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Abstra
t

In this paper, the Solid Isotropi
 Material with Penalisation (SIMP) method for

Topology Optimisation (TO) of 2D problems is reformulated in the Non-Uniform Ra-

tional BSpline (NURBS) framework. This 
hoi
e implies several advantages, su
h as

the de�nition of an impli
it �lter zone and the possibility for the designer to get a ge-

ometri
 entity at the end of the optimisation pro
ess. Therefore, important fa
ilities

are provided in CAD postpro
essing phases in order to retrieve a 
onsistent and well


onne
ted �nal topology. The e�e
t of the main NURBS parameters (degrees, 
ontrol

points, weights and knot-ve
tor 
omponents) on the �nal optimum topology is investi-

gated. Classi
 geometri
 
onstraints, as the minimum and the maximum member size

have been integrated and reformulated a

ording to the NURBS formalism. Further-

more, a new 
onstraint on the lo
al 
urvature radius has been developed thanks to the

NURBS formalism and properties. The e�e
tiveness and the robustness of the pro-

posed method are tested and proven through some ben
hmarks taken from literature

and the results are 
ompared with those provided by the 
lassi
al SIMP approa
h.

Keywords:

Topology Optimisation; NURBS surfa
es; Finite Element Method; CAD-
ompatibility; Stru
tural

Optimisation

1 Introdu
tion

In the last three de
ades, Topology Optimisation (TO) has gained an in
reasing degree of interest in

both a
ademi
 and industrial �elds. The aim of TO for stru
tural appli
ations is to distribute one

or more material phases in a pres
ribed domain in order to satisfy the requirements for the problem

at hand. Usually, the design problem is formulated as a Constrained Non-Linear Programming

Problem (CNLPP) wherein a given 
ost (or obje
tive) fun
tion must be minimised by meeting, at

the same time, the full set of optimisation 
onstraints. Classi
ally, �rst TO methods were based

on a Finite Elements (FE) des
ription of the geometry [1℄. The basi
 idea 
onsists of de�ning a


ontinuous �
titious density fun
tion varying between zero and one on the 
omputation domain.

The density fun
tion is evaluated at the 
entroid of ea
h element of a prede�ned mesh and provides

information about the topology: �void" and �solid" phases are asso
iated to the lower and upper

bounds of the density fun
tion, i.e. zero and one, respe
tively. Meaningless �gray" elements (related

to intermediate values of the density fun
tion) are allowed but penalised during optimisation in

order to a
hieve a �
lear" solid-void design. So, me
hani
al properties of ea
h element are 
omputed

(and penalised) a

ording to the lo
al density value. Several interpolation s
hemes have been

developed for evaluating me
hani
al properties, e.g. Solid Isotropi
 Material with Penalisation

(SIMP) or Rational Approximation of Material Properties (RAMP) [2℄. Sin
e the pioneering

works on TO, di�erent strategies were proposed during the years in order to over
ome 
lassi
 TO

drawba
ks, su
h as 
he
ker-board e�e
t and mesh dependen
e. Proje
tion methods have been used

in [3℄ and their robustness has been investigated in [4℄. These algorithms, based on proje
tion and

suitable �lters, exhibit �ne features sin
e they integrate spe
i�
 geometri
 
onstraints [5℄. Density-

based TOmethods are really e�
ient and 
an be implemented in very 
ompa
t s
ripts [6℄. However,
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in spite of their relative simpli
ity, they provide a FE-based des
ription of the �nal geometry and

suitable postpro
essing must be fore
ast in order to obtain a smooth CAD-
ompatible design. A

di�erent TO method, originated from the exigen
e of pre
isely 
ontrolling the boundaries of the

optimised stru
ture, is referred in literature as Level Set Method (LSM) [7℄. A FE model is utilised

only to des
ribe the physi
s of the problem at hand, whilst the topology of the system is represented

through a suitable Level Set Fun
tion (LSF). In the 3D 
ase, the LSF is a s
alar fun
tion, de�ned

in I ⊂ R, whi
h represents the image of the generi
 point (P = {x, y, z, t}) belonging to the domain

D ⊂ R
4
. The sign of the LSF 
an be 
onventionally asso
iated to material or void zones while

the zero value represents the boundary of the optimised stru
ture [8℄. Furthermore, the evolution

of the boundary of the domain (i.e. the zero value of the LSF) is governed by the Hamilton-

Ja
obi Equation and represents its fundamental solution. The LSM is 
hara
terised by two main

advantages:

a) the LSF gives a 
lear impli
it geometri
 representation of the boundary of the domain;

b) unlike density-based methods, the LSF is not a�e
ted by greyness e�e
t.

A thorough dis
ussion on the LSM for stru
tural TO appli
ations 
an be found in [9℄. The LSF


an be 
hosen among di�erent sets of fun
tions, a

ording to lo
al or global support, dimension of

the lo
al support, mathemati
al nature of the fun
tion [10℄. Often, Radial Basis Fun
tions (RBFs)

are utilised be
ause of their versatility and simpli
ity [11, 12, 13℄.

Re
ent e�orts are �nalised to �ll in some gaps of 
urrent TO methods. In parti
ular, the main

short
oming of density-based strategies is the time 
onsuming postpro
essing phase ne
essary to

rebuild the boundaries of the optimum topology of the stru
ture starting from a FE �pixelised"

domain (providing the required smoothness). The LSM represents a �rst attempt to over
ome

this di�
ulty by introdu
ing geometri
 entities to properly des
ribe the topology. In the pro
edure

dis
ussed in [14℄, the LSM is 
oupled to the isogeometri
 analysis by means of Non-Uniform Rational

BSpline (NURBS) formalism for both LSF parametrisation and obje
tive fun
tion 
omputation.

However, the LSM is not free from drawba
ks. Tipi
ally, the LSM is based on the Hamilton-Ja
obi

equation, that needs parti
ular attention to be solved: it should be properly reinitialised and the

Courant-Friedri
hs-Lewy 
ondition must be met to satisfy spe
i�
 requirements on the time step

related to the mesh dimension [7℄. Moreover, the LSM is a�e
ted by the initial topology of the

domain (i.e. the initial guess) and, roughly speaking, when 
onsidering the 
lassi
al formulation

based on the shape derivative, holes 
an merge but 
annot nu
leate in the stru
ture [9℄. Su
h a

sensitivity of the solution to the initial guess of the topology 
an be eliminated by means of the

topologi
al derivative and a �
titious energeti
 term in the obje
tive fun
tion [15℄. Unfortunately,

solutions exhibit a dependen
e on the weight parameter of the energeti
 term in the obje
tive

fun
tion. As far as 
on
erns density-based TO methods, a �rst enhan
ement was presented in [16℄

by relating the �
titious density fun
tion to a BSpline surfa
e for 2D TO problems. The main

advantages of this 
hoi
e were the impli
it �lter zone and the mesh-independen
e of the solution.
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However, any development was introdu
ed about the handling of geometri
 
onstraints and the

improvement of the postpro
essing phase required to get a CAD-
ompatible shape.

Providing a 
areful des
ription of the geometry is 
ru
ial in TO not only to save time in

postpro
essing but, mostly, to ensure that the optimum shape of the 
omponent (rebuilt at the

end of TO) 
ould meet the design 
onstraints. Nowadays, 
ommer
ial software like OptiStru
t

(a module of Altair HyperWorks pa
kage) [17℄ or Tos
a (a module of Abaqus Pa
kage) [18℄ are

widely utilised in industrial �eld. Sin
e they make use of a density-based method, suitable tools are

needed to rebuild the boundary of the optimum topology. Although these tools are quite fast and

e�
ient, usually the rebuilt geometry does not satisfy part (or the full set) of the design 
onstraints


onsidered for the problem at hand.

Typi
al 
onstraints a

ount for the 
ontrol of geometri
 features on the one hand and man-

ufa
turing requirements on the other hand. Some 
onstraints 
an 
on
ern both aspe
ts, like the


onstraints on the lo
al thi
kness (referred in literature as minimum and maximum member size)

of topologi
al bran
hes appearing during optimisation. The minimum member size 
an be taken

into a

ount in density-based TO algorithms through a simple 
riterion on the monotoni
ity of

the �
titious density fun
tion along n sear
h dire
tions: typi
ally n = 4 and n = 13 for the 2D

and 3D 
ase, respe
tively [19℄. It has been proven that this 
onstraint 
onstitutes also an impli
it

�lter that 
an repla
e 
lassi
al distan
e-based �lters in order to prevent the 
he
ker-board e�e
t

in density-based TO methods. Further strategies to a

ount for the minimum member size in

density-based TO methods make use of proje
tion and �ltering te
hniques, see [3℄ and [20℄. Also

the dilated and eroded des
ription of the topology outlined in [21℄ �nally results in an impli
it


ontrol on the minimum member size. An e�
ient way of handling the maximum member size


onstraint is presented in [5℄, while expli
it 
onstraints on the members dimensions 
an be dire
tly

imposed in the framework of the LSM by introdu
ing the `skeleton" 
on
ept, see [22℄ and [23℄.

Considering all of the previous aspe
ts, in this paper an alternative density-based TO method

for 2D problems is presented. Taking inspiration from the work of [16℄, the proposed method is

based on the utilisation of the NURBS formalism (in the 
ontext of the SIMP approa
h) to represent

the �
titious density fun
tion that be
omes a NURBS surfa
e (for 2D problems). Ea
h point of

the NURBS 
ontrol net is then 
hara
terised by three 
oordinates of whi
h two are Cartesian


oordinates and the third one is the density. The proposed approa
h, also 
alled NURBS-based

SIMP approa
h [24℄, is 
hara
terised by several original features whi
h make it a general and

e�
ient methodology for dealing with 2D topology optimisation problems. Thanks to the NURBS

formalism, the proposed methodology is fully 
ompatible with CAD software. The method is

extremely versatile and all the 
lassi
al geometri
 
onstraints (minimum and maximum member

size, symmetries, et
.) 
an be easily reformulated by means of the NURBS surfa
es. Furthermore,

sin
e the NURBS formalism gives an exa
t representation of the boundary of the stru
ture, a

new geometri
 
onstraints on the lo
al 
urvature radius of the boundary has been formulated and

implemented. Finally, unlike the work of [16℄, the in�uen
e of the weights on the optimum topology
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has been taken into a

ount and a relevant sensitive analysis has been 
arried out.

Some ben
hmarks, taken from literature [2, 5℄, are 
onsidered to prove the the e�e
tiveness of

the NURBS-based SIMP method.

The paper is stru
tured as follows: �rstly, the theoreti
al framework of both NURBS surfa
es

and SIMP method is presented. Then, the mathemati
al formulation of the proposed methodology

is given in Se
tion 3. In Se
tion 4, the mathemati
al formulation of geometri
 
onstraints is outlined

together with the related gradient 
omputation. The numeri
al strategy is then brie�y des
ribed

in Se
tion 5. Se
tion 6 is dedi
ated to the dis
ussion of meaningful results and, �nally, Se
tion 7

ends the paper with some 
on
lusions and perspe
tives.

2 Theoreti
al framework

In this Se
tion, the fundamental 
on
epts and notations of the NURBS theory and SIMP TO

method are brie�y re
alled.

2.1 The NURBS surfa
e theory

A

ording to the notation of [25℄, a NURBS surfa
e is de�ned as:

S(u, v) =

nu∑

i=0

nv∑

j=0

Ri,j(u, v)Pi,j , (1)

where Ri,j(u, v) are the pie
ewise rational basis fun
tions, whi
h are related to the standard

NURBS blending fun
tions Ni,p(u) and Nj,q(v) by means of the relationship

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

∑nu

k=0

∑nv

l=0Nk,p(u)Nl,q(v)wk,l
. (2)

In Eqs. (1) and (2), S(u, v) is a bivariate ve
tor-valued pie
ewise rational fun
tion, (u, v) are

s
alar dimensionless parameters both de�ned in the interval [0, 1], while p and q are the NURBS

degrees along u and v dire
tions, respe
tively; wi,j are the weights and Pi,j = {xi,j , yi,j, zi,j} the

Cartesian 
oordinates of the generi
 
ontrol point, with i = 0, ..., nu and j = 0, ..., nv. The net of

(nu +1)× (nv + 1) 
ontrol points 
onstitutes the so-
alled 
ontrol net. The blending fun
tions are

re
ursively de�ned by means of the Bernstein's polynomials:

Ni,0(u) =

{

1 if Ui ≤ u < Ui+1,

0 otherwise,
(3)

Ni,p(u) =
u− Ui

Ui+p − Ui
Ni,p−1(u) +

Ui+p+1 − u

Ui+p+1 − Ui+1

Ni+1,p−1(u), (4)

where Ui is the i-th 
omponent of the following non-periodi
 non-uniform knot ve
tor :

U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, Up+1, . . . , Umu−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}. (5)
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It is noteworthy that the size of the knot ve
tor is mu + 1,

mu = nu + p+ 1. (6)

Analogously, the Nj,q(v) are de�ned on the knot ve
tor V, whose size is mv:

V = {0, . . . , 0
︸ ︷︷ ︸

q+1

, Vq+1, . . . , Vmv−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1

}, (7)

mv = nv + q + 1. (8)

The knot ve
tors U and V are two non-de
reasing sequen
es of real numbers that 
an be

interpreted as two dis
rete 
olle
tions of values of the dimensionless parameters u and v. As the


ontrol points, also the knot ve
tors 
omponents form a net. One basi
 property of the blending

fun
tions is the lo
al support property : Ni,p(u) = 0 if u is outside the interval [Ui, Ui+p+1[. Hen
e,

it is evident that Ri,j(u, v) = 0 if (u, v) is outside the re
tangle [Ui, Ui+p+1[×[Vj , Vj+q+1[, i.e. the

lo
al support asso
iated to the 
ontrol point Pi,j . The lo
al support property is of paramount

importan
e to understand all the advantages of the NURBS formulation of the SIMP method in

the 
ontext of TO. For a deeper insight in the NURBS theory, the reader is addressed to [25℄.

2.2 The 
lassi
 SIMP method

The SIMP method is brie�y dis
ussed here for the minimum 
omplian
e 2D problem subje
t to an

equality 
onstraint on the volume [2℄. Let us 
onsider a re
tangular referen
e domain D ⊂ R
2
in

a Cartesian orthogonal frame O(x, y). Let D be de�ned as

D = {(x, y) ∈ R
2|x ∈ [0,W ], y ∈ [0, H ]}, (9)

whereW and H are two referen
e lengths of the domain (that 
an vary depending to the 
onsidered

problem) along x and y axes, respe
tively. The goal is to �nd the optimal distribution of a given

isotropi
 material on D by minimising the 
omplian
e (i.e. the virtual work of external applied

loads) with an imposed volume fra
tion f of the design domain. The material distribution (void

and material zones) a�e
ts the sti�ness tensor Eijkl(x), whi
h is variable over the domain D. Let

Ω ⊆ D be the material domain. In the SIMP approa
h, Ω is determined by means of a �
titious

density fun
tion ρ(x) ∈ [0, 1] de�ned over the whole design domain D. Su
h a density �eld is

related to the material distribution: ρ(x) = 0 means absen
e of material, whilst ρ(x) = 1 implies


ompletely dense base material. The relationship between the sti�ness tensor Eijkl(x) and the

density �eld ρ(x) is

Eijkl(ρ(x)) = ρ(x)αE0
ijkl , (10)

where E0
ijkl is the sti�ness tensor of the isotropi
 material and α ≥ 3 a suitable parameter that

aims at penalising all the meaningless densities between 0 and 1. Let u be the displa
ement ve
tor
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�eld and l(u) the 
omplian
e of the stru
ture, namely

l(u) =

∫

D

ρ(x)αE0
ijklεij(u)εkl(u)dD. (11)

In Eq. (11), εij (i, j = 1, 2, 3) are the 
omponents of the strain tensor. The FEM-dis
retised

version of Eq. (11) is:

c = {UFEM}T [K] {UFEM} , (12)

where [K] is the global sti�ness matrix of the stru
ture de�ned as

[K] =

Ne∑

e=1

ραe [Ke] . (13)

In Eq. (12), {UFEM} is the ve
tor of the degrees of freedom (DOFs), also 
alled nodal generalised

displa
ements, of the stru
ture representing the solution of the problem:

[K] {UFEM} = {F} , (14)

wherein {F} is the ve
tor of the nodal generalised external for
es. In Eq. (13), ρe is the �
titious

density 
omputed at the 
entroid of the generi
 element e, whilst [Ke] is the non-penalised element

sti�ness matrix expanded over the full set of DOFs of the stru
ture. The problem of determining the

optimum topology whi
h minimises the 
omplian
e subje
t to a 
onstraint on the overall volume


an be stated as follow:

min
ρe

c(ρe),

subje
t to:







[K]{UFEM} = {F},
V (ρe)

Vtot
=

∑Ne

e=1 ρeAe

WH
= f,

ρmin ≤ ρe ≤ 1, e = 1, ..., Ne.

(15)

In Eq. (15), Vtot is the overall volume of the de�nition domain D, V (ρe) is the volume of the

material domain Ω, while f is the �xed volume fra
tion; Ae is the area of element e on the x − y

plane and ρmin represents the lower bound imposed to the density �eld in order to prevent any

singularity for the solution of the equilibrium problem.

It must be pointed out that the SIMP method 
an lead to numeri
al issues, e.g. the well-known


he
ker-board e�e
t, related to the la
k of mutual dependen
y among the design variables, i.e. the

pseudo-densities ρe de�ned at ea
h element 
entroid. To repair these issues, a distan
e-based �lter

is usually employed [2℄. For the sake of 
ompleteness, the derivative of the 
omplian
e with respe
t

to the elements �
titious densities 
an be dedu
ed by means of the adjoins method [2℄:

∂c

∂ρe
= −αρα−1

e {UFEM}T [Ke]{UFEM}, e = 1, ..., Ne. (16)

7



Moreover, Eq. (16) 
an be simpli�ed by de�ning the 
omplian
e of the single element:

ce = ραe {UFEM}T [Ke]{UFEM}. (17)

Thus, the sensitivity analysis for the 
omplian
e �nally writes:

∂c

∂ρe
= − α

ρe
ce, e = 1, ..., Ne. (18)

The sensitivity of the volume fra
tion is

1

Vtot

∂V

∂ρe
=

Ae

WH
, e = 1, ..., Ne. (19)

3 The NURBS-based SIMP method: mathemati
al formula-

tion

In the framework of the proposed approa
h, the pseudo-density �eld 
hara
terising the SIMP

method is related to a suitable NURBS s
alar fun
tion:

ρ(u, v) =

nu∑

i=0

nv∑

j=0

Ri,j(u, v)ρi,j . (20)

The shape of the NURBS is a�e
ted by the value of the �
titious density at ea
h 
ontrol point,

i.e. ρi,j , as well as by the value of the other parameters involved into the de�nition of the NURBS

s
alar fun
tion, namely the degrees of the blending fun
tion, i.e. p and q, the number of 
ontrol

points (nu + 1) × (nv + 1), the weights wi,j and the value of the knot ve
tors 
omponents, as

illustrated in Eqs. (2) and (4). The dimensionless parameters u and v 
an be arbitrarily de�ned.

For 2D TO problems, the most intuitive 
hoi
e is to relate them to the Cartesian 
oordinates of

the global frame as:

{

u = x
W ,

v = y
H .

(21)

In Eq. (20), the 
ontrol points ρi,j and the weights wi,j are the design variables of the NURBS-

based SIMP method. They are 
olle
ted in two 
olumn arrays ξ and η. Suitable boundaries are

imposed to satisfy the density �eld requirements for the TO problem:

ξ = {ρ0,0, ..., ρnu,0, ρ0,1, ..., ρnu,1, ..., ρ0,nv
, ..., ρnu,nv

},
ρi,j ∈ [ρmin, 1], ∀i = 0, ..., nu, ∀j = 0, ..., nv.

(22)

η = {w0,0, ..., wnu,0, w0,1, ..., wnu,1, ..., w0,nv
, ..., wnu,nv

},
wi,j ∈ [wmin, wmax], wmin, wmax ∈ R, ∀i = 0, ..., nu, ∀j = 0, ..., nv.

(23)

Without loss of generality, in this work the two knot ve
tors U and V are 
onsidered uniformly

distributed in the interval [0, 1] and both the degrees of the blending fun
tions and the number of
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ontrol points are �xed a priori. In this ba
kground, the 2D TO problem 
an be stated as:

min
ξ,η

c(ρ(ξ,η)),

subje
t to:







(
∑Ne

e=1 ρ
α
e [Ke]){UFEM} = [K]{UFEM} = {F},

V (ρe)

Vtot
=

∑Ne

e=1 ρeAe

WH
= f,

{g(ξ,η)} ≤ {0},
ξk ∈ [ρmin, 1],
ηk ∈ [wmin, wmax],
∀k = 1, ..., (nu + 1)× (nv + 1).

(24)

In Eq. (24), {g(ξ,η)} is the ve
tor 
olle
ting the 
onstraints of di�erent nature (geometri
,

te
hnologi
al or physi
al), whilst ρe is the value of the pseudo-density for the generi
 element,

ρe = ρ(ue, ve) = ρ
(xe
W
,
ye
H

)

, (25)

where (xe, ye) are the Cartesian 
oordinates of the element 
entroid.

The new formulation implies two new variables sets, di�erent from the element densities, so a

sensitivity analysis should be 
arried out. It 
an be proven (see Appendix A) that the derivatives

of both the 
omplian
e and the volume with respe
t to the �
titious density at ea
h 
ontrol point


an be expressed as

∂c

∂ρs,t
= −α

∑

e∈Is,t

ce
ρe
Rs,t(ue, ve), (26)

1

Vtot

∂V

∂ρs,t
=

1

WH

∑

e∈Is,t

AeRs,t(ue, ve), (27)

while for the weights

∂c

∂ws,t
= − α

ws,t

∑

e∈Is,t

ce
ρs,t − ρe

ρe
Rs,t(ue, ve), (28)

1

Vtot

∂V

∂ws,t
=

1

WHws,t

∑

e∈Is,t

Ae(ρs,t − ρe)Rs,t(ue, ve). (29)

In Eqs. (26)-(29), Is,t represents the lo
al support related to the generi
 
ontrol point [25℄. On
e

the sensitivity analysis has been provided, a suitable gradient-based algorithm 
an be utilised as a

tool for the solution sear
h of problem (24).

The SIMP approa
h revisited in the NURBS mathemati
al framework is 
hara
terised by the

following features (whi
h implies just as many advantages):

1. The number of design variables is unrelated to the number of elements. In the 
lassi
 SIMP

approa
h, ea
h element introdu
es a new design variable. In the NURBS framework, the

a

ura
y of the topology des
ription is 
hara
terised solely by the number of points of the


ontrol net, i.e. (nu + 1)× (nv + 1);

9



2. The lo
al support property of the NURBS blending fun
tions de�nes an impli
it �lter zone.

The size of su
h a �lter zone is related to the dimensions of the lo
al support of the blending

fun
tions, i.e. to the 
omponents of the knot ve
tors as well as to the degrees of the basis

fun
tions. It should be remarked that TO �lters 
reate a mutual dependen
y area among the

elements densities, i.e. the design variables in standard SIMP formulations. In the 
ase of

NURBS, the inter-dependen
e is automati
ally provided thanking the NURBS lo
al support,

without the need of de�ning a �lter on the mesh elements densities.

3. The NURBS formalism allows taking into a

ount a wide 
onstraints gamma, sin
e a math-

emati
ally well-de�ned des
ription of the geometri
al bounds of the optimum topology is

always available during the iterations of the optimisation pro
ess. Nevertheless, lo
al infor-

mation, su
h as the lo
al normal and tangent ve
tors, 
an be easily dedu
ed from standard

NURBS formulae.

4 Geometri
al 
onstraints: mathemati
al formulation

In this Se
tion, two 
lassi
al geometri
 
onstraints in TO, i.e. the minimum and maximummembers

size, as well as a new 
onstraint on the lo
al 
urvature radius will be formulated in the mathemati
al

framework of the proposed NURBS-based SIMP approa
h. They will 
onstitute the 
omponents

of the 
onstraint ve
tor {g(ξ,η)} appearing in the CNLPP (24).

4.1 Minimum Member Size

The minimum member size 
onstraint is used in TO to provide a minimum admissible size of

stru
tural elements. Here, the formulation proposed by [19℄ is 
onsidered. The intuitive idea


onsists of imposing the monotoni
ity of the �
titious density fun
tion in a 
ir
ular area having

a diameter equal to the minimum member size (dmin). The 
ir
ular area is sket
hed around ea
h

mesh element and the monotoni
ity is 
he
ked every time along four dire
tions (0◦, 90◦, ±45◦).

Mathemati
ally speaking, the monotoni
ity of a fun
tion on an interval I along a dire
tion γ 
an

be 
he
ked by means of the following integral:

Mγ(f) =

∫

I

|∇f · γ| − |
∫

I

∇f · γ|. (30)

Mγ(f) is stri
tly equal to 0 if f is monotone and grater than 0 otherwise. Therefore, the 
onstraint

on the minimum member size is formulated as follows:

gdmin
=

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ

− σ ≤ 0, (31)

where Ne is the number of mesh elements, γi the 
he
king dire
tion (i = 1, ..., 4), θ a penalising

exponent and σ is used to relax the 
onstraint and to provide numeri
al stability. Of 
ourse,Mγi
(ρ)

10



is the monotoni
ity integral and its evaluation domain is the 
ir
ular zone having diameter dmin

and 
entred at the 
entroid of ea
h element. The expli
it expression of Mγi
(ρ) is

Mγi
(ρ) =

∫ dmin/2

−dmin/2

|∇ρ · γi|ds−
∣
∣
∣
∣
∣

∫ dmin/2

−dmin/2

∇ρ · γids

∣
∣
∣
∣
∣
. (32)

In Eq. (32), s is a suitable abs
issa along the 
urrent 
he
king dire
tion γi. In parti
ular,

γ1 = [1, 0]t, γ2 = [0, 1]t, γ3 = [
√
2/2,

√
2/2]t and γ4 = [

√
2/2,−

√
2/2]t. In order to formulate a

dis
rete version of Eq. (32), let us 
onsider a regularmapped mesh of square elements. Then, Nγi
is

the number of mesh elements spanning the diameter dmin along γi dire
tion. It is straightforward

to verify (see [19℄) that Eq. (32) 
hanges into

Mγi
(ρ) =

Nγi
−1

∑

j=1

|ρj+1 − ρj | −
∣
∣ρNγi

− ρ1
∣
∣ . (33)

It is remarked that j in Eq. (33) is just a mute index that sweeps the interval [0, dmin], like the

abs
issa s in Eq. (32). Furthermore, a smooth approximation of the absolute fun
tion has been

employed to regularise the 
onstraint evaluation for the gradient based algorithm, namely

|z| ≈
√

z2 + ǫ2 − ǫ, (34)

with ǫ = 0.01. The �nal expression of Mγi
(ρ) to be implemented is

Mγi
(ρ) =

Nγi
−1

∑

j=1

(√

(ρj+1 − ρj)2 + ǫ2 − ǫ

)

−
√

(ρNγi
− ρ1)2 + ǫ2 + ǫ. (35)

As far as the sensitivity analysis is 
on
erned, the derivative of the minimum member size


onstraint with respe
t to the NURBS 
ontrol points writes:

∂gdmin

∂ρs,t
= θ

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ−1


∑

γi

∂Mγi
(ρ)

∂ρs,t



 . (36)

Analogously, the derivative with respe
t to the NURBS weights is

∂gdmin

∂ws,t
= θ

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ−1


∑

γi

∂Mγi
(ρ)

∂ws,t



 . (37)

The only di�
ult 
onsists in evaluating the terms

∂Mγi
(ρ)

∂ρs,t
and

∂Mγi
(ρ)

∂ws,t
. The detailed 
om-

putation is 
arried out in Appendix B and the �nal result is provided here:

∂Mγi
(ρ)

∂ρs,t
=

Nγi
−1

∑

j=1

(ρj+1 − ρj) (Rs,t(uj+1, vj+1)−Rs,t(uj , vj))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
Rs,t(uNγi

, vNγi
)−Rs,t(u1, v1)

)

√

(ρNγi
− ρ1)2 + ǫ2

,

(38)
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∂Mγi
(ρ)

∂ws,t
=
ρs,t
ws,t

∂Mγi
(ρ)

∂ρs,t
+

+
1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj) (ρjRs,t(uj , vj)− ρj+1Rs,t(uj+1, vj+1))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
ρ1Rs,t(u1, v1)− ρNγi

Rs,t(uNγi
, vNγi

)
)

√

(ρNγi
− ρ1)2 + ǫ2

]

.

(39)

In Eqs. (38) and (39), it is assumed ρj = ρ(uj, vj).

4.2 Maximum Member Size

The maximum member size is used in TO in order to limit the maximum thi
kness of topologi
al

elements. Using the maximum and the minimum member size simultaneously is a smart 
hoi
e

to obtain stru
tures with uniform dimensions. This aspe
t 
ould be parti
ularly advantageous in

additive manufa
turing produ
tion in order to avoid residual stresses in the �nal stru
ture: in fa
t,

a relevant di�eren
e in stru
tural members size implies a di�eren
e in the amount of exposed surfa
e

(thinner elements will 
hill faster than massive parts), thus leading to a non-uniform heat ex
hange.

Consequently, the o

urring temperature gradient will 
onstitute one of the most important 
auses

of residual stresses, see [26℄. In this work, Guest's formulation [5℄ has been revisited by making use

of NURBS. The pro
edure is not so far from that proposed by Poulsen for the minimum member

size. However, the 
onstraint does not 
on
ern the monotoni
ity of the �
titious density fun
tion

but is expli
itly imposed on the material phase: in fa
t, a 
he
king 
ir
ular region is drawn around

ea
h element 
entroid (whose diameter dmax is equal to the desired maximum member size). Let

Ωe be the 
ir
ular region; thus, the following 
ondition must be met for ea
h element in a 2D

stru
ture:

∑

i∈Ωe

ρ̂iAi ≤
πd2max

4
(1− ψ), ∀e. (40)

In Eq. (40), i is a mute index to indi
ate the elements in the 
ir
ular zone Ωe (built around

element e), ψ is a relaxing parameter (ψ = 0.05), Ai is the area of element i and ρ̂i is the proje
ted

�
titious density fun
tion. In this work, su
h a proje
tion is performed through the relation

ρ̂e = ραe , (41)

where α is the same parameter used for the penalisation of the SIMP, refer to Eq. (10). Of 
ourse,

it is not possible to impose a 
onstraint for ea
h mesh element and a suitable aggregation strategy

must be provided. A simple sum is not re
ommended here be
ause of 
ompensatory e�e
ts. Let

12



ae be the left term of Eq. (40), so

ae =
∑

i∈Ωe

ρ̂iAi. (42)

An e�
ient aggregation te
hnique 
onsists of 
hoosing the maximum value of a among the

mesh elements and making use of it in the formulation of the maximum member size 
onstraint.

However, in order to insert the maximum operator in a gradient-based algorithm, a suitable smooth

approximation should be given:

amax =

(
Ne∑

e=1

aχe

)
1

χ
, (43)

wherein χ is a tuning parameter whose value should be big enough. Therefore, the 
onstraint is

formulated by 
ombining Eq. (40) with Eq. (43):

amax =

(
Ne∑

e=1

(
∑

i∈Ωe

ρ̂iAi

)χ)
1

χ
≤ πd2max

4
(1− ψ). (44)

Then, Eq. (44) is arranged in order to be dimensionless and put in the form of a standard

inequality 
onstraint for the CNLPP (24) as follow

gdmax
=

(
∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ
)
1

χ

πd2max

4
(1− ψ)

− 1 ≤ 0. (45)

It is remarked that the χ parameter has been 
hosen χ = 10 at the beginning of the iterations and

it is in
reased up to 35 by a 
ontinuation method.

In this 
ase, the sensitivity analysis with respe
t to the NURBS 
ontrol points and weights is

straightforward (see Appendix B for mathemati
al passages):

∂gdmax

∂ρs,t
= α(gdmax

+ 1)

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ρα−1
i Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ , (46)

∂gdmax

∂ws,t
=
ρs,t
ws,t

∂gdmax

∂ρs,t
+

−α(gdmax
+ 1)

ws,t

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ραi Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ .

(47)
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4.3 Lo
al Curvature Radius

This kind of 
onstraint has an interest for fun
tional and manufa
turing requirements. Ideally,

if the boundary of the stru
ture is mathemati
ally de�ned, the lo
al radius of 
urvature 
an be

evaluated and its minimum value 
an be identi�ed. Then, the minimum value of the 
urvature

radius 
an be 
onstrained to be superior to an admissible referen
e value. In the framework of


lassi
al SIMP approa
h, it is not possible to formulate this kind of 
onstraints sin
e the boundary

of the stru
ture is not de�ned (nor in impli
it neither in expli
it way). Conversely, in the 
ontext of

the NURBS formulation, a des
ription of the boundary is available at ea
h iteration by establishing

a 
utting plane for the NURBS surfa
e representing the �
titious density fun
tion. Let Ω ⊆ D be

the material domain and ρcut ∈ [ρmin, 1] the threshold 
utting value for the density �eld. In order

to have a pre
ise des
ription of the 
ontour, it 
an be assumed that







(x, y) ∈ Ω, if ρ(x, y) > ρcut,
(x, y) ∈ ∂Ω, if ρ(x, y) = ρcut,
(x, y) ∈ D r Ω, if ρ(x, y) < ρcut.

(48)

For an impli
it 2D 
urve, the expression of the 
urvature writes [27℄

κ = −

{
∂ρ

∂y
− ∂ρ

∂x

}







∂2ρ

∂x2
∂2ρ

∂x∂y
∂2ρ

∂x∂y

∂2ρ

∂y2













∂ρ

∂y

−∂ρ
∂x







((
∂ρ

∂x

)2

+

(
∂ρ

∂y

)2
) 3

2

. (49)

Similarly to the minimum member size 
onstraint, the derivatives 
an be arranged through the

NURBS notation, so the 
urvature radius 
an be a
hieved:

r = − 1

WH

(

H2

(
∂ρ

∂u

)2

+W 2

(
∂ρ

∂v

)2
) 3

2

(
∂ρ

∂u

)2
∂2ρ

∂v2
− 2

∂ρ

∂u

∂ρ

∂v

∂2ρ

∂u∂v
+

(
∂ρ

∂v

)2
∂2ρ

∂u2

. (50)

Hen
e, the 
onstraint 
an be formulated as

min
∂Ω

|r(x, y)| ≥ r. (51)

The absolute value is approximated by means of Eq. (34), whilst the minimum operator has been

estimated through the Kreisselmeier-Steinhauser fun
tion [28℄. Let Nr be the number of radius

evaluation on the 
ontour of the stru
ture. Eq. (51) 
hanges into the following relation:

gr = 1 +
1

rτ
ln

(
Nr∑

k=1

exp

(

−τ(
√

r2k + ǫ2 − ǫ)

))

≤ 0, (52)

where τ should be big enough.
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The derivatives of the 
onstraint on the lo
al 
urvature radius with respe
t to design variables

(
ontrol points and weights) 
an be expressed as follows:

∂gr
∂ρs,t

= −1

r

∑Nr

k=1

exp
(

−τ(
√

r2k + ǫ2 − ǫ)
)

rk
∂rk
∂ρs,t

√

r2k + ǫ2

∑Nr

k=1 exp
(

−τ(
√

r2k + ǫ2 − ǫ)
) , (53)

∂gr
∂ws,t

= −1

r

∑Nr

k=1

exp
(

−τ(
√

r2k + ǫ2 − ǫ)
)

rk
∂rk
∂ws,t

√

r2k + ǫ2

∑Nr

k=1 exp
(

−τ(
√

r2k + ǫ2 − ǫ)
) , (54)

where the gradient of the generi
 
urvature radius 
an be evaluated thanking to Eq. (50). Details

are provided in Appendix B.

5 Numeri
al Strategy

A suitable numeri
al strategy is des
ribed with the pre
ise aim of solving the CNLPP formulated

in Eq. (24). It is noteworthy that the proposed algorithm, ex
luding the postpro
essing phase,

has been developed in MATLAB: only the FEM analysis, whi
h is needed for evaluating both

obje
tive and 
onstraint fun
tions, has been 
arried out by means of a 
ommer
ial FE 
ode (in

this 
ase ANSYS). This is a very important advantage be
ause the proposed methodology is tested

and interfa
ed with a widespread and widely 
ustomisable FEM software. Usually, the Method

of Moving Asymptotes (MMA) is employed in TO [29℄. Instead of the MMA, in this work the

MATLAB lo
al optimization toolbox and in parti
ular the a
tive-set algorithm of the fmin
on

family [30℄ with non linear 
onstraints has been utilised to solve problem (24).

The a
tive-set algorithm (ACS) is part of a spe
ial 
lass of Sequential Quadrati
 Programming

(SQP) algorithms for 
onstrained optimisation problems whi
h 
an tolerate some iterative steps out

of the feasible region. This fa
t allows for an e�
ient exploration of the feasible domain (espe
ially

its boundary) in CNLPPs. The ACS method produ
es a sequen
e of sub-problems approximating

the CNLPP at hand by exploiting the information provided by the gradient and by using only the

violated 
onstraints, whi
h 
onstitute, as a matter of fa
t, the â��a
tive-setâ��. Then, these sub-

problems are iteratively solved. Parti
ularly, the ACS approximation is quadrati
 and the ACS

algorithm is a quasi-Newton method that makes use of the Broyden-Flet
her-Goldfarb-Shanno

(BFGS) formula to approximate the Hessian in order to save 
omputational time, see [31℄. The

robustness and the e�
ien
y of SQP methods in solving CNLPPs have been largely tested and they


onstitute a well-established 
lass of gradient-based algorithms [31℄. Moreover, SQP algorithms 
an

be 
lassi�ed as �globally 
onvergent� algorithms, in the sense that, provided a feasible starting point,

the 
onsequent solution found by the algorithm will always respe
t the optimality 
onditions for


onstrained optimisation, i.e. the so-
alled Karush-Kuhn-Tu
ker (KKT) 
onditions. Of 
ourse,

the aforementioned features of SQP algorithms do not prevent from falling on a lo
al optimum,
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whi
h is a 
ommon feature shared by all the other gradient-based algorithms (in
luding MMA).

Furthermore, the problem nature depends on the 
hosen obje
tive and 
onstraint fun
tions, so

nothing 
an be a priori stated about the 
onvexity of the CNLPP at hand when these quantities

are 
omputed numeri
ally through a FEM analysis. A deeper dis
ussion on the 
onvexity of TO

problems, uniqueness of solution and dependen
e on initial data 
an be found in [2℄ and it is

out of the s
opes of this paper. A syntheti
 s
heme of the proposed numeri
al strategy and its

appli
ation to TO problems is shown in Fig. 1: inherent details 
on
erning ea
h blo
k are given

in the following.

Figure 1: NURBS-based SIMP algorithm - syntheti
 s
heme

• Prepro
essing The design domain together with geometry, mesh, loads and boundary


onditions for the stru
tural problem at hand are established. Meanwhile, the NURBS is

de�ned on the design domain in terms of number of 
ontrol points (nu + 1) and (nv + 1)

and blending fun
tions degrees p and q. The obje
tive fun
tion must be de
lared and the
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optimisation 
onstraints (if any) should be de�ned too. Furthermore, some Non-Design

Regions (NDRs) or symmetry 
onditions 
an be set at this stage.

• Optimisation blo
k. The generi
 CNLPP of 
omplian
e minimisation subje
t to m

inequality 
onstraints 
an be stated in the form

min
ξ,η

c(ξ,η),

subje
t to:

Gi(ξ,η) ≤ 0, i = 1, ...,m,

(55)

where the FE equilibrium state equation has been negle
ted and all inequality 
onstraints,

in
luding bounds on the design variables, are expressed in the 
ompa
t form G(ξ,η) ≤ 0.

Classi
 SQP methods 
hange the 
onstrained optimisation problem into an un
onstrained

minimisation problem through a suitable Lagrangian fun
tion L(ξ,η,Λ) de�ned as

L(ξ,η,Λ) = c(ξ,η) +Λ
T
G(ξ,η), (56)

where Λ is a 
olumn ve
tor 
onstituted of m Lagrange multipliers, whose 
omponents must

ful�l the following 
onditions

λi = 0, if Gi(ξ,η) ≤ 0
λi > 0, if Gi(ξ,η) > 0

∀ i = 1, ...,m.
(57)

A dire
t solution of problem (55) in terms of both design variables and Lagrange multipliers

is not possible. Therefore, a sequen
e of quadrati
 approximations of the initial problem is

generated and ea
h problem is solved in an iterative loop.

Before pro
eeding with the algorithm des
ription, it should be remarked that a suitable

initialisation is needed. In parti
ular, an initial guess for the design variables (NURBS 
on-

trol points and weights) is required for starting the solution sear
h. A

ording to the notation

of Se
tion 3, let ξ0 and η0 be the initial ve
tors of 
ontrol points and weights respe
tively:

suitable lower lb and upper ub bounds must be de�ned

{
lbξ ≤ ξ0 ≤ ubξ,
lbη ≤ η0 ≤ ubη.

(58)

Moreover, some options for the ACS fmin
on algorithm are set in this phase: the 
onver-

gen
e toleran
e on the obje
tive fun
tion and on the design variables must be established.

Moreover, a threshold on the maximum number of iterations is also introdu
ed as a further

stop 
riterion. The option on the gradient provision (sensitivity analysis formulae for both

obje
tive fun
tion and non-linear 
onstraints) is a
tivated here. Let (ξk,ηk) be the values

of design variables at iteration k: they are utilised in two main steps.
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Firstly, the obje
tive and 
onstraints fun
tions need to be 
al
ulated. To this aim, the

NURBS representing the �
titious density is evaluated at the 
entroids of the elements and

this information is transferred from MATLAB to ANSYS in a suitable format (whi
h 
an be

de�ned by the user). The SIMP 
riterion (13) is used to a
hieve the penalisation of me
han-

i
al properties and to perform the FEM analysis. Then, the required me
hani
al quantities

are registered for ea
h element and transferred to MATLAB. Now, it is possible to update

the obje
tive fun
tion (the 
omplian
e ck = c(ξk,ηk)) and 
onstraints (Gk = G(ξk,ηk)).

Furthermore, thanks to the sensitivity analysis (refer to Se
tion 3 and Se
tion 4), the deriva-

tives 
an be easily 
omputed (∇ck, (∇Gi)k, i = 1, ...,m).

Se
ondly, the aforementioned quantities are used, together with the previous evaluation

of Lagrange multipliers, to approximate the Hessian matrix a

ording to the BFGS formula

(refer to [30℄ and [31℄). The approximated Hessian matrix Hk = HBFGS(ξk,ηk, ck, (Gi)k,

∇ck, (∇Gi)k, (λi)k−1), i = 1, ...,m, is employed to state the a
tive-set quadrati
 program-

ming (QP) approximated problem, namely

min
d

Qk(d) = min
d

1

2
d
T
Hkd+∇cTk d,

subje
t to:

Akd ≤ bk,

(59)

whose design variables are the sear
h dire
tion 
omponents 
olle
ted in the ve
tor d. In

Eq. (59), Ak is the 
oe�
ient matrix, whilst bk is a ve
tor of 
onstants, both given by

the linearization employed by ACS algorithm for the optimisation 
onstraints. The QP

problem (59) 
an be solved taking advantage of one of the several methods in literature,

see [31℄. Hen
e, the 
urrent sear
h dire
tion (dk) is evaluated, together with the 
urrent

value of Lagrange multipliers ((λi)k). The last operation 
onsists of �nding a suitable step

length (sk) along the sear
h dire
tion dk. For a deeper insight into the matter, the reader

is addressed to [31℄. Finally, variables 
an be updated as follows:

{
ξk+1

ηk+1

}

=

{
ξk
ηk

}

+ skdk,

k = k + 1.
(60)

Thus, the 
onvergen
e 
riteria 
an be 
he
ked. The algorithm stops either if the maxi-

mum number of iterations is rea
hed or if the predi
ted 
hange of one among the following

quantities is less than a suitable threshold value (10−6
):

� the obje
tive fun
tion

� the gradient norm of the Lagrange fun
tion

� the ve
tor of design variables.
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Of 
ourse, the latter set of 
riteria makes sense only if the obje
tive fun
tion and the imposed


onstraints are dimensionless.

• Postpro
essing. The result of the optimisation is a �
titious density distribution on the

referen
e domain represented through a NURBS s
alar fun
tion. The outstanding advantage

provided by the NURBS formulation stands on the possibility to export a CAD 
ompati-

ble entity in order to rebuild in a straightforward way the boundary of the optimised 2D

stru
ture. However, it is ne
essary to adapt the result to the NURBS formalism: in fa
t, a

standard NURBS surfa
e is impli
itly de�ned by means of relations similar to Eq. (1). In-

deed, ea
h physi
al 
oordinate is fun
tion of the dimensionless parameters u and v. Thus, a

full des
ription of a NURBS surfa
e is obtained through relations like x = x(u, v), y = y(u, v)

and z = z(u, v), where the respe
tive 
oordinates of 
ontrol points appear. Normally, the

dimensionless parameters are not related to the physi
al 
oordinates x, y and z. Standard

format �les for NURBS data ex
hange (.igs) require 
ontrol points 
oordinates in the three

physi
al dire
tions. However, in this dis
ussion, we make use of a NURBS s
alar fun
tion

ρ (u, v) wherein the physi
al 
oordinates x and y are related to u and v through Eqs. (21).

Hen
e, it is not ne
essary to introdu
e x and y 
oordinates of 
ontrol points during the op-

timisation but they must be provided in the postpro
essing phase in order to set up the .igs

�le. Now, the z-
oordinate of ea
h 
ontrol point is simply the value of the �
titious density

for the 
onsidered 
ontrol point (i.e. ρi,j , i = 1, ..., nu, j = 1, ..., nv) provided by the TO

optimisation; x and y 
oordinates of 
ontrol points should be 
hosen in su
h a way that the

following 
onditions are met:

{

x =
∑nu

i=0

∑nv

j=0 Ri,j(u, v)Pxi,j
,

y =
∑nu

i=0

∑nv

j=0 Ri,j(u, v)Pyi,j
.

(61)

The solution of problem (61) is known in literature and referred as Greville's abs
issae [32℄,

de�ned through the knot ve
tors and degrees, namely







Pxi,j
=
W

p

∑p
k=0 Ui+k, ∀j = 1, ..., nv,

Pyi,j
=
H

q

∑q
k=0 Vj+k, ∀i = 1, ..., nu.

(62)

On
e the 
omputation is done, all the NURBS information are 
olle
ted into an .igs �le and

the NURBS 
an be imported in a CAD software. Before pro
eeding, a threshold value for

the density fun
tion is 
omputed in MATLAB in su
h a way that optimisation 
onstraints

are met: a suitable plane pla
ed at this density value 
an be 
ut by means of the NURBS

surfa
e in the CAD software in order to retrieve the �nal 2D boundaries of the optimised

stru
ture. Finally, a further .igs �le is 
reated with the �nal 2D geometry and it 
an be

transferred to the FEM software for 
he
king operations (i.e. in order to verify the value of

both obje
tive and 
onstraint fun
tions on the rebuilt stru
ture). A summarizing s
heme of

the Postpro
essing phase is depi
ted by Fig. 2.
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Figure 2: Postpro
essing - syntheti
 s
heme

6 Results and dis
ussion

Some meaningful results are presented in this Se
tion in order to prove the e�e
tiveness of the

proposed algorithm. The topologies of ea
h optimised geometry is shown here on the �nal rebuilt

stru
ture after postpro
essing phase. The CAD 
ompatibility of NURBS is fully exploited, so

useless elements have been easily 
ut o�: therefore, the obje
tive fun
tion and 
onstraints are eval-

uated on the �true stru
ture" instead of on the meshed referen
e domain (wherein �void" elements

still hold on together with the �material" elements), that is meaningless from an engineering view-

point. For ea
h analysed test 
ase, results are also 
ompared with those provided by the 
ommer
ial

software OptiStru
t [17℄ by using the same mesh of the referen
e domain. As stated in Se
tion 3,

two set of design variables, namely the NURBS 
ontrol points and the weights, 
olle
ted in the

arrays ξ and η respe
tively (refer to Eqs. (22) and (23)), tune the topology of the 2D domain. For

ea
h 
ase, the lower and upper bounds are �xed as follows:

· 
on
erning the �
titious density at ea
h 
ontrol point, standard bounds are 
hosen, i.e.

lbξi,j = 10−3
and ubξi,j = 1, ∀i = 0, ..., nu and ∀j = 0, ..., nv;

· weights enjoy greater freedom and it has been 
hosen lbηi,j
= 1/2 and ubηi,j

= 10, ∀i =
0, ..., nu and ∀j = 0, ..., nv.

The �rst part of this se
tion is dedi
ated to a 
omparison between the results obtained with

NURBS and BSpline basis fun
tions, respe
tively, on a standard ben
hmark. Then, more general

examples are provided by imposing a spe
i�
 material phase, namely �void" (ρ = 0) or �material"

(ρ = 1) in some pres
ribed Non-Design Regions (NDRs) of the 
omputational domain. Moreover,

an appli
ation with a symmetry 
onstraint is shown. Finally, the e�e
ts of the geometri
 
onstraints

dis
ussed in Se
tion 4 are investigated.

6.1 Comparison between Bspline and NURBS surfa
es for topology op-

timisation

The problem of the 
omplian
e minimisation with an imposed volume fra
tion is 
onsidered here

for a standard ben
hmark: an aluminium 
antilever plate. All geometri
 and material data are

provided in the 
aption of Fig. 3. The aim of this �rst example is to 
ompare the optimum topology
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Figure 3: Cantilever plate problem - W = 320 mm, H = 200 mm, Thi
kness t = 2 mm,

Young Modulus E = 72000MPa, Poisson Modulus ν = 0.33, Load P = 1000 N .

of the domain resulting from the utilisation of Bspline and NURBS surfa
es, respe
tively. When

using the Bspline surfa
e the TO problem 
an be stated as

min
ξ

c(ρ(ξ)),

subje
t to:







[K]{UFEM} = {F},
V (ρe)

Vtot
= 0.4,

lbξ ≤ ξ ≤ ubξ,

(63)

thus all the weights get the same value and 
an be ex
luded from the design spa
e. Conversely,

when using the more general NURBS formalism, the TO problem is

min
ξ,η

c(ρ(ξ,η)),

subje
t to:







[K]{UFEM} = {F},
V (ρe)

Vtot
= 0.4,

lbξ ≤ ξ ≤ ubξ,
lbη ≤ η ≤ ubη.

(64)

Both problems (63) and (64) have been solved through the pro
edure des
ribed in Se
tion 5 for

three values of surfa
e degrees , i.e. p, q = 2, 3, 4, and three di�erent values of the overall number

of 
ontrol points, i.e. (nu + 1) × (nv + 1) = 16 × 10, 32 × 20, 48 × 30. The FE model of the

re
tangular domain is dis
retised by means of Ansys SHELL181 elements, i.e. shell elements with

4 nodes and 6 DOFs per node [33℄. After a preliminary 
he
k on the 
onvergen
e of the results,

the size of the mapped mesh of the re
tangular domain has been 
hosen equal to 80× 50 elements.

The equality 
onstraint is split in two inequality 
onstraints by 
onsidering a toleran
e of 0.005 on

the value of f . Then, the volume fra
tion 
onstraint will be met if 0.395 <
V (ρe)

Vtot
< 0.405. Results

are provided in terms of 
omplian
e c and volume fra
tion V/Vtot of the �nal optimum topologies

in 
aptions of Figs. 4-9.
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 426.31 Nmm, V/Vtot =
0.4003.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 400.63 Nmm, V/Vtot =
0.4134.
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(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 403.45 Nmm, V/Vtot =
0.4020.

Figure 4: BSpline results for p, q = 2
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 413.96 Nmm, V/Vtot =
0.4042.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 403.49 Nmm, V/Vtot =
0.4044.
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(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 394.81 Nmm, V/Vtot =
0.4036.

Figure 5: NURBS results for p, q = 2
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 432.29 Nmm, V/Vtot =
0.4011.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 408.37 Nmm, V/Vtot =
0.3994.

x [mm]

y 
[m

m
]

0 50 100 150 200 250 300
0

50

100

150

200

(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 402.39 Nmm, V/Vtot =
0.4025.

Figure 6: BSpline results for p, q = 3

Furthermore, numeri
al results 
on
erning the true 
omplian
e as fun
tion of the number of


ontrol points are syntheti
ally plotted in Fig. 10. It is interesting to 
ompare this 
omplian
e

with the 
omplian
e 
al
ulated on the referen
e domain at the end of the solution phase before the


utting operation, i.e. the 
omplian
e of the whole re
tangular domain 
onstituted by all elements

with the respe
tive pseudo-density value (it is referred as �proje
ted 
omplian
e", see Fig. 11).

The following remarks arise from the analysis of the numeri
al results:

a) Topologies obtained through a NURBS-based representation of the �
titious density fun
tion

are smoother than those obtained by means of BSpline-based des
ription, see Figs. 4-9.

Moreover, as 
learly shown in Fig. 11, the optimum topology obtained using NURBS surfa
es
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 416.96 Nmm, V/Vtot =
0.4048.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 404.07 Nmm, V/Vtot =
0.4050.
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(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 394.45 Nmm, V/Vtot =
0.4047.

Figure 7: NURBS results for p, q = 3
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 446.71 Nmm, V/Vtot =
0.4020.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 407.31 Nmm, V/Vtot =
0.4032.
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(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 401.69 Nmm, V/Vtot =
0.4009.

Figure 8: BSpline results for p, q = 4
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 433.01 Nmm, V/Vtot =
0.4039.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 409.09 Nmm, V/Vtot =
0.4044.
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(
) (nu + 1) × (nv + 1) = 48 ×

30, c = 403.12 Nmm, V/Vtot =
0.4047.

Figure 9: NURBS results for p, q = 4

takes lower values of the proje
ted 
omplian
e when 
ompared to those resulting from a

BSpline-based representation. This fa
t justi�es the utilisation of the more general NURBS

surfa
es formalism. However, when looking at the true 
omplian
e (Fig. 10), NURBS have

still signi�
antly better performan
es than the respe
tive BSplines only when the number

of 
ontrol points is kept small. If the number of 
ontrol points in
reases, even if NURBS

topologies are still smoother than BSpline topologies, the de
rease of the obje
tive fun
tion

disappears and, sometimes, a BSpline solution 
ould be better than a NURBS solution (refer

to the 
ases of Fig. 8b and Fig. 9b). Thus, the utilisation of NURBS instead of BSpline

surfa
es in TO must be 
arefully assessed.
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Figure 10: Cantilever plate problem - True 
omplian
e trends.
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Figure 11: Cantilever plate problem - Proje
ted 
omplian
e trends.

b) Taking inspiration from [16℄, the behaviour of the solutions has been investigated by varying

both the number of 
ontrol points (nu + 1)× (nv + 1) and the degrees of the surfa
e (p, q).

These parameters a�e
t the dimension of the lo
al support of the blending fun
tions. The

lo
al support, in the 
ontext of TO, behaves as a �lter zone, i.e. a region of the referen
e

domain wherein the densities of �neighbour elements" are interdependent. Su
h a �lter
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zone is sought in standard density-based algorithms to prevent the 
he
ker-board e�e
t [2℄.

Therefore, the NURBS-based SIMP method naturally ensures an impli
itly-de�ned �lter zone

without the need of introdu
ing arti�
ial distan
e-based �lters as in [2℄. This aspe
t is stri
tly

related to the lo
al support property of NURBS blending fun
tions [25℄: the �lter dimensions

in
rease if the degrees in
rease or if the number of 
ontrol points de
reases. Conversely,

as the degrees de
rease and the number of 
ontrol points in
reases, the �lter get smaller.

Taking into a

ount these 
onsiderations, it seems natural that thinner topology elements

(bran
hes) are allowed when the dimensions of the �lter zone de
rease. This trend is evident

in BSpline and NURBS ben
hmarks, see Figs. 4-9: BSpline and NURBS surfa
es sharing the

same degrees, knot-ve
tors 
omponents and same 
ontrol point 
oordinates have the same

�lter zone. Furthermore, the smaller is the �lter size, the lower is the true 
omplian
e value.


) Several remarks arise from a deeper investigation of results shown in Fig. 10 and Fig. 11.

Firstly, the proje
ted 
omplian
e trend is smoother than the respe
tive true 
omplian
e

trend. This fa
t is a 
onsequen
e of the 
ut operation in the postpro
essing phase, whi
h


onstitutes a a sort of �dis
ontinuity" from a mathemati
al viewpoint. Indeed, this 
ut-

ting operation 
an lead to a pseudo-optimum solution: the obje
tive fun
tion de
reases but


onstraints are not met (see for example the solution of Fig. 4b). Se
ondly, the proje
ted


omplian
e exhibits an early phase of a plateau (Fig. 11), that disappears in the graph of

the true 
omplian
e of Fig. 10. A
tually, 
onsidering the de
rease of the obje
tive fun
tion

as the number of 
ontrol points in
reases, it 
an be stated that the true 
omplian
e does

not depend any more on the number of 
ontrol points beyond a 
ertain threshold value. In

other words, in
reasing the number of design variables beyond a 
ertain threshold value does

not imply better performan
es, even if the topology 
ould appear di�erent (see sub-�gures b

and 
 of Figs. 4-9). This result allows for introdu
ing a sort of �design rule": the number of


ontrol points (design variables) 
an be 
hosen and tuned as a 
ompromise between a

ura
y

in the topology des
ription and time saving in running the algorithm.

d) It is noteworthy that the proje
ted 
omplian
e is always greater than the respe
tive true


omplian
e: this point is of paramount importan
e be
ause it means that the NURBS-based

SIMP approa
h is 
onservative.

Finally, results are 
ompared to those obtained from Hyperworks OptiStru
t, where the TO

problem of Fig. 3 is solved on the same referen
e domain meshed through 80 × 50 PSHELL

Elements [17℄. Of 
ourse, being the software founded on a 
lassi
 density-based method, the design

variables are the element densities. Moreover, the �nal rebuilt optimum topology is obtained by

means of a smoothing phase (OSSmooth module of Altair Hyperworks pa
kage). It is pointed out

that OptiStru
t needs a minimum member size 
onstraint to properly work: in fa
t, the minimum

member size a
ts as a �lter for TO. In this 
ase, a minimum member size dmin = 12 mm has been


hosen (i.e. 3 times the mesh size, as suggested by OptiStru
t's referen
e guide).
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Figure 12: Hyperworks-OptiStru
t solution of the 
antilever plate problem: c =
398.66 Nmm, V/Vtot = 0.3992.

Let us 
onsider the BSpline-based solution of Fig. 6
 and the NURBS-based solution of Fig.

7
 with p = q = 3 and (nu+1)× (nv +1) = 48× 30. Both the topologies, as well as the OptiStru
t

solution, meet the volume 
onstraint. As far as the true 
omplian
e is 
on
erned, for the OptiStru
t

solution it is obtained c = 398.66 Nmm (4000 design variables), for the BSpline-based solution

c = 402.39 Nmm (1440 design variables) and for the NURBS-based solution c = 394.45 Nmm

(2880 design variables). Consequently, it 
an be stated that the NURBS-based algorithm and the

software OptiStru
t provide 
onsistent results. Finally, it 
an be asserted that in the framework of

the NURBS-based SIMP approa
h the optimum topology (showing equal or superior performan
es

when 
ompared to those provided by the 
lassi
al SIMP approa
h) is obtained with a 
onsiderable

redu
tion in the number of design variables.

6.2 In�uen
e of Non-Design Regions

In order to show the versatility of the proposed method, the e�e
ts of two pres
ribed NDRs are

investigated in this Se
tion. The problem of Fig. 3 has been slightly 
hanged, as it is shown in Fig.

13: a 
ir
ular se
tor (red zone in whi
h ρ = 1, 
entred at x = W/2, y = H/2 with Rint = 40mm,

Rext = 50mm) surrounding a �void� 
ir
le (yellow zone wherein ρ = 0) has been de�ned over the

re
tangular plate.

Figure 13: Cantilever plate problem with NDRs: design domain in white, pres
ribed ma-

terial NDR in red, pres
ribed void NDR in yellow.

In this 
ase, a BSpline surfa
e is utilised to get the solution, its parameters are p = q = 3 and

(nu + 1)× (nv + 1) = 48× 30.

The optimum solutions provided by both the NURBS-based SIMP approa
h and the 
lassi
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(a) NURBS-based SIMP solution, c =
425.95 Nmm, V/Vtot = 0.3997.

(b) Hyperworks-OptiStru
t solution, c =
406.37 Nmm, V/Vtot = 0.4085.

Figure 14: Cantilever plate problem with NDRs.

SIMP method are illustrated in Fig. 14 (the values of the true 
omplian
e and of the 
onstraint

on the volume fra
tion are reported in the �gure 
aptions). As it 
an be easily noti
ed, the

per
entage di�eren
e in terms of the obje
tive fun
tion is lower than 5%, while the overall volume

fra
tion provided by the NURBS-based SIMP approa
h is lower than that resulting from the 
lassi


SIMP approa
h: in the latter 
ase, the 
onstraint on the volume fra
tion is not met. Therefore,

these solutions (whi
h are slightly di�erent in terms of topologi
al bran
hes) are �equivalent� and


onsistent from an engineering viewpoint with a 
onsiderable di�eren
e: in this 
ase the �
titious

density �eld represented through a NURBS surfa
e is 
hara
terised �only� by 1440 design variables

while the OptiStru
t model is 
hara
terised by 2392 design variables.

6.3 In�uen
e of a symmetry 
onstraint

In this Se
tion, the problem shown in Fig. 3 and des
ribed by Eqs. (63) and (64) is enhan
ed with

a further geometri
 
onstraint: the topology is for
ed to be symmetri
 with respe
t to the plane

y = H/2. In this 
ase the BSpline and NURBS main parameters are set as follows: p = q = 3

and (nu + 1) × (nv + 1) = 48 × 30. The numeri
al values of 
omplian
e and volume fra
tion are


olle
ted in 
aptions of Fig. 15a and Fig. 15b.
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(a) BSpline solution:

c = 454.80 Nmm, V/Vtot = 0.4010.
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(b) NURBS solution: c =
456.47 Nmm, V/Vtot = 0.4044.

(
) Hyperworks-OptiStru
t

solution, c = 443.87 Nmm,

V/Vtot = 0.4036.

Figure 15: Cantilever plate problem with symmetry 
onstraint

The same problem has been solved in OptiStru
t environment and results are depi
ted in Fig.

27



15
. The symmetry 
onstraint allows for halving the number of variables, so the BSpline solution

is 
hara
terised by a 
omplian
e c = 454.80 Nmm with 720 design variables, the NURBS one by

a 
omplian
e c = 456.47 Nmm with 1440 design variables, whilst for the OptiStru
t solution it is

obtained c = 443.87 Nmm with 2000 design variables.

6.4 Minimum member size

In this example, problem (63) is solved for the ben
hmark illustrated in Fig. 3 by 
onsidering the

minimum member size 
onstraint of Eq. (31). Parti
ularly, the TO problem is solved by means of

a BSpline surfa
e with (nu+1)×(nv+1) = 48×30 
ontrol points and p = q = 3. The 
onstraint on

the minimum member size is imposed by 
onsidering three values of dmin, i.e. 16, 20, and 25 mm.

Results are 
olle
ted in Figs. 16-18 for ea
h analysis. In ea
h �gure, the �rst image is the rebuilt

geometry provided by the NURBS-based SIMP method after the postpro
essing phase, whilst the

se
ond image is the �nal rebuilt geometry provided by the 
ommer
ial tool OptiStru
t. The FE

model of the referen
e domain is the same as that illustrated in Sub-Se
tion 6.1.

Two remarks of paramount importan
e 
an be inferred from the analysis of the results depi
ted

in Figs. 16-18:

• All the advantages related to the NURBS geometri
al properties are fully exploited in this


ase. Thanks to the 
ombined a
tion of the lo
al support property and of the minimum

member size 
onstraint, all the meaningless �grey� zones are �ltered and the �nal topol-

ogy exa
tly meets the minimum member size 
onstraint. Conversely, even if the optimum

topologies resulting from OptiStru
t are 
hara
terised by better performan
es in terms of

the 
omplian
e value, they systemati
ally do not meet the minimum member size 
onstraint

due to the presen
e of thin topologi
al bran
hes. Quantitatively, the minimum size provided

by OptiStru
t is 8 mm instead of 16 mm for the �rst 
ase, 8 mm instead of 20 mm for the

se
ond one and 7 mm instead of 25 mm for the last one.

• The optimum solutions provided by the NURBS-based SIMP approa
h show non smooth

boundaries. Indeed this aspe
t is related to the formulation of the minimum member size


onstraint a

ording to the Poulsen's formula, see Eq. (31). As dis
ussed in [19℄ the minimum

member size is evaluated, for ea
h element, only along four dire
tions (see Se
tion 4.1) in

order to redu
e the 
omputational e�ort. Therefore, smoother boundaries 
an be got by

in
reasing the number of 
he
king dire
tion in the Poulsen's equation.

6.5 Maximum member size

In order to show the e�e
tiveness of the maximum member size in the framework of the NURBS-

based SIMP approa
h, a suitable ben
hmark is proposed herein. As illustrated in Fig. 19, in this


ase a re
tangular domain subje
t to a tra
tion load is 
onsidered. All the material and geometri
al
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(a) BSpline solution: c = 441.98 Nmm,

V/Vtot = 0.3996.
(b) Hyperworks-OptiStru
t solution: c =
401.02 Nmm, V/Vtot = 0.3994.

Figure 16: Results of the 
antilever plate problem for dmin = 16 mm

(a) BSpline solution: c = 438.78 Nmm,

V/Vtot = 0.4027.
(b) Hyperworks-OptiStru
t solution: c =
400.22 Nmm, V/Vtot = 0.0.4006.

Figure 17: Results for dmin = 20 mm

(a) BSpline solution: c = 488.57 Nmm,

V/Vtot = 0.4036.
(b) Hyperworks-OptiStru
t solution: c =
400.73 Nmm, V/Vtot = 0.4000.

Figure 18: Results for dmin = 25 mm

data are provided in the 
aption of Fig. 19. After a preliminary 
he
k on the 
onvergen
e of the

results, the re
tangular domain is dis
retised by means of 100× 50 shell elements.

A BSpline surfa
e (p = q = 3, (nu + 1) × (nv + 1) = 40 × 20) is 
hosen to perform the TO

analysis. Firstly, a standard problem similar to Eq. (63) is solved (the only modi�
ation is the
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Figure 19: Tra
tion plate problem - W = 400 mm, H = 200 mm, Thi
kness t = 2 mm,

Young Modulus E = 72000MPa, Poisson Modulus ν = 0.33, Load P = 1000 N .

volume fra
tion equality 
onstraint that be
omes an inequality 
onstraint):

min
ξ

c(ρ(ξ)),

subje
t to:







[K]{UFEM} = {F},
V (ρe)

Vtot
− 0.4 ≤ 0,

lbξ ≤ ξ ≤ ubξ.

(65)

Then, the introdu
tion of a maximum member size 
onstraint is investigated: in parti
ular, the

maximum allowable dimension of topologi
al elements is �xed to dmax = 25 mm. The maximum

member 
onstraint has been formulated a

ording to Eq. (45) and the new problem to be solved

is:

min
ξ

c(ρ(ξ)),

subje
t to:







[K]{UFEM} = {F},
V (ρe)

Vtot
− 0.4 ≤ 0,

gdmax
≤ 0,

lbξ ≤ ξ ≤ ubξ.

(66)

Solutions of problems (65) and (66), provided by both the proposed approa
h and OptiStru
t are

shown in Figs. 20a and 20b, respe
tively.

Con
erning the optimum topology solution of problem (65), it 
an be stated that the NURBS-

based SIMP method provides 
onsistent results with those obtained by means of the 
ommer
ial

software OptiStru
t from a numeri
al point of view: the per
entage di�eren
e is 3.7%, but the

number of design variables for the NURBS-based SIMP approa
h is signi�
antly smaller (800)

than that 
hara
terising the OptiStru
t solution (5000). When 
onsidering problem (66), the

per
entage di�eren
e among the NURBS-based solution and the OptiStru
t solution redu
es to

2.1%. However, in the se
ond 
ase, signi�
ant topology 
hanges 
an be observed, see Fig. 20b and

Fig. 21b. Moreover, it should be pointed out that the maximum member size 
onstraint, as well as

the minimum member size 
onstraint, has been formulated in global sense and not in lo
al sense:

this means that, even if the 
onstraint of Eq. (45) is globally met during the iterations (on the
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(a) c = 55.85 Nmm, V/Vtot = 0.4000.
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(b) dmax = 25 mm, c = 74.47 Nmm, V/Vtot =
0.3984.

Figure 20: NURBS-based SIMP solutions for the tra
tion plate problem (a) without and

(b) with maximum member size 
onstraint.

(a) c = 58.02 Nmm, V/Vtot = 0.3938. (b) c = 72.95 Nmm, V/Vtot = 0.3832,
dmax = 25 mm .

Figure 21: Hyperworks-OptiStru
t solution of the tra
tion plate problem (a) without and

(b) with maximum member size 
onstraint.

meshed referen
e domain), it will not be ne
essarily satis�ed lo
ally after the postpro
essing phase

(i.e. when the geometry is rebuilt in order to be CAD-
ompatible). In other words, if the size of

topologi
al elements is measured on the rebuilt geometry, the maximum member size of 25 mm

is not ne
essarily met in the proximity of the region where the load is applied, see Figs. 20b

and 21b. Nevertheless, this 
ir
umstan
e is more 
riti
al as far as 
on
erns the solution provided

by OptiStru
t. In parti
ular, the OptiStru
t solution shows a 
entral bran
h of approximately

30 mm > 25 mm (see Fig. 21b), thus the 
onstraint is violated on a larger portion of the de�nition

domain when 
ompared to the NURBS-based SIMP algorithm solution.

6.6 Lo
al Curvature Radius

The 
onstraint on the lo
al 
urvature radius is tested here. Problem (63) is taken as referen
e and

the 
onstraint of Eq. (52) is 
onsidered. In parti
ular, a minimum 
urvature radius r = 7.5 mm is

imposed. In this Se
tion, the solution of Fig. 6b is taken as a referen
e solution, i.e. the 
onstraint

on the lo
al radius of 
urvature is not imposed. For sake of 
ompleteness, it is re
alled that the


onsidered topology has been obtained through a BSpline surfa
e (p = q = 3, (nu+1)× (nv +1) =
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(a) c = 408.37 Nmm, V/Vtot = 0.3994. (b) c = 412.00 Nmm, V/Vtot = 0.3997, rmin =
10 mm .

Figure 22: Solution of the 
antilever plate problem (a) without and (b) with the minimum

lo
al 
urvature radius 
onstraint

32 × 20). Criti
al 
urvature points are highlighted in Fig. 22a and the respe
tive 
urvature radii

are: rA′ = 4.4mm rB′ = 2.7 mm, rD′ = 4.4mm, rE′ = 4.7mm. The solution of the same problem

enhan
ed with the minimum 
urvature radius 
onstraint is illustrated in Fig. 22b. The 
riti
al


urvature radii are: rA = 9.3 mm, rB = 8.9 mm, rC = 8.7 mm, rD = 8.9 mm, rE = 7.8 mm.

This last example allows for understanding the true potential hidden behind the NURSB-based

SIMP approa
h. The NURBS formulation permits to have a pre
ise and well-de�ned geometri


des
ription of the boundary of the topology at ea
h iteration during the solution pro
ess, thus lo
al

quantities (like the 
urvature radius) 
an be easily 
omputed by means of the NURBS formalism.

Furthermore, in this last 
ase a 
omparison with the results provided by OptiStru
t is no longer

possible simply be
ause this feature 
annot be realised in the framework of the 
lassi
al SIMP

approa
h.

7 Con
lusions and Perspe
tives

This paper introdu
es and dis
usses a new formulation of the popular SIMP TO method in the

NURBS mathemati
al framework. The e�e
tiveness of the proposed approa
h is proven through

some meaningful ben
hmarks whi
h take into a

ount for equality and/or inequality 
onstraints.

The well-knownminimum and maximummember size 
onstraints have been reformulated a

ording

to the NURBS formalism and a new 
onstraint on the lo
al 
urvature radius has been implemented.

A suitable sensitivity analysis has been 
arried out for the obje
tive fun
tion and for ea
h 
onstraint.

The proposed NURBS-based SIMP approa
h 
onstitutes a generalisation of Qian's work [16℄: in

the proposed algorithm, the �
titious density fun
tion is represented by means of NURBS surfa
es

instead of simple BSpline fun
tions. Qian's 
onsiderations on the e�e
ts of standard NURBS

parameters on the obtained topologies are 
on�rmed in this paper: the NURBS degrees and the

number of 
ontrol points have a dire
t impa
t on the dimensions of the lo
al support of the NURBS

blending fun
tions, whi
h a
ts as a �lter in TO. In parti
ular, the smaller is the �lter, the thinner
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are the members dimensions and better performan
es (a lower value of obje
tive fun
tion) 
an be

obtained.

The present work goes beyond the results of Qian's work be
ause of the following reasons:

• the NURBS-based SIMP method allows for obtaining equivalent (or superior) performan
es

with a redu
ed number of design variables (i.e. the density at ea
h 
ontrol point and the

related weight) when 
ompared to the 
lassi
al SIMP approa
h wherein the optimisation

variables are the element densities;

• the advantages of NURBS are fully exploited in terms of their CAD 
ompatibility: a suitable

postpro
essing phase 
an be implemented and utilised in order to straightforwardly obtain

the �nal optimised geometry for the problem at hand;

• when looking at the resulting topologies and the trend of the true 
omplian
e, it 
an be

inferred that in
reasing the number of design variable beyond a 
ertain threshold value does

not imply an improvement of the obje
tive fun
tion, thus the number of 
ontrol points should

be 
hosen as 
ompromise between geometri
 a

ura
y and 
omputational burden;

• a further �ne point of the NURBS-based algorithm 
on
erns the obje
tive fun
tion 
he
k

after the postpro
essing phase. It has been veri�ed that the true 
omplian
e, evaluated

on the rebuilt stru
ture after the postpro
essing phase, is always lower than the proje
ted


omplian
e (i.e. the one of the referen
e domain with all mesh elements). In this sense, the

proposed method is 
onservative;

• the insertion of the NURBS weights among the design variables deserves a spe
ial attention.

When the �
titious density distribution is expressed by means of a NURBS surfa
e, the

boundaries of the optimum topology (after the postpro
essing phase) are smoother than

those observed when using a BSpline surfa
e. This is due to the presen
e of weights whi
h

allow for redu
ing (or avoiding) the undesired �wave e�e
t�. However, it has been veri�ed

that a NURBS solution is not ne
essarily better than the respe
tive BSpline solution in

terms of true 
omplian
e. Sin
e using a NURBS instead of a BSpline implies doubling the

number of design variables, it is suggested, when dealing with a new TO problem, to laun
h

a �rst TO analysis by using a Bspline representation of the pseudo-density fun
tion and to


onsider a NURBS surfa
e only if the optimum topology has not a smooth boundary;

• the robustness of the NURBS-based SIMP method has been tested through the integration

of Non-Design Regions and symmetry 
onstraints;

• 
lassi
al geometri
 
onstraints like minimum and maximum member size are reformulated

using NURBS formalism and the derivatives with respe
t to 
ontrol points densities and

weights have been 
omputed in a 
losed form. The robustness as well as the e�e
tiveness

of the proposed NURBS-based SIMP approa
h is also proven by dealing with ben
hmarks

involving this kind of lo
al features. Thanks to a spe
ial geometri
al property of the NURBS
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blending fun
tions, i.e. the well-known lo
al support property, an impli
it �lter zone (whose

size depends upon the NURBS parameters) is always de�ned during the iterations (without

the need of introdu
ing numeri
al artefa
ts). A

ordingly, on the one hand the undesired


he
ker-board e�e
t is always prevented, while on the other hand minimum and maximum

admissible size are always globally met (before postpro
essing phase) and almost always

lo
ally satis�ed after rebuilding the optimum geometry. These 
onsiderations do not apply

for the optimum topologies resulting from the 
lassi
al SIMP algorithm;

• a new geometri
 
onstraint on the lo
al 
urvature radius has been implemented. In the

framework of the NURBS formalism this is a relatively straightforward task be
ause a well-

de�ned geometri
 des
ription of the boundary of the 
urrent topology is always available

during the iterations. To the best of the authors' knowledge this kind of features is not

available for the 
lassi
al SIMP algorithm.

Future perspe
tives are manifold and deal with several aspe
ts of Topology Optimisation.

a) The development of a suitable tool to manage the solutions provided by the NURBS-based

algorithm is fore
ast. Currently, the postpro
essing phase relies on the utilisation of CAD


ommer
ial software (e.g. CATIA), so a more spe
i�
 and dedi
ated tool is ne
essary in

order to fa
ilitate the 
ontrol points displa
ement or weights arrangement by an external

user whi
h 
ould not be familiar with TO 
on
epts. Being the density fun
tion available in

the form of NURBS/BSpline surfa
es, some smoothing tool 
an be integrated in the method

in order to smooth the BSpline �wave e�e
t" or the indented boundary o

urring when

Poulsen's formulation of the minimum member size 
onstraint is utilised.

b) The en
ouraging results obtained for 2D stru
tures advise to extend the NURBS-based

SIMP approa
h to the more general 
ase of 3D problems. In this 
ase, the �
titious density

fun
tion would be related to a four-dimension hyper-surfa
e and its interse
tion with a

suitable hyperplane (threshold value) would provide the boundary of the solid. Resear
h is

ongoing on this aspe
t.


) The library of possible optimisation responses (obje
tive/
onstraint fun
tions) should be

extended: in order to e�e
tively design/optimise real-world engineering stru
tures under

operative servi
e 
onditions, suitable 
onstraints should be implemented. These 
onstraints


ould in
lude purely me
hani
al features (e.g. plasti
ity and failure 
riteria, bu
kling, eigen-

frequen
ies, et
.) or spe
i�
 requirements (e.g. imposed displa
ements/rotations in some

pres
ribed regions). Nevertheless, multiphysi
s studies are possible in the 
ontext of the

NURBS-based TO algorithm, so other kind of physi
al quantities, like temperature or heat

�ow, 
an be taken into a

ount.

d) Re
ent progresses in metal Additive Manufa
turing (AM) make this te
hnology extremely

interesting for manufa
turing the topologies provided by the optimisation pro
ess. Integrat-

ing AM 
onstraints in the NURBS-based SIMP approa
h (through a dedi
ated formulation),
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as support material limitation or other kinds of 
ustomisable 
ost fun
tions, 
onstitutes an

important 
hallenge for the following of this study.

e) The numeri
al results are extremely en
ouraging and, among the future perspe
tives, it


ould be possible to in
lude, within the NURBS-based TO approa
h, the most relevant

features related to the problem of the multis
ale TO of stru
tures. In this ba
kground, an

interesting real-world engineering appli
ation 
ould deal with the problem of designing latti
e

stru
tures. This 
lass of stru
tures has gained an in
reasing attention sin
e latti
es 
an be

easily manufa
tured by means of AM pro
esses. Currently, they are utilised in several �elds:

s
a�olds for prosthesis (biomedi
al �eld), 
rashworthiness parts (automotive and aerospa
e

�elds), et
. Of 
ourse, in this 
ontext, a suitable homogenisation te
hnique should be 
oupled

to the present NURBS-based TO algorithm.

a
knowledgements

The �rst author is grateful to the Nouvelle-Aquitaine region for its 
ontribution to this paper

through the FUTURPROD proje
t.

Appendix A : Sensitivity Analysis of Complian
e and Vol-

ume Fra
tion

Let G be a generi
 s
alar quantity whose gradient with respe
t to the mesh elements is known (i.e.

∂G
∂ρe

). Now, the derivatives

∂G
∂ρs,t

and

∂G
∂ws,t

need to be 
omputed, where ρs,t is the generi
 
ontrol

point of the NURBS s
alar fun
tion and ws,t the respe
tive weight. Let Is,t be the lo
al support

of the blending fun
tion asso
iated to the 
ontrol point ρs,t: it is evident that only those elements

lying in the support will 
ontribute to the sensitivity analysis. Therefore, the following general

expressions 
an be inferred by the 
haining rule for derivatives:

∂G

∂ρs,t
=
∑

e∈Is,t

∂G

∂ρe

∂ρe
∂ρs,t

, (A.1)

∂G

∂ws,t
=
∑

e∈Is,t

∂G

∂ρe

∂ρe
∂ws,t

. (A.2)

The derivative

∂ρe

∂ρs,t

an be easily 
omputed from Eq. (20):

∂ρe
∂ρs,t

= Rs,t(ue, ve). (A.3)

The derivative

∂ρe

∂ws,t
is evaluated by expli
itly inserting Eq. (2) in Eq. (20). The �nal expression


an be retrieved after few 
omputations:

∂ρe
∂ws,t

=
Rs,t(ue, ve)

ws,t
(ρs,t − ρe). (A.4)

Consequently, the sensitivity analysis for the 
omplian
e and the volume fra
tion 
an be dedu
ed


ombining Eqs. (A.3) and (A.4) with Eqs. (18) and (19).
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Appendix B : Sensitivity Analysis of Constraints

Sensitivity analysis of the minimum member size 
onstraint

Sensitivity of the monotoni
ity integral Mγi
(ρ) with respe
t to the 
ontrol points:

∂Mγi
(ρ)

∂ρs,t
=

Nγi
−1

∑

j=1

∂

∂ρs,t

(√

(ρj+1 − ρj)2 + ǫ2
)

−
(

∂

∂ρs,t

√

(ρNγi
− ρ1)2 + ǫ2

)

=

=

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
− ∂ρj
∂ρs,t

)

√
(ρj+1 − ρj)2 + ǫ2

−
(ρNγi

− ρ1)

(
∂ρNγi

∂ρs,t
− ∂ρ1
∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

=

Nγi
−1

∑

j=1

(ρj+1 − ρj) (Rs,t(uj+1, vj+1)−Rs,t(uj, vj))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
Rs,t(uNγi

, vNγi
)−Rs,t(u1, v1)

)

√

(ρNγi
− ρ1)2 + ǫ2

.

(B.1)

Sensitivity of the monotoni
ity integral Mγi
(ρ) with respe
t to the NURBS weights:

∂Mγi
(ρ)

∂ws,t
=

Nγi
−1

∑

j=1

∂

∂ws,t

(√

(ρj+1 − ρj)2 + ǫ2
)

−
(

∂

∂ws,t

√

(ρNγi
− ρ1)2 + ǫ2

)

=

=

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ws,t
− ∂ρj
∂ws,t

)

√
(ρj+1 − ρj)2 + ǫ2

−
(ρNγi

− ρ1)

(
∂ρNγi

∂ws,t
− ∂ρ1
∂ws,t

)

√

(ρNγi
− ρ1)2 + ǫ2

=
1

ws,t

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
(ρs,t − ρj+1)−

∂ρj
∂ρs,t

(ρs,t − ρj)

)

√

(ρj+1 − ρj)2 + ǫ2
+

− 1

ws,t

(ρNγi
− ρ1)

(
∂ρNγi

∂ρs,t
(ρs,t − ρNγi

)− ∂ρ1
∂ρs,t

(ρs,t − ρ1)

)

√

(ρNγi
− ρ1)2 + ǫ2

=

ρs,t
ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
− ∂ρj
∂ρs,t

)

√

(ρj+1 − ρj)2 + ǫ2
−

(ρNγi
− ρ1)

(
∂ρNγi

∂ρs,t
− ∂ρ1
∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

]

+

+
1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj)

(

ρj
∂ρj
∂ρs,t

− ρj+1

∂ρj+1

∂ρs,t

)

√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)

(

ρ1
∂ρ1
∂ρs,t

− ρNγi

∂ρNγi

∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

]

=

=
ρs,t
ws,t

∂Mγi
(ρ)

∂ρs,t
+

1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj) (ρjRs,t(uj , vj)− ρj+1Rs,t(uj+1, vj+1))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
ρ1Rs,t(u1, v1)− ρNγi

Rs,t(uNγi
, vNγi

)
)

√

(ρNγi
− ρ1)2 + ǫ2

]

.

(B.2)

Sensitivity analysis of the maximum member size 
onstraint
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The gradient of the maximum member size 
onstraint is 
omputed here with respe
t to the NURBS


ontrol points and weights:

∂gdmax

∂ρs,t
=

1

πd2max

4
(1− ψ)

∂

∂ρs,t

(
Ne∑

e=1

(
∑

i∈Ωe

ρ̂iAi

)χ)
1

χ
=

(
∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ
)
1

χ
−1

χ
πd2max

4
(1 − ψ)

(
Ne∑

e=1

∂

∂ρs,t

(
∑

i∈Ωe

ραi Ai

)χ)

=

(
∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ
)
1

χ

πd2max

4
(1− ψ)

(
∑Ne

e=1

(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
αρα−1

i

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

α(gdmax
+ 1)

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ρα−1
i Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ .

(B.3)

∂gdmax

∂ws,t
= α(gdmax

+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ws,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

= α(gdmax
+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ρs,t

ρs,t − ρi
ws,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

=
ρs,t
ws,t

α(gdmax
+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ +

− 1

ws,t
α(gdmax

+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ραi

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

ρs,t
ws,t

∂gdmax

∂ρs,t
− α(gdmax

+ 1)

ws,t

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ραi Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ .

(B.4)

Sensitivity analysis of the lo
al 
urvature radius 
onstraint

The gradient of the lo
al 
urvature radius is 
omputed with respe
t to the 
ontrol points and to

the weights. Let us write again Eq. (50) in a more 
onvenient form:

r = − 1

WH

rN
rD

. (B.5)

Thus, the derivatives write

∂r

∂ρs,t
= r

(
1
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∂rN
∂ρs,t

− 1
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)

, (B.6)
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∂rN
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)
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The 
omplete expression of Eqs. (B.6) and (B.7) are not provided here for sake of brevity; anyway

the reader 
an easily dedu
e them by using the following formulae to 
ompute the derivatives of

ea
h term. They are dedu
ed from the results of Appendix A:

∂
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(
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