MCRT models having a lot of intertwined large cavities show variations 
coherent with those retrieved from bone tissue. Furthermore, the effect of porosity on optical transmission seems to have a real impact when relative 
refractive index is close to 1.
In this case, the equivalence problem between such porous MLMC-MCRT model and a homogeneous turbid medium, can be discussed at the level of the 
angular intensity distribution over the plane boundaries. This requires to fit this angular distribution by an Adding-Doubling model using optimized optical 
depth and scattering phase function. Experimental scattering phase functions obtained from apple tissues are considered in order to test this idea, and then 
compared with those computed with a MLMC-MCRT model.

1. Introduction

The porosity concerns different kinds of material: porous made-man
media [1] such as inorganic solids or pharmaceutical powder, planetary
components such as regolith [2] or snow [3], but also biological tissues
such as bone [4] or flesh of fruits [5]. The permeability, the fluid
impregnation [6] or the transport/stocking of gaseous chemical com-
pounds [5,7] depend on the porosity structure. The porosity can also be
used in engineering problems, for electromagnetic attenuation materials
(for instance a SiC structure obtained from an apple structure [8]), for
gas measurement by optical time-resolved method [9], for light trapping
in solar cells material [10], or to improve engineering of biological
tissues [4]. About this last case, fundamental questions related to the
complex light-porous media interaction arose, especially about the light
scattering. That is the subject developed below.

When the optical system cannot be studied easily with the help
of the Electromagnetic theory, the Radiative Transport theory enables
to simulate the photon migration, especially inside pseudo-continuous
and pseudo-homogeneous media. Multi-layer Monte Carlo simulations
(MLMC) [11] and Adding-Doubling (AD) method [12] are the widely
used models, while the solution of diffusion equation is often sufficient
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for large distance and moderate absorption. The AD method is limited
to a slab geometry without lateral constraint. It is less flexible than
MLMC, but is fast (more or less faster than MLMC [13]) and often
used to retrieve optical properties of biological tissues. Moreover, when
the optical properties are depth dependent, (such as the case of the
near-surface human skin layers [14]), the multilayer structure can be
considered for all the models, i.e. MLMC, AD and diffusion solution.

These models need parameters such as average optical coefficients
(𝜇𝑎 absorption and 𝜇𝑠 scattering coefficients) and also a scattering phase
function [15,16] (eventually replaced by the anisotropy factor g for the
diffusion theory). The estimated optical coefficients and the determina-
tion of scattering phase function are only achieved by the help of exper-
imental data, corresponding to reflectance and transmittance of signals
recorded over the external boundaries of a sample [17,18]. Particularly,
the one-axis transmittance value enables to estimate the scattering
coefficient or the reduced scattering coefficient 𝜇′

𝑠 = 𝜇𝑠(1 − 𝑔). How-
ever, the macroscopic heterogeneities and 3D interface-discontinuities
inside a heterogeneous turbid porous medium have to be taken into
account to mimics light interaction in real tissues [19]. The average
optical coefficients are more related to microscopic heterogeneities, and
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their physical meanings may be questionable in such heterogeneous
turbid media with microscopic, mesoscopic and macroscopic hetero-
geneities [1,9]. For instance, the sizes of cell organelles (ribosomes,
mitochondria, . . . ) in biological tissues are sub-micrometer [20], the
estimated bulk scattering coefficients of the constituents being of the
order of several tens mm−1 [4,20], whereas the sizes of cavities are
often sub-millimeter [4,5]. The interstitial tissue can be filled with
gas or water for fruits [5,7], and with lipids tissue more or less
homogeneous for bones [4], meaning different kinds of mismatch on
refractive indexes.

An alternative exists to the use of a medium characterized by
scattering coefficients and anisotropy factors. Monte Carlo Ray-tracing
algorithm (MCRT) [3,4,21–24] was developed to study the geometrical
propagation of the light through media characterized by sphere-sized
particles, transparent or opaque spheroids [23], by multi-facet struc-
tures or by foam structures [4,22]. Consequently, multiple optical rays
can be drawn in specific media having strong porosity at a macroscopic
or mesoscopic scale. The light scattering laws, corresponding here to the
light interaction with the internal structures, are calculated thanks to the
reflection–refraction laws [3], approximation of a specular law [21] or
diffuse reflection laws [22,24]. The disadvantage of the MCRT is due
to the difficulty to mimic the light propagation inside complex tissues
such as biological tissues, where the number of components is great.
This limits its interest in the assessment of the optical properties in such
tissue.

In this paper, a Monte Carlo Ray-tracing code based on large spheroid
compounds is combined with an usual Multi-Layer Monte Carlo code
in order to study the light propagation in turbid media (meso or
microscopic heterogeneities) including several cavities (macroscopic
heterogeneities). The cavities are made of spheroids, overlapping or not,
whose sizes are larger than the mean free path of the turbid medium
surrounding the cavities. This kind of system enables to characterize
the light transport inside some biological tissues such as the fruit flesh
or the porous bone (osteoporosis). From the transmitted and reflected
flux generated by this modified Monte Carlo code, an average efficient
scattering phase function and the time-resolved transmittance can be
obtained. Several geometries and refractive indexes are tested. For
instance, large samples mimicking bone tissue are used to explore the
effect of the size of cavities on the retrieval of reduced scattering
coefficient using the time-resolved diffusion solution. Moreover, the
impact of a thin thickness on the apparent scattering coefficient is
discussed. The goal of these simulations is also to consider how to use
the reference method AD for such thin structures, this being related to
the problem of the equivalence [1,18] between a porous medium and
a homogeneous turbid medium. A simple relationship between optical
depth and scattering phase function is proposed inside the code of
an Adding-Doubling method to find equivalent scattering coefficient
and scattering phase function from the data generated by the real
porous turbid medium. Finally, experimental scattering phase functions
obtained from apple tissues are considered and compared with those
coming from a model with cavities.

2. MLMC-MCRT Monte Carlo model

2.1. MLMC-MCRT model description

The Monte Carlo model is based on the transport of particle or
photon, for which the absorption, the free path, and the deflection
are governed by several probability laws. The Multi-layer Monte Carlo
code [11] uses the probability exp[−(𝜇𝑎 + 𝜇𝑠)𝑠] to assess the free path s,
while a Ray tracing code can use the same method to plot the trajectory
points when a high coefficient 𝜇𝑡0 (∼60 up 130) replaces 𝜇𝑡 = 𝜇𝑎+𝜇𝑠. The
deflection is depending on either a scattering phase function (p (𝜃, 𝜑) or
p (𝜃) when azimuthal symmetry exists) and/or Fresnel reflection and
refraction laws. Absorption and weight of photons are important topics
in stochastic Monte Carlo models [11,25–27], although the absorption

Fig. 1. (a) Scheme of the light propagation with the spheroid cavity according
to the Fresnel laws. (b) General scheme used to the MLMC-MCRT model.

influence may be small when albedo (such those used here) are close to
1. In this study, where the number of packets is mainly equal to 106 (or
2–5⋅106) and the weight threshold for the ‘‘Russian roulette’’ test is 50%,
significant curves and trends were observed whatever the presence or
not of small fluctuations perceived. Besides, others weight thresholds
were tested (as 1%) without noticeable deviation of the results.

The Ray tracing code, used here inside the Monte Carlo algorithm,
considers Fresnel reflection and refraction laws on spheroids (seen as
empty pores). It searches systematically the intersection point, if it exists
during the free path, with one of the spheroids incorporated in the
turbid medium. This process can be repeated several times, owing to
the fact that spheroids can overlap each other. The maximal number of
spheroids considered here was restricted to 24 to limit the computing
time, which allows to take a thickness up to few mm. The unit vector of
direction 𝑢, which can be modified with respect to the Fresnel laws, and
the intersection point 𝑀𝑆 enable together to predict the free path inside
the pore space up to exit point (Fig. 1(a)). This point is obtained from
the initial point P by 𝑀𝑆 = 𝑃 +𝑘𝑢, where k is solution of the spheroidal
equation

(𝑃𝑥 − 𝐴𝑥 + 𝑘𝑢𝑥)2∕𝑟2𝑥 + (𝑃𝑦 − 𝐴𝑦 + 𝑘𝑢𝑦)2∕𝑟2𝑦 + (𝑃𝑧 − 𝐴𝑧 + 𝑘𝑢𝑧)2∕𝑟2𝑧 = 1 (1)

where 𝐴𝑖 and 𝑟𝑖 (𝑖 = 𝑥, y, z) are the components of the center and the
radii of the spheroid, respectively. This gives two values corresponding
to the two intersection points with the spheroid,
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Fig. 2. Angular intensity curves related to a Monte Carlo Ray-tracing code
(simulating geometric optic) obtained (a) for a bubble inside a turbid medium
with a refractive index 1.3, and (b) for intertwined spheroids inside turbid media
with a refractive index 1.05 or 1.35.

The point 𝑀𝑆 enables to find 𝑢𝐴, the unit vector normal to the
spheroid surface, thanks to the spheroidal focus points 𝐹1 and 𝐹2(𝑢𝐴 =
(𝐹 1𝑀𝑆∕𝐹1𝑀𝑆 + 𝐹 2𝑀𝑆∕𝐹2𝑀𝑆 )∕‖𝐹 1𝑀𝑆∕𝐹1𝑀𝑆 + 𝐹 2𝑀𝑆∕𝐹2𝑀𝑆‖), and
so the new directions 𝑢𝑚 can be established : 𝑢𝑚 = 𝑛𝑖𝑛∕𝑛𝑒𝑥𝑡𝑢𝑚−1+[cos 𝑖𝑒𝑥𝑡−
𝑛𝑖𝑛∕𝑛𝑒𝑥𝑡 cos 𝑖𝑖𝑛]𝑢𝐴 or 𝑢𝑚 = 𝑢𝑚−1 − 2 cos 𝑖.𝑢𝐴, i.e. refraction or reflection
direction, respectively.

The polarization of the light is not considered, so the Fresnel
reflectance is computed by the formula 1∕2{sin(𝑖𝑒𝑥𝑡−𝑖𝑖𝑛)2∕ sin(𝑖𝑒𝑥𝑡+𝑖𝑖𝑛)2+
tan(𝑖𝑒𝑥𝑡− 𝑖𝑖𝑛)2∕ tan(𝑖𝑒𝑥𝑡+ 𝑖𝑖𝑛)2}. The path length between the input and the
exit points of the spheroids is also computed with the help of Eq. (1). But
when the photon is outside the cavities, the usual rules related to the
MLMC code are considered. The combination of this Ray tracing code
and the MLMC code yields a simple but modified Monte Carlo code
(MLMC-MCRT), which seems sufficient to evaluate light distribution
when strong macroscopic porosity exists inside a turbid tissue.

2.2. Simulation on MCRT model

In order to test only the Ray tracing code, simulations on a few
cases were performed without the use of any scattering phase function
(Fig. 1(b)). That corresponds to simulate the geometrical optic model
without interference. While this model does not take into account
forward diffraction and interference phenomena, it provides a reason-
able description of the mean angular intensity curve. For instance,
the incoherent light reflected by a bubble and related only to the

optical geometry is obtained and shown in Fig. 2(a), where the angular
intensity curve (except the forward peak) seems coherent with the
light scattered from bubbles given in literature [28,29]. Particularly,
the strong decrease of the curve after a critical scattering angle region
∼80◦ can be observed. The influence of the refractive index on the
light intensity distribution is visible in another example with spheroids
instead of a single spherical bubble (Fig. 2(b)). It can be noted that
with Monte Carlo technique, the stochastic noise on the estimation
of the mean angular intensity is significantly higher in the backward
region (where multiple scattering effects are preponderant). The model
related to this figure corresponds to this displayed in Fig. 3(a). The three
structures illustrated in Fig. 3 are the ones used in the next sections. The
mean diameter of the spheroids is always at least 4 times larger than the
mean free path 1/𝜇𝑡, (∼0.8 mm for Fig. 3(a–b), ∼0.3 mm for Fig. 3(c)).
The number of spheroids is limited and so the detection boundary is
limited.

If the MCRT models used here can described only some trends of the
mean light intensity curve, the combination MLMC-MCRT has the aim
to model the radiative transport of photons in turbid media with large
cavities. The next sub-section details this system.

2.3. Simulation results on MLMC-MCRT

The spheroids that are linked to cases seen in Fig. 3(b) are in-
corporated inside a turbid medium having optical coefficients 𝜇𝑎 =
0.01 mm−1-𝜇𝑠=15 mm−1 (or 10 mm−1) and 𝑔 = 0.95, and where the
Henyey–Greenstein function is used as scattering phase function:

𝑝𝐻𝐺(𝜃) =
(1 − 𝑔2)

4𝜋(1 + 𝑔2 − 2g cos𝜃)3∕2
(3)

A flat beam with a radius of 𝑅𝑠 = 1 mm illuminates a slab whose
the thickness varies between 0.26 and 1.36 mm. The intensity 𝐼𝑑 is
detected according to the angle of elevation 𝜃 or according to the
time t, while the area of detection is a disk with a radius 𝑟𝑑 = 3 mm
(Fig. 3(b)) or 0.5 mm (Fig. 3(c)). Note that the average diameter size of
the spheroids considered in models Fig. 3 are in the range of magnitude
of the trabecular separations in bone tissue [30]. The effective scattering
phase functions are obtained by the formula 𝑝𝑒𝑓𝑓 (𝜃) = 𝐼𝑑 (𝜃)∕ sin(𝜃) and
are displayed Figs. 4 and 6(a). Besides, the usual probability function
of non-absorption (1 − 𝜇𝑎∕𝜇𝑡), which is used to define the decrease
of the weight inside a Poissonian Monte Carlo stochastic model [25],
can be perturbed by the traveling through macroscopic cavities [26].
Nevertheless, there is no impact observed on the effective scattering
phase-function, whatever the fact that this probability function remains
always identical or is replaced when the paths cross a pore by a function
1 − 𝜇𝑎𝐿𝑝𝑜𝑟𝑒𝑠, where 𝐿𝑝𝑜𝑟𝑒𝑠 is the path length inside the pore.

First, the comparison between the case with and without spheroidal
pores are given in Fig. 4 with different examples. For all the cases, a dis-
crepancy is observed for the intensity 𝑝𝑒𝑓𝑓 (𝜃) when 𝜃<10◦. Nevertheless,
the relative refractive index n between the turbid medium and the pores
influences the forward peak, in such manner than the index matching
leads to an increase of the forward peak. The trivial fact, shown here, is
that a very small mismatch of refractive indexes between the pores and
the outside medium decreases the scattering. This idea is used in a recent
study [31], where optical detection through a porous matrix is enhanced
thanks to an addition of fluid having a good matching refractive index.

Second, the case of bone tissue was approached from the model
defined in Fig. 3(c), where this model was repeated in the space in order
to mimic a thick sample of thickness 3 or 7 mm. The optical coefficients
(𝜇𝑎 = 0.025 mm−1, 𝜇𝑠 = 27 mm−1 and 𝑔 = 0.935) outside the cavities
were chosen with respect to the reference found in literature about bone
tissues [32]. Different situations were considered: -two thicknesses (3
and 7 mm), -two average sizes for the cavities (relative ratio of 1.5 for
all the cavity radii between the two cases), -several choices of refractive
indexes such as 𝑛𝑖𝑛𝐶 = 1.45 or 1.6 for the cavities media, and 𝑛𝑜𝑢𝑡 = 1.45
or 1 for the outside while 𝑛𝑒𝑥𝑡𝐵 for the bone tissue is fixed to 1.6.



Fig. 3. Three examples of structure having spheroid cavities, overlapping or not, used with the Monte Carlo code and with the Ray-tracing code added.

Table 1
Retrieved values of the reduced scattering coefficient with respect to different configurations (n𝑒𝑥𝑡𝐵 fixed to 1.6). The last column shows the change of absorption due
to macroscopic porosities with respect to a Poissonian model.

𝜇′
𝑠 (mm−1) Thickness (mm) 𝑛𝑜𝑢𝑡 𝑛𝑖𝑛𝐶 Average cavity radius Statistical difference related to absorbed ‘‘photons’’

1.40 ± 0.05 3 1.45 1.45 0.26 mm 1.3%
1.15 ± 0.03 3 1.45 1.45 0.40 mm 4.5%
1.39 ± 0.06 7 1.45 1.45 0.26 mm 2.8%
1.44 ± 0.05 7 1.45 1.6 0.26 mm 7.7%
1.18 ± 0.05 7 1.45 1.45 0.40 mm 16.8%
1.70 ± 0.05 7 1 1.45 0.26 mm 4%

The transmitted intensity versus time was recorded in the detector area
opposite to the source, and the data were fitted with the solution of
diffusion equation for a slab (𝜇𝑎 was always fixed to 0.025 mm−1). The
absorption perturbation due to the traveling through the macroscopic
cavities, cited above, can have an impact on the quantity of photons
absorbed according to the average size of the pores (see last column
of Table 1), but have a small impact on the time-resolved distribution.
The difference about the retrieval of 𝜇′

𝑠, between the cases where the
probability function (1−𝜇𝑎∕𝜇𝑡) remains always identical or is sometimes
replaced by a function 1 − 𝜇𝑎𝐿𝑝𝑜𝑟𝑒𝑠, varies between 3 and 8%. These
differences are almost the same order of magnitude as those related
to numerical fittings (Levenberg–Marquardt optimization method), and
consequently do not modify the comments made about them.

Some results are displayed in Fig. 5. The corresponding retrieved
values of 𝜇′

𝑠 obtained with diffusion solution are shown in the Table 1.
It is first noted that a strong mismatch of the refractive index between
the slab and the outside provides a reduced scattering coefficient almost
identical to the one linked to the bone: ∼1.7 versus 1.755 mm−1 for the
smaller average size for the cavities (0.26 mm). In the opposite case,
the coefficient 𝜇′

𝑠 decreases up to ∼1.4 mm−1. Moreover and as reported
in [33], the mismatch of the refractive index between the bone and the
cavities have just a small impact of a few percent on the retrieved values
(for example 𝜇′

𝑠 ∼ 1.45 versus 1.4 mm−1 with 𝜇𝑎 fixed). The rise of 35%
for the average size for the cavities provides a decrease of 15%–20% for

𝜇′
𝑠. This change can be compared to the one related to values retrieved

in an experimental study [34] using the time-resolved transmittance on
the calcaneus: a difference of ∼15% could be observed between 30 and
82 years-old volunteers. These variations can be considered as minor
regarding to the error percent of the estimates.

In these large thicknesses of sample, the study of the reduced
scattering coefficient thanks to the diffusion solution shows a limited
impact of the heterogeneous structure such as the one build here. When
the sample thickness decreases and becomes closer to the cavity size,
the optical transport should be more sensitive to the porosity properties.
This is the part developed in the next section thanks to the use of MLMC-
MCRT method.

3. Optical characterization of a thin porous slab

3.1. Simulation results on MLMC-MCRT about scattering coefficient

The scattering transport coefficient 𝜇𝑡 is retrieved directly from the
measurement of the maximum intensity 𝐼𝑑 (𝜃 = 0) thanks to the Beer–
Lambert relationship 𝐼𝑑 (𝜃 = 0) = 𝐼0 exp(−𝜇𝑡 ⋅ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) available for
the thinnest thicknesses. 𝐼0 is here the number of incident photon,
i.e. 𝐼0 = 106. The coefficient 𝜇𝑡 can be estimated by the formulae:

𝜇𝑡 = − ln
[

𝐼𝑑 (𝜃 = 0)
𝐼0

]

∕𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (4)



Fig. 4. Effective scattering phase functions related to the modified Monte
Carlo and to some structures seen in Fig. 3 with a radius of a flat light source
𝑅𝑠=1 mm. Comparison between the cases with and without the addition of
spheroid pores (Fig. 3(b)) in a turbid medium with a radius of the detection
area 𝑅𝑑=3 mm, thickness=1.36 mm, 𝜇𝑎 = 0.01 mm−1, 𝑔 = 0.95 (𝑝𝐻𝐺),
𝜇𝑠=15 mm−1or 10 mm−1, and refractive index 𝑛 = 1 or 1.35.

Fig. 5. Transmitted intensities versus time for different thicknesses, refractive
indexes and average size of cavities. The cavities structure is based on the model
(c).

or

𝜇𝑡 = − ln
[

𝐼𝑑 (𝜃 = 0, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠2)
𝐼𝑑 (𝜃 = 0, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠1)

]

∕𝛥𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (5)

When the turbid medium is without pores, the retrieved coefficient
is the true value whatever Eqs. (4) and (5) (Fig. 6(b) and (c) with 𝑛 = 1
and 𝜇𝑡𝑒𝑥𝑡 = 15.01 mm−1 outside the cavities). With the addition of
pores, Eqs. (4) and (5) give different results. The Eq. (4) provides values
of 𝜇𝑡 close but inferior to the one linked to the initial turbid medium
(𝜇𝑡 ∼13 mm−1), while Eq. (5) yields a low value 𝜇𝑡 = 3.1 mm−1. So, the
retrieved value of the transport coefficient depends on the process used.

Indeed, the meaning of the expression 𝐼𝑑 (𝜃 = 0) = 𝐼0 exp(−𝜇𝑡 ⋅
𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) becomes questionable concerning a heterogeneous porous
medium. Though a turbid tissue, characterized by a pure randomness,
leads to a light path distribution exponential [1], accurate value of
a thickness measured for a strongly heterogeneous thin slab with no
smooth surface is uncertain. However, a porous medium can be seen as
equivalent to a homogeneous semi-transparent medium if only its ex-
tinction function is approximately modeled as an exponential law [35].

Consequently, an equivalent optical depth 𝜏, that replaces the expression
𝜇𝑡 ⋅ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, must be estimated to establish a homogeneous medium
equivalent to a heterogeneous porous turbid medium such as the ones
studied here. The word ‘‘equivalent’’ is relative to the equivalence seen
through measurements made at the surface boundaries, because the
radiative transport in such random heterogeneous media cannot be
reproduced exactly by a classical radiative transfer equation with fixed
parameters inside the volume [36].

The equivalence between a homogeneous stochastic Monte Carlo
model and a complex porous structure has been achieved, when the
porosity fraction is above 50% [35]. However, the MLMC-MCRT model
was conceived here to explore a system with two type of porosities,
i.e. the one related to bulk random microscopic components and the
one related to macroscopic cavities. This kind of turbid medium with
sparse empty pores can be treated as a type of pseudo-homogeneous
medium inside a transport model. If the optical transport properties
corresponding to the microscopic components part are known, what
about those linked to the radiative transport model of this pseudo-
homogeneous tissue?

3.2. Characterization of MLMC-MCRT models by an Adding-Doubling
method

3.2.1. Problematic of constraints related to the Adding-Doubling method
The radiative transfer is often studied by means of Monte Carlo meth-

ods, but also through analytical or numerical solutions of the transport
equation [1,17]. The numerical Adding-Doubling method [17] is limited
to multi-layer slab without lateral constraint, but is considered as a fast
and reference method to assess the optical coefficients from reflectance
and transmittance measurement sets. The effective phase function 𝑝𝑒𝑓𝑓 ,
described in the previous section and defined independently of the radial
coordinate, can be retrieved through the Adding-Doubling solution. As
basic components needed to use Adding-Doubling method, an optical
depth 𝜏∗, an albedo 𝑎∗ and an angular distribution function ℎ∗ (defined
from a scattering phase function 𝑝∗ by the relationship ℎ∗(𝜃𝑖𝑛𝑐 , 𝜃) =
∫ 𝜋∕2
0 𝑝∗[(cos 𝜃𝑖𝑛 cos 𝜃 + sin 𝜃𝑖𝑛 sin 𝜃 cos𝜑)]𝑑𝜑 ) must be chosen. For small

absorption and small thickness, the influence of the albedo parameter is
weak, especially for the shape of the effective scattering phase function
(except for the limit angle 𝜃 of 90◦). In this case, the assessment of 𝑝𝑒𝑓𝑓
by the Adding-Doubling method can be related only to an optical depth
and a scattering phase function.

The optical depth 𝜏∗ and the phase function 𝑝∗ considered for the
macroscopic/microscopic porous turbid medium should be dependent
on the optical depth 𝜏 and phase function p used to characterize
the radiative transfer through the same turbid medium but without
macroscopic porosity. A problem related to the choice of 𝜏∗ and 𝑝∗

is that they should be defined for a continuous medium, while the
porosity leads to discontinuities. Nevertheless, both components can
be also regarded in a statistical way. The relationship between optical
depths 𝜏 and 𝜏∗ can be seen as 𝜏∗ = 𝐹𝜏 (𝐹 < 1), where F is a factor
dependent on the average occupied volume fraction, i.e. the opposite
of the average porosity. The statement 𝐹 < 1 can be attributed to
the fact that, in case of a thin irregular medium with random local
optical depths, the average transmitted intensity ∼exp(−𝜏∗) will always
be larger than the one yielded from a plane-parallel model characterized
by an average value of the local optical depths [37]. Moreover, 𝑝∗

should take into account that an average number𝑁𝑠𝑒 of scattering events
has vanished when an equivalent continuous turbid medium, who is
considered in Adding-Doubling for 𝜏∗ = 𝐹𝜏, replaces the real turbid
medium with macroscopic pores. Consequently, simple relationships of
equivalence can be searched in a such manner that formulas 𝜏∗ = 𝐹𝜏 and
𝑝∗ = function (p, F,𝑁𝑠𝑒) can be written. If the convolution ⊗ between two
scattering events is introduced, then the last formula can be described
in a symbolic manner as 𝑝∗ = 𝑚1(𝐹 )𝑝 +

∑𝑁𝑠𝑒
𝑘=2𝑚𝑘(𝐹 )𝑝

∏𝑁𝑠𝑒−1
𝑘=1 ⊗ 𝑝, where

𝑚𝑘 (F ) are functions such as ∑𝑁𝑠𝑒
𝑘=1𝑚𝑘(𝐹 ) = 1.



Fig. 6. Effect of the thickness for the cases described in Fig. 4 with
𝜇𝑠𝑒𝑥𝑡=15 mm−1 and 𝑛 = 1. (a) Effective scattering phase functions obtained
for several thickness (1.36, 1.06, 0.76, 0.56, 0.36 mm). (b) Retrieved scattering
transport coefficient 𝜇𝑡 with the use of Eq. (4) related to the thickness. (c)
-Logarithm of the transmittance maximum according to the thickness, and
retrieval of 𝜇𝑡 with Eq. (5) (slope value).

Using an approximated approach with sphere models (see Ap-
pendix), the following parameters are considered here: 𝑁𝑠𝑒 = 3, 𝑚1(𝐹 ) =
𝐹 1∕3, 𝑚2(𝐹 ) = 1 − 𝐹 1∕3 − (1 − 𝐹 1∕3)2 and 𝑚3(𝐹 ) = (1 − 𝐹 1∕3)2. The
addition is controlled by a parameter 𝑓 = 𝐹 1∕3 to be estimated, which

Fig. 7. Fitting, with the help of an Adding-Doubling method modified or not
modified (𝑓 = 1), of effective scattering phase functions obtained with turbid
medium (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 1.36 mm, 𝜇𝑎 = 0.01 mm−1, 𝜇𝑠𝑒𝑥𝑡 = 15 mm−1) containing
spheroid cavities. (a) Structure related to Fig. 3(a), 𝑛 = 1 and 𝑔 = 0.8 (𝑝𝑀𝑖𝑒).
(b) Structure related to Fig. 3(b), 𝑛 = 1 and 𝑔 = 0.95 (𝑝𝐻𝐺), and insert of fitting
errors with respect to 𝑓 3.

is also related to the one used to choose the new optical depth 𝜏∗ = 𝐹𝜏
= 𝑓 3𝜏 .

3.2.2. Tests on simulation models
These relationships have been set in an Adding-Doubling code writ-

ten in a SCILAB software, with a sampling made according to the Radau
quadrature (total points number is 96 for the range [0, 180◦]). The
absorption coefficient used to calculate the albedo is the one considered
by the Monte Carlo simulation. The tests were applied on different
simulation results related to models Fig. 3(a) and (b), with light source
radius 𝑅𝑠 = 2.6 and 1 mm respectively, Henyey–Greenstein scattering
phase function 𝑝𝐻𝐺, 𝑔 = 0.95, 𝜇𝑎 = 0.01 mm−1, 𝜇𝑠 = 15 mm−1 and
thickness=1.36 mm. In addition, a case was made with a scattering
Mie phase function (radius=0.6±0.09 μm, wavelength 800 nm). The
refractive index 𝑛 = 1 is considered below.

For the model (a), a Monte Carlo simulation related to a Mie
phase function (𝑝𝑀𝑖𝑒) was fitted in the Adding-Doubling method with
a Henyey–Greenstein function using the optical anisotropy coefficient
computed from the Mie phase function, ⟨cos 𝜃⟩ = 0.8 (Fig. 7(a)). An
efficient fitting was observed for 𝐿∗ = 1.04 mm (𝜏∗ = 15.61). Fig. 7(b),
corresponding to the model (b) but with the phase function 𝑝𝐻𝐺,
illustrates different fittings due to different f values, i.e. thicknesses
𝐿∗ going from 1.36 to 1.02 mm (𝜏∗ = 15.31), the last one giving the
best fitting. An insert displays the geometric error 𝐸𝑟𝑟 = (𝜀𝑓𝑜𝑟𝑤𝜀𝑏𝑎𝑐𝑘)1∕2,



Table 2
Parameters connected to the fitting by the Adding-Doubling method (𝐸𝑟𝑟, 𝑓 3)
and those linked to the Monte Carlo simulation (Por, 𝜙, I𝑑(𝜃=0)/I0, 𝜇𝑚𝑒𝑠

𝑡 ) when
the spheroid cavities size is changed inside a slab (thickness = 1.36 mm).

Por (%/mm) 𝜙 (%) Err (–) 𝑓 3 (–) 𝐼𝑑( 𝜃=0)/𝐼0 𝜇𝑚𝑒𝑠
𝑡 (mm−1)

0 0 0.08 1 1.1E−05 8.4
14.7 14.1 0.09 0.9 1.6E−05 8.1
22.9 19.2 0.09 0.8 6E−05 7.2
28 22.2 0.09 0.75 2.1E−04 6.2
33.7 25.8 0.13 0.725 9.6E−04 5.1
46.3 35.3 0.28 0.575 1.78E−02 3.0

related to the comparison |𝛴(𝑝𝑒𝑓𝑓 (𝜃𝑖) − 𝑝𝐴𝑑𝑑−𝐷𝑜𝑢𝑏(𝜃𝑖))∕𝛴𝑝𝑒𝑓𝑓 (𝜃𝑖)| in
the forward 𝜀𝑓𝑜𝑟𝑤 and backward 𝜀𝑏𝑎𝑐𝑘 parts, with respect to 𝑓 3. It is
noticeable that a good fitting efficiency is achieved with 𝐿∗ > 0.8 mm,
i.e. an equivalent thickness larger than the one used for the case of model
(a).

From this model (b) the radii of the spheroids are modified in order
to increase or decrease the porosity. To define the optical porosity inside
the spheroidal pores per length unit, the ratio between the number of
photons entering in the pores 𝑁𝑝 and the number of photons launched
at the surface 𝑁0 is computed, and then divided by the thickness:
𝑃𝑜𝑟 = 𝑁𝑝∕(𝑁0 ⋅ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠). Another factor called ‘‘optical porosity’’
𝜙, which depends on the average path-length measurement instead of
photons number and defined in Ref. [9], is also computed. This last
factor is estimated as close to the half of the real geometric porosity [9].

In Table 2, the values connected to the modified Adding-Doubling
method (𝐸𝑟𝑟, 𝑓 3), and the ones connected to only the simulations
(𝑃𝑜𝑟, 𝜙, 𝐼𝑑 (𝜃 = 0)∕𝐼0, 𝜇𝑚𝑒𝑠

𝑡 ) are given. The same linear trend of decreas-
ing are observed between 1 − 𝑃𝑜𝑟, 1 − 𝜙 and 𝑓 3, while the scattering
coefficient 𝜇𝑚𝑒𝑠

𝑡 (estimated by Eq. (4)) decreases linearly after a porosity
threshold (Por ∼25% mm−1). The optimized factor 𝑓 3 is clearly linked
to the optical porosities, i.e. 𝜙 or Por*thickness ≈ 1.7𝜙. Nevertheless, it
is noticed that the fitting error Err in the Adding-Doubling method used
here becomes important for the last case Por =46% mm−1. Note that
the behavior of 𝜇𝑚𝑒𝑠

𝑡 with porosity (Por or 𝜙) is close to the one found
in the Ref. [38] between an extinction coefficient and a geometrical
porosity factor. Moreover, an exponential behavior of the transmittance
𝐼𝑑 (𝜃 = 0)∕𝐼0 according to porosity is perceived, which has been also
observed in Ref. [39] with simulations of light propagation in foam
structures with respect to different geometrical porosity factors.

3.3. Application on apple tissues

Apple flesh tissue is an example of turbid porous medium probed by
Adding-Doubling method [40,41] to obtain optical coefficients, which
are related to chemical and physical characteristics such as firmness, tex-
ture, crunchiness properties or soluble solid content [5,42]. As reported
in Refs. [40] and [41], the optical scattering and anisotropy coefficients
of skin and flesh tissues retrieved by this method differ largely for a
same apple specie (Braeburn cultivar): 𝜇𝑠 ∼3 mm−1−𝑔 ∼0.7 [40] and
𝜇𝑠 ∼ 12 mm−1−𝑔 ∼ 0.93 [41] for the flesh tissue. This discrepancy
may be explained by the range of the sample thicknesses considered
in these two studies, i.e. 𝐿 = 0.81–3.30 mm [40] and 𝐿 ∼ 0.5 mm [41].
Note that the reduced scattering coefficient 𝜇𝑠(1-g) remains of the same
magnitude. In neglecting both the forward peak (∼0–5◦) and a part
of the backward domain (<140◦), an experimental scattering phase
function related to flesh apple samples has been approximately adjusted
with an usual Monte Carlo model using a Henyey–Greenstein function
and 𝜇𝑠 = 3.33 mm−1-𝑔 = 0.7 [43]. Nevertheless, it would be interesting
to estimate more accurately the optical characterization of flesh fruit
tissues, which have specific heterogeneous porous microstructure [5]
(the equivalent spherical diameters of pores can change from 50 to
500 μ m [5]).

If an apple flesh tissue immersed in water (such as considered in
these previous studies [40,41,43]) is strongly porous, apple skin tissue

Fig. 8. Fitting by Adding-Doubling modified (line) of experimental effective
phase functions (symbol) of apple tissues copied from the Ref. [43]. (a) Skin
tissue of Granny Smith cultivar. (b) Flesh tissue of Granny Smith cultivar.

can be approximated as a classical multilayer turbid medium [44],
whose matter density is higher than the flesh one. In the same manner,
the results related to Fig. 4 has shown that a large sample of flesh tissue
probed with respect to the air outside can be considered as very close
to a classical multilayer turbid medium. These two cases (peel tissue or
probing in air) are used here to retrieve the optical properties of the
turbid medium outside the cavities.

First and based on the data of the Ref. [43], the modified Adding-
Doubling method can be applied to estimate optical coefficients of skin
and flesh tissues. A thin sample (∼100 μm) extracted from a peel of a
Granny Smith cultivar can be seen as a homogeneous layer [45] from
which a scattering phase function can be evaluated. With a scattering
coefficient of 40 mm−1 (average value of the apple skins in Ref. [41])
and Henyey–Greenstein (HG) phase function, first moment 𝑔𝐻𝐺 can be
retrieved from curve fitting (see Fig. 8(a)) and used as reference moment
in Eq. (10) for the apple flesh tissues. A flesh tissue extracted from the
same cultivar Granny Smith (thickness 𝐿 ∼ 280 μm) is now considered.
The modified Adding-Doubling method is used for searching the best
parameter 𝑓 (= 𝐹 1∕3) to set in Eq. (10), in order to find an efficient
fitting on the range [0◦–140◦] (the absorption coefficient remains fixed
to 𝜇𝑎 = 0.01 mm−1). The findings are depicted in Fig. 8(b) for the case
where the wavelength is 784 nm. As a result, the corresponding value
of the parameter f (F ) was 0.69 (0.33), the equivalent optical depth 𝜏 ∗
is 3.70, which give a scattering coefficient 𝜇∗

𝑡 = 𝜏 ∗ ∕𝐿 = 13.2 mm−1

and an anisotropy coefficient 𝑔∗ = 0.897. The order of magnitude of 𝜇∗
𝑡

and 𝑔∗ are close to those obtained in the Ref. [41]. To my knowledge, it



Fig. 9. (a) Scheme of an experiment made on cultivar Golden Delicious (three
samples of thickness ∼500 𝜇m) with and without immersion in water. (b) Fitting
by Adding-Doubling modified (line) of experimental effective phase functions
(symbol) of Golden Delicious flesh tissues with (/nwater) or without (/nair) merge
in the water.

is the first time that such relationship is proposed between the optical
scattering parameters of the skin and those of the cortex of apple tissue.

Second, an experiment was made on cultivar Golden Delicious (three
samples of thickness ∼500 μm) with and without immersion in water (see
Fig. 9(a)). The wavelength of the laser was 630 nm and it was noted
that the data fluctuations were high (see Fig. 9(b)). Nevertheless, the
same use of the modified Adding-Doubling method was performed with
an absorption coefficient fixed at 0.025 mm−1. As a result, scattering
coefficients 12 mm−1 and 10.2 mm−1 were obtained for cases linked
to a probe without and with immersion in water, respectively. The
anisotropy coefficients corresponding to these scattering coefficients

were 0.8965 and 0.8914. Contrary to the case above with the skin/flesh
comparison, the difference with and without immersion leads to a
parameter 𝑓 = 0.95 (𝐹 = 0.85) closer to 1, which can be related to the
fact that only the greater pores interfere here and not the microscopic
porosity inside the cells.

Simulations were performed with a MLMC-MCRT model (see the
model displayed in Fig. 10(a) with an average size of cavities radii re-
duced to 120 μm) using the parameters 𝜇𝑠 = 12 mm−1, 𝜇𝑎 = 0.025 mm−1,
𝑔 = 0.895, i.e. those found with the above fitting. This random structure
has pores size close to the ones observed on the sample shown in
Fig. 9(a). In Fig. 10(b), the comparison is shown between the effective
phase functions provided by the model (with or without cavities) and
the averaged points obtained from the experimental data cited above.
As seen in Fig. 10(b), the effect of the cavities is small, but it can be
illustrated by the simulation. However, if an importance refractive index
mismatch between the cavities and the tissue exists, the approximation
of a homogeneous model build with the usual MLMC model is good.

4. Conclusion

The propagation in turbid media refers to radiative transport through
microscopic heterogeneities, such microscopic or mesoscopic pores. Ap-
proximate or exact solutions of the radiative transport equation can be
used for these pseudo-continuous systems. However, when macroscopic
pores or large foam structures are added, the simulations must take into
account differently the light propagation. That permits to characterize
for instance the optical probing of bone tissues or cortex tissues of
apple. A Monte Carlo code is here combined with a code of Ray-tracing
(MLMC-MCRT) in order to simulate the photon transport either in a
pseudo-continuous tissue or in large spheroid cavities. This method that
is emphasized in this paper can be seen as an intermediate way between
the pure homogeneous model and the real 3D mesh structure model of
complex tissue hard to process.

As a result, it can be seen that the time-resolved transmittance in
large sample containing a lot of cavities intertwined can be sensitive to
the increase of the cavity size. The limited impact of the osteoporosis
through this optical technique can be observed thanks to this kind of
Monte Carlo model build here. Moreover, when the refractive index
mismatch with the continuous material can be neglected, the effective
scattering phase function linked to this turbid medium containing
several large pores differs noticeably of the one observed for the case
without macroscopic pores. Particularly, the forward peak is strongly
increased, and depends on the porosity. Consequently, the measurement
of the transport scattering coefficient with a decreasing exponential law
becomes disputable and more sensitive to the thickness variation of the
sample.

The MLMC-MCRT allows to go further into the optical character-
ization in continuous mode of thin turbid sample with macroscopic

Fig. 10. (a) Structure of a MLMC-MCRT model with an average size of cavities radii reduced to 120 𝜇m. (b) Monte Carlo simulation (5 ⋅ 106 photon packets and 𝑅𝑑
is chosen as infinite) with and without cavities versus average point corresponding to the experimental data of Fig. 9(b).



porosities. This model can be used as a tool to search an equivalence
between the optical probing of strong heterogeneous porous turbid
medium and the one adapted to homogeneous slab. Indeed, a fast
solution of the radiative transport equation based on homogeneous slab
model, such the Adding-Doubling method, remains useful. This can
be notably used in order to assess easily optical properties thanks to
integrating-sphere that is currently used in the analysis of turbid biolog-
ical tissue. It is proposed here to keep the Adding-Doubling procedure,
but to add inside a new parameter related to the weight of macroscopic
pores. Tests are performed for several examples build with the help of
MLMC-MCRT, with different porosities but limited to media having high
anisotropy. When the optical porosity due to the spheroid cavities does
not exceed 50%, fitting error seems acceptable. This method is then
applied to results of a previous published experiment about apple flesh
tissues immersed in water, which are strongly heterogeneous porous
tissues. Moreover, the influence of the refractive index mismatch can
be considered with an experiment where apple flesh are immersed
or not in a water tank. It can be also shown that a MLMC-MCRT
simulation containing few cavities allows to reproduce the experimental
light angular distributions.

The light is always assumed to be incoherent, which is a limit of
this study. An improvement could be made by taking into account
polarization influence in case of coherent light source. In addition,
turbid media with low anisotropy and high porosities require probably
more complex relationships of equivalence. Nevertheless, biological
turbid tissue have usually high anisotropy, and so the method developed
here can be useful to probe complex porous, such as bone tissues,
especially using information of density and size of cavities based on
realistic porous tissue architectures.
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Appendix

The idea of equivalence can be examined through a simple model
(Fig. A.1(a)). Taking into account the model of opaque sphere dis-
tributions (radius r, local density 𝜌, efficiency Q, total density 𝜌𝑇 ),
the extinction coefficient 𝜇𝐸 (who is equal to the scattering transport
coefficient 𝜇𝑡) is a function of the Mie scattering coefficient 𝜇𝑆 = 𝜌𝜋𝑟2𝑄
and of the geometrical porosity fraction 𝛱 = 1 − 𝜌𝑇 4𝜋𝑟3∕3 [2]. If a
slab with an irregular distribution is replaced by a thinner slab with a
homogeneous distribution, such as the total density 𝜌∗𝑇 is equal to the
local density, thus the value of this local density 𝜌∗ and the sphere radius
𝑟∗ must be changed to keep 𝜇𝑠, 𝛱 , and 𝜇𝐸 constant:

𝜇𝑆 = 𝜌∗𝜋𝑟∗2𝑄(𝑟∗) = 𝜌𝜋𝑟2𝑄(𝑟) (A.1)

1 −𝛱 = 𝜌∗ 4𝜋
3
𝑟∗3 = 𝜌𝑇

4𝜋
3
𝑟3 (A.2)

which lead to

𝑟∗ = 𝑟
𝜌𝑇
𝜌

𝑄(𝑟∗)
𝑄(𝑟)

(A.3)

𝜌∗ = 𝜌
(

𝜌
𝜌𝑇

)2( 𝑄(𝑟)
𝑄(𝑟∗)

)3
(A.4)

Consequently, the scattering phase function changes according to the
transition between r and 𝑟∗ [46,47], and the new thickness of a slab
without lateral limit, 𝐿∗ ∼ 1∕𝜌∗, varies from the initial thickness 𝐿 ∼
1∕𝜌𝑇 as 𝜌𝑇 ∕𝜌∗ = (𝑟∗∕𝑟)3. Note that the scattering phase function of an
individual sphere could be more diffusing when a new radius 𝑟∗ < 𝑟 is
considered, while a thinner thickness 𝐿∗ tends to enhance the effective
forward scattering.

Fig. A.1. Model of spheres in a slab. (a) Scheme of a equivalence between
heterogeneous and homogeneous arrangements with geometric porosity factor
and scattering coefficient kept fixed. (b) Anisotropy coefficients computed from
Mie theory with respect to sphere radius 𝑟𝑆 for 𝑛 = 1.4 and three wavelengths
0.75, 0.8, and 0.85 𝜇m. In addition, 𝑓𝑔1 + [1 − 𝑓 − (1 − 𝑓 )2]𝑔21 + (1 − 𝑓 )2𝑔31 is
plotted for 𝑔1 going from 0.8 to 0.9 and with 𝑓 = 𝑟𝑆∕𝑟𝑆𝑀𝑎𝑥.

Moreover, the idea related to this simple model is that a parameter
f used to define an equivalent angular distribution ℎ∗ in an Adding-
Doubling algorithm could be in magnitude of power 1/3 the one used
for the optical depth 𝜏∗ (who can be seen as 𝜇𝐸𝐿∗ or 𝜇∗

𝐸𝐿 when 𝜏 =
𝜇𝐸L). For instance, an average trend concerning the optical anisotropy
coefficient, calculated from the Lorenz–Mie theory [48] for a sphere
with a radius 𝑟𝑆 higher than the light wavelength, is an increase with a
low slope. A similar trend can be obtained with the expression 𝑔∗(f,𝑔1)=
𝑓𝑔1+[1−𝑓−(1−𝑓 )2]𝑔21+(1−𝑓 )

2𝑔31 , where 𝑔1 is in the range [0.8–0.9] and
𝑓 ∼ 𝑟𝑆 as shown in Fig. A.1(b). In this function 𝑔∗(1, 𝑔1) = 𝑔1 corresponds
to an estimate of the optical asymmetry coefficient when the mean
sphere radius is maximum. This approximate similarity concerns the
optical anisotropy coefficient, which is also the first moment of the
scattering phase function. Thus, a simplified transformation proposed
here between h and ℎ∗, i.e. p and 𝑝∗, is the addition of scattering event
orders higher than 1 into the expression ℎ∗ (i.e. 𝑝∗):

𝑝∗(𝜃) =
∞
∑

0
(2𝑙 + 1)𝑔∗𝑙 𝑃𝑙(cos 𝜃)



=
∞
∑

0
(2𝑙 + 1)[𝑓𝑔𝑙 + (1 − 𝑓 − (1 − 𝑓 )2)𝑔2𝑙 + (1 − 𝑓 )2𝑔3𝑙 ]𝑃𝑙(cos 𝜃) (A.5)

where 𝑃𝑙 are the Legendre polynomials, and 𝑔𝑙 - 𝑔∗𝑙 are the moments
of 𝑝(𝜃) − 𝑝∗(𝜃). The forward scattering is reduced by the additional
components 𝑔2𝑙 and 𝑔3𝑙 associated to the scattering events 2 and 3 [49].
As a recall, with the definition 𝜏 ∗= 𝜇𝐸𝐿∗, the expression 𝜏 ∗=
𝜇𝐸𝐿(𝑟∗𝑆∕𝑟𝑆𝑀𝑎𝑥)3 = 𝜏𝑓 3 is obtained. This means that 𝑝∗ = 𝑚1(𝐹 )𝑝 +
∑𝑁𝑠𝑒

𝑘=2𝑚𝑘(𝐹 )𝑝
∏𝑁𝑠𝑒−1

𝑘=1 ⊗𝑝 ≈ 𝑓𝑝+ [1− 𝑓 − (1− 𝑓 )2]𝑝⊗𝑝+ (1− 𝑓 )2𝑝⊗𝑝⊗𝑝,
where 𝐹 = 𝑓 3, 𝑁𝑠𝑒 = 3, 𝑚1(𝐹 ) = 𝐹 1∕3, 𝑚2(𝐹 ) = 1 − 𝐹 1∕3 − (1 − 𝐹 1∕3)2
and 𝑚3(𝐹 ) = (1 − 𝐹 1∕3)2. The addition is controlled by a parameter f to
be estimated, which is also related to the one used to choose the new
optical depth 𝜏∗ = 𝐹𝜏 = 𝑓 3𝜏 .
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