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Tolerance analysis of a deformable component using the1

probabilistic approach and Kriging-based surrogate2

models3

P. Beaurepaire,1 C. Mattrand, 2 N. Gayton, 3 J.-Y. Dantan4
4

ABSTRACT5

Tolerance analysis is a key issue in proving the compatibility of manufactur-6

ing uncertainties with the quality level of mechanical systems. For rigid and7

isostatic systems, multiple methods (worst case, statistical or probabilistic ap-8

proaches) are applicable and well established. Recent scientific developments9

have brought enhancements for rigid over-constrained systems, using probabilis-10

tic and optimization based methods. The consideration of non-rigid systems is11

more complex, since large-scale numerical model must be taken into account for12

an accurate prediction of the quality. The aim of the present paper is the illustra-13

tion of the probabilistic tolerance analysis approach for an industrial application14
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involving deformable parts. The distributions associated with the dimensions of15

the components are identified using real components collected from the assembly16

lines. A nonlinear finite element model is used to predict the mechanical behav-17

ior. A reliability analysis is performed in order to compute the defect probability18

and estimate the quality of the products. A Kriging-based surrogate model is19

used to reduce the numerical efforts required for the reliability analysis.20

21

Keywords: Tolerance analysis; Defect probability estimation; System reliabil-22

ity; Kriging-based surrogate model, Wiping system23

INTRODUCTION24

Engineers are aware that uncertainties in the dimensions of manufactured25

products cannot be avoided, i.e. mechanical components manufactured on the26

same assembly line using the same tools and the same raw materials have slightly27

different shapes; and their dimensions are also different from the designer’s tar-28

get. Tolerance analysis offers a rational framework to study such uncertainties,29

and enables engineers to guarantee that the quality resulting from the produc-30

tion process remains acceptable. Consequently, production wastage and global31

manufacturing costs are considerably reduced.32

It is assumed that the behavior of a mechanical system is fully characterized by33

a finite set of parametersX, which are associated with the deviations between the34

ideal geometry and the geometry of real components; the shape of the components35

is parameterized; and the vector X has a finite size. The response of the system36

Y is described using the functional characteristics (Nigam and Turner 1995); its37

expression is of the form:38

Y = f(X) (1)39

where f denotes the response function of the mechanical component.40
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Tolerance analysis can be performed by considering the upper and lower41

bounds of the functional characteristic expressed in Equation (1). The system is42

functional as long as its response is between these two bounds. Two strategies43

are applicable to deal with the geometric deviations (Chase and Parkinson 1991;44

Greenwood and Chase 1987; Nigam and Turner 1995).45

1. With the worst case approach, each dimension Xi is characterized by46

an upper and a lower bound; and the configuration leading to the worse47

performance is identified. The tolerance intervals of the dimensions are48

adjusted in order to guarantee that the component is functional for the49

worst case (i.e. that the functional characteristics are between the prede-50

fined bounds for all the possible values of X).51

2. The statistical approach consists of introducing a probabilistic model52

for the dimensions, and uncertainties are subsequently propagated to the53

response of the mechanical component. The function characteristic may54

be outside the predefined bounds; this is tolerated as long as such events55

remain rare and the frequency of occurrence is controlled. The objective56

of the tolerance analysis is the determination of this occurrence proba-57

bility, which is referred to as the defect probability. It provides a metric58

associated with the quality of the production, which is often expressed in59

parts per million (ppm) or in parts per billion (ppb) for systems manu-60

factured by Valeo VWS (the industrial partner in this study). The worst61

case approach is more conservative, which leads to excessively tight tol-62

erance intervals and higher manufacturing costs (Hong and Chang 2002;63

Roy et al. 1991); the statistical approach is therefore used here.64

During the last two decades, three main issues have been addressed by the65

tolerance analysis community for the statistical approach. Issue 1 concerns the66
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modeling of random dimensions by probability distributions. Tolerance analysis67

is commonly performed in the design stage to predict defect probability, and the68

tolerance intervals are adjusted to meet predefined quality requirements. One of69

the major challenges is the lack of information at this stage, since parts are not70

available and it is hence not possible to use measurements of the uncertain dimen-71

sions to identify their distributions. As a result, assumptions must be introduced72

into the uncertainty model (using, for instance, feedback obtained with similar73

components). A possible strategy consists of modeling each dimension with a74

uniform distribution inside the tolerance interval (Greenwood and Chase 1987).75

However, this approach may be conservative, and alternative strategies are appli-76

cable, such as the use of centered or shifted Gaussian distributions (Evans 1975;77

Scholtz 1995). The uncertainty model may also be defined by means of a dynamic78

approach (Gayton et al. 2011) when considering batch production. A multi-level79

model is introduced and the dimensions are modeled using Gaussian distribu-80

tions. The parts in the same batch have identical mean and standard deviation81

for all their dimensions. These moments are modeled as random variables, which82

introduces a second level of uncertainty (Gayton et al. 2011; Scholtz 1995). All83

these models require assumptions which have considerable consequences on defect84

probability prediction. The second major issue (issue 2) is the tolerance analysis85

in case of over-constrained mechanical systems. Equation (1) is not applicable to86

such problems, as the functional requirement involves the uncertain dimensions87

of the components, but also gap variables, which may be associated with the dis-88

tance between the components of the assembly. It is not possible for the designer89

to set the value of these variables, and they are not characterized by a probabil-90

ity density function. As the gaps cannot be modeled using random variables nor91

design variables, they are referred to as free variables in this manuscript. The for-92

mulation of the tolerance analysis problem with gap variables is described e.g. in93
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(Dantan and Qureshi 2009). This is a challenging task, as the identification of an94

explicit expression of the functional characteristic is in general not possible. For95

over-constrained systems, multiple contact configurations are possible, leading to96

multiple candidate values of the functional characteristic. Specific methods have97

been proposed to identify appropriate contact configurations and compute the98

defect probability (Dumas et al. 2015; Qureshi et al. 2012). However, tolerance99

analysis of over-constrained systems remain a challenging task. The last issue100

(issue 3) concerns the tolerance analysis of systems with deformable parts; the101

compliance of the components is explicitly considered by introducing a mechani-102

cal model, obtained for instance using the finite element method (see e.g. (Gordis103

and Flannelly 1994; Liu and Hu 1996; Söderberg et al. 2006)). Liu and Hu (1997)104

showed that dimensional variation has little effect on the stiffness of the compo-105

nents, and a deterministic model can be used for their mechanical behavior. This106

strategy, known as the influence coefficients method, has been applied with suc-107

cess to multiple problems, see e.g. (Dahlström and Lindkvist 2006; Li et al. 2004;108

Lindau et al. 2015). The method is applicable only if (i) the coefficient of varia-109

tion associated with the uncertain dimensions is sufficiently small (in order they110

have no effects on the stiffness matrix); (ii) the materials behavior is linear (or111

the strain is sufficiently small to have a linear material behavior).112

The Monte Carlo Simulation is widely used to compute the probability of113

defect, as this method is applicable to non-linear models and non-Gaussian dis-114

tributions. However, the Monte Carlo method requires considerable numerical115

efforts when the defect probability is low or when a large scale model is used.116

Advanced reliability methods, such as the First and Second Order Reliability117

Method (FORM, SORM) or importance sampling can be used to reduce these118

numerical efforts (Lemaire 2010).119

The present paper deals with the implementation of an industrial tolerance120
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analysis application. The problem is the prediction of the defect probability of a121

deformable wiper blade system subjected to shape and material uncertainty. In122

this work, the three issues discussed above are considered with great attention.123

The manufacturing of these components started a few years ago and it is therefore124

possible to directly measure their dimensions. The problem of the identification125

of the distribution (issue 1) is hence simplified, as data are available and can126

be used to identify the most suitable distribution for each dimension. The addi-127

tional complexity introduced by free variables (issue 2) is addressed by calibrating128

a response surface, which is subsequently used to eliminate these variables with129

reduced computational efforts. For the tolerance analysis of such a component,130

the functional requirements are obtained directly from the structural response.131

The influence of the uncertain dimensions on the stiffness matrix cannot be ne-132

glected (and has to be fully considered). The simplifying hypothesis used in the133

literature for the tolerance analysis of deformable components (issue 3) is not ap-134

plicable here, and multiple finite element simulations are required to perform the135

reliability analysis and compute the defect probability. An advanced simulation136

method is used to perform this analysis with acceptable numerical efforts; it relies137

on the use of Kriging-based surrogate model (Echard et al. 2011; Echard et al.138

2013; Fauriat and Gayton 2014).139

This manuscript is structured as follows: the considered industrial problem in140

described in Section 2; the stochastic structural model is described in Section 3141

with a presentation of the modeling of uncertainties from profile measurements.142

The proposed surrogate model-based methodology is next discussed in the fourth143

section before presenting the results in Section 5. The article closes with conclu-144

sions and perspectives in Section 6.145

DESCRIPTION OF THE INDUSTRIAL PROBLEM146
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This study concerns the tolerance analysis of a wiper system. Such compo-147

nents are used in the automotive industry to remove water and debris from the148

windshield. The methods developed here are applied to flat blade technology.149

The blade is fixed at its center to the wiper arm, which applies an alternating150

rotation movement (see Figure 1) and maintains the contact between the blade151

and the windshield.152

The blade is mainly composed of metallic splines and of a rubber profile that153

is the focus of this paper. The shape of the splines matches the curvature of the154

windshield; they provide sufficient stiffness to the assembly, preventing an uneven155

distribution of the pressure at the contact between the blade and the windshield.156

The rubber profile includes multiple sub-components (see Figure 2):157

� the lips ensure wiping and windshield cleaning;158

� the hinge, which controls the deformation of the blade and the contributes159

to reverse the blade (when the wiper reaches the end of its travel and turns160

back);161

� the heel, which locks the fir to the blade assembly.162

During wiping, the profile is considerably strained; the fir and the heel come163

into contact as shown in Figure 2. The mechanical deformation of the rubber164

profile during the wiping cycle depends on the tip force, the friction coefficient165

between the windshield and the rubber, the material properties and the geomet-166

rical characteristics. A good control of blade profile deformation prevents:167

� fast deterioration of the rubber leading to ridge defect on the windshield168

as shown in Figure 3a;169

� return defects generated by particular geometrical conditions of the rubber170

profile as shown in Figure 3b.171
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The performance of the system is evaluated from the structural response,172

i.e. fluid-structure interactions are not considered here, and therefore the multi-173

physics problem is transformed into a mechanical problem. The two first per-174

formance criteria of the wiper system are determined using the contact angle α175

(i.e. the angle between the lips of the fir and the windshield) and the locking176

angle β (measured at the contact point between the fir and the heel, as shown177

in Figure 2). The maximum strain εmax of the rubber hinge is used as a third178

performance criterion, since it may be an indicator of the aging of the rubber.179

This paper is focused on the investigation of the consequences of geometri-180

cal and material uncertainties on the performance of a wiper system. Only the181

uncertainties associated with the rubber profile are considered. Consequently,182

the aim of this paper is the evaluation of the system probability that α, β and183

εmax fall outside functional ranges, each quantity depending on random geometry,184

characterized by parameters grouped in vector D, and the material properties,185

characterized by parameters grouped in vector P .186

This work also enables us to obtain feedback on the actual distribution of the187

dimensions of the wiper blade. This is an important matter, since in practice188

designers lack this information to estimate the quality level associated with a189

component. The study provides an opportunity to analyze real part data, iden-190

tify the distribution associated with the various dimensions, determine whether191

the assumptions usually made during design are realistic, etc. The dependence192

between the dimensions is an interesting element, too. Indeed, the profiles are193

manufactured using an extrusion process, which introduces correlation between194

the dimensions. The information collected here may be re-used in the future in195

the definition of the random variable set for wiper profiles manufactured using196

the same process.197
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STOCHASTIC STRUCTURAL MODEL198

Probabilistic model199

Characterization of uncertain parameters200

The components are manufactured using a rubber extrusion process, and the201

profiles are subsequently cut to obtain blades of the required length. The uncer-202

tainties associated with the length of the blade are not considered here, and thus203

the geometry of the component is defined by the cross-section of the blade. The204

reference cross-section, as it appears for instance in the computer-aided design205

model, is shown in Figure 4a. The manufacturing process introduces unavoidable206

geometrical deviations, and the actual geometry of a wiper blade differs from the207

reference geometry. A manufactured part is shown in Figure 4b and geometrical208

deviations are perceptible. The shape of the rubber profile is frequently controlled209

in the factories to quantity these geometric deviations; a video measurement tool210

is used to avoid the part deformation during its size control. The shape of the211

observed cross-section is complex, and the preparation of a geometrical model212

capturing fully the deviation with respect to the drawings would be a challenging213

task. A simplified non-ideal cross-section is introduced; it is fully described using214

a finite number of parameters D as shown in Figure 5. In total, 44 different215

quantities are determined to characterize the reference cross-section of the blade216

(length and width at various locations, fillet radii, etc). A probabilistic approach217

is used and a random variable is introduced for each geometrical parameter.218

It is assumed that the uncertainties can be fully characterized using the linear219

correlation matrix and marginal distributions. Alternative strategies may be220

considered to account for the correlation between the dimension, such as for221

instance copulas (see e.g. (Mai and Scherer 2012; Schölzel and Friederichs 2008)).222

However, such approaches are not used here.223
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Initially, a set of candidate distributions is arbitrarily selected. Only four224

candidate distributions are use here but additional distributions may be included225

without modifying the proposed procedure. In the study, the dimensions may226

follow either a uniform, exponential, normal or lognormal distribution. In each227

case, it is necessary to identify the parameters of the distribution leading to228

the best match with the data obtained from the factory. These parameters are229

obtained by maximizing the likelihood function, which is expressed as:230

L(D
(1)
i , D

(2)
i , ..., D

(45)
i ,p,D) =

45∏
j=1

fDi
(D

(j)
i ,p,D) (2)231

where D
(j)
i , j = 1...45 denotes the measurements available for the ith dimension of232

the wiper blade, which are used to identify the distribution of the corresponding233

random variable; in total, 45 dimension measurements are used to identify the234

distributions. p is a vector grouping all the distribution parameters (e.g. mean,235

standard deviation, bounds), fDi
denotes the probability density function of the236

random variable Di and D represents the considered distribution (i.e. either the237

normal, uniform, exponential or lognormal distribution). The value of the terms238

of p is selected such that L is maximized.239

The most suitable distribution is then selected using the Akaike Information240

Criterion (AIC) (Akaike 1974):241

AIC(D
(1)
i , ..., D

(45)
i , p̂,D) = −2 lnL(D

(1)
i , ..., D

(45)
i , p̂,D) + 2q(D) (3)242

where p̂ denotes the optimal value of the distribution parameters (which maximize243

Equation (2)), and q is the number of parameters associated with the distribution.244

For an exponential distribution, q is equal to one (and in this case p̂ is a scalar);245

otherwise q is equal to two (and p̂ is a vector with two terms). The distribution246
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D associated with the maximum value of the AIC leads to the best fit with the247

available data, and is subsequently used in the probabilistic model.248

This operation is repeated for all the dimensions considered and, in total, 44249

distributions are identified using the procedure described above. It is observed250

that either the normal distribution or uniform distribution maximize the AIC for251

most of the dimensions; the lognormal distribution is occasionally used, but it252

remains rare; the exponential distribution is never used.253

254

The manufacturing process has a strong influence on the dependence between255

the uncertain parameters, as physical phenomena are involved and impact all256

the dimensions. For instance, the rubber may expand after extrusion, causing257

a positive correlation between the dimensions H2 and H4 indicated in Figure 5,258

whereas it causes a negative correlation between the dimensions H1 and H2. Fig-259

ure 6 represents a scatterplot of these dimensions, the correlation between the260

dimensions is clearly visible. In this work, samples of the uncertain parameters261

are available and for each measurement, all the dimensions are determined on262

the same part. Thus, the correlation matrix can be directly computed from the263

measurements.264

265

The vector P gathers the uncertainties associated with the material param-266

eters. These coefficients are used to define a probabilistic hyperelastic model of267

the mechanical behavior of rubber. In total, two independent random variables268

are used to characterize the material uncertainties. The details of this model are269

not discussed here for confidentiality reasons.270
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Isoprobabilistic transformation271

Most reliability algorithms are applied in the so-called standard normal space,272

where all the random variables are independent and have a standard normal dis-273

tribution, with a zero mean and a unitary standard deviation. An isoprobabilistic274

transformation is applied to each random variable; it is expressed as:275

zi = Φ−1 (FDi
(Di)) for i = 1, ..., 44 (4)276

where Φ−1 denotes the inverse of the standard normal cumulative density function,277

FDi
is the cumulative distribution function associated with the variable Di and278

zi denotes the random variables expressed using its original distribution and its279

counterpart in the standard normal space, respectively.280

In case the variables Di and Dj are correlated before the transformation de-281

scribed in Equation (4), the variables zi and zj are correlated as well, and ρ′ij282

denotes their correlation coefficient. The approximation of ρ′ij available in (Liu283

and Der Kiureghian 1986) are used here.284

In the standard normal space the covariance matrix and the correlation matrix285

are identical and defined as:286

Σ′ =
[
ρ′ij
]
16i644,16j644

(5)287

The Karhunen-Loève (Karhunen 1947; Loève 1977) transform is used to decor-288

relate the random variable, it is expressed as:289

z =
44∑
i=1

ξi
√
λiφi (6)290

where z = [z1, ..., z44]; ξi, i = 1...44 denotes independent variables with a standard291

normal distribution, and λi and φi denote respectively the eigenvalues and the292
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eigenvectors associated with the matrix Σ′.293

In Equation (6), the eigenvalues are sorted in descending order, and hence the294

first few terms have a major contribution to the variance of the set z. Figure 7295

shows the percentage of explained variance, expressed in terms of the total num-296

ber of considered eigenvalues. The Karhunen-Loève expansion can be truncated297

to reduce the total number of random variables involved in the problem, with298

reduced loss of accuracy regarding the covariance matrix of the random variable299

set. In this work, the Karhunen-Loève expansion is performed using the 10 first300

terms of Equation (6). We have
∑10

i=1 λi/
∑44

i=1 λi > 0.95 and hence at least 95%301

of the variance of z is accounted for. The Karhunen-Loève expansion allows us302

to considerably reduce the dimensionality of the problem because the random303

variables are strongly correlated.304

Mechanical model305

A finite element model is prepared to predict the behavior of the blade and306

determine the contact angle α, the locking angle β and the maximum strain εmax.307

The boundary conditions applied to the structure need to be identified to set up308

the mechanical model. The reaction forces at the contact and the coefficient of309

friction between the blade and the windshield are the key inputs.310

The contact forces are not constant along the wiper blade; they are therefore311

expressed in terms of the x-coordinate. This variation of the contact forces is312

caused by the geometry of the wiping blade and the curvature of the windshield.313

It is observed that the maximum force is obtained in the middle of the blade, as314

the connection with the wiper arm is situated in this location. Figure 8a shows315

the distribution of the forces with respect to the x-coordinate. These curves are316

obtained via a beam model; the details of its implementation are not discussed317

herein. The inclination of the wiper on the windshield causes aerodynamic effects318
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on its movement. During the upward movement, the wiping benefits from positive319

airflow effects, and hence the applied load is lower. However, the downward320

movement is adversely affected by the airflow, which causes a higher load. As a321

result, two distinct types of forces are presented. The first curve (dashed black322

line) corresponds to the efforts during wiping in the upwards direction and the323

second curve (continuous grey line) to those in the downward direction. The324

maximum load Fmax is reached at the center of the blade for the wiping in the325

upwards direction; the minimum load Fmin is reached at two different positions326

for the wiping in the upwards direction.327

The friction coefficient between the blade and the windshield varies along328

the wiper length as well, and is influenced by the velocity of the blade. The329

friction coefficient increases as the velocity decreases. During wiping, the outer330

portion covers a greater distance and therefore has a higher speed than the inner331

part. In the mechanical model, the friction coefficient µ follows a linear curve332

along the length of the wiper, as shown in Figure 8b. Indeed, the difference in333

values is explained by the fact that the speed is not the same along the whole334

length of the wiper. In practice, stick-slips may be observed, leading to a more335

complex behavior. The linear evolution of the coefficient of friction is a first-336

order approximation and more complex models are not used here for the sake337

of simplicity. A change in the friction model would not affect the tolerancing338

methodology. The minimum and maximum values of the coefficient of friction339

µmin and µmax are reached at the ends of the blade.340

The finite element method is accurate only if the elements have roughly the341

same size in all directions (i.e. the same length, width and height). The total342

length of the wiper blade is approximately 100 times greater than its width or343

eight. A three dimensional mesh would hence include a large number of elements.344

The model is non-linear since the rubber has hyperelastic properties, large dis-345
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placements are observed and the contact with the windshield is accounted for.346

Hence, the problem is not suitable for the application of a three-dimensional347

model, as it would involve multiple inversions of a large scale stiffness matrix.348

A simplified two-dimensional mechanical model is used instead, as shown in Fig-349

ure 9. Each simulation is associated with a specific position on the blade, i.e. with350

a specific x-coordinate, since the boundary conditions are expressed in terms of351

the x-coordinate. Thus, the corresponding load and coefficient of friction need352

to be injected into the model; they are selected as shown in the curves repre-353

sented in Figure 8. Multiple simulations are performed in order to account for354

the variation in the response of the blade with respect to the x-coordinate, and355

wiping in the upwards and the downwards directions also needs to be accounted356

for. Each finite element simulation takes one to ten minutes, depending on the357

non-linearity (contact configuration, material parameters, etc.).358

Performance functions359

Performance functions are introduced for the reliability analysis; their for-360

mulation involves the functional requirements. The value of the performance361

function is less than zero in the failure domain, i.e. in the case where one of362

the functional requirements is not fulfilled, and this function is greater than zero363

otherwise. As discussed in Section 3, the boundary conditions are expressed with364

respect to the x-coordinate in the blade. As a result, the performance functions365

are also expressed in terms of the x-coordinate. The wiper blade is assumed to366

be functional at a given position with x as a coordinate if the maximum strain367

is below a predefined value; the contact angle and the locking angle are within a368

predefined range. Hence, five normalized performance functions are introduced,369

they are defined as:370
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g1(D,P , x) =
εumax − εmax(D,P , x)

εumax

g2(D,P , x) =
α(D,P , x)− αl

αl

g3(D,P , x) =
αu − α(D,P , x)

αu

g4(D,P , x) =
β(D,P , x)− βl

βl

g5(D,P , x) =
βu − β(D,P , x)

βu

(7)371

where εmax, α and β denote the functional requirements, i.e. the maximum372

strain, the contact angle and the locking angle, respectively; these functions are373

evaluated in terms of the position along the rubber profile x and in terms of374

a particular value of the uncertain dimensions D and material parameters P .375

εumax is the maximum admissible strain; αu and βu are the maximum admissible376

contact and locking angles, respectively; αl and βl are the minimum admissible377

contact and locking angles, respectively.378

379

The functions described in Equation (7) can be used to describe the behavior380

of the wiper blade locally, at the point with the coordinate x, whereas the func-381

tionality of the wiper must be determined globally at the level of the system. For382

a set of random variables D,P (geometric and material, respectively), the profile383

is functional if it leaves no visible wiping defects on the windshield, i.e. all the384

performance functions must be greater than zero for all the possible values of x.385

To solve the reliability problem, the performance functions can be formulated386

without dependence on the x-coordinate. They are expressed as:387

Gi(D,P ) = min
xmin<x<xmax

gi(D,P , x) for i = 1...5 (8)388
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where Gi denotes the newly introduced performance function, and xmin and xmax389

denote the lower and upper bounds of the x-coordinate, respectively. System390

reliability is used here and five performance functions are defined in Equation (7).391

Therefore, the procedure described in Equation (8) is applied five times.392

SOLUTION STRATEGY393

Defect probability is expressed as a probability of failure, and a reliability394

algorithm is thus used. The proposed procedure needs to deal efficiently with the395

two following points.396

� An optimization problem must be solved each time a performance func-397

tion is evaluated, as indicated in Equation (8). A design of experiments is398

performed with respect to the parameters of the boundary conditions, i.e.399

the contact force and the coefficient of friction. Response surfaces are cali-400

brated and subsequently used to identify the minimum of the performance401

function with a reduced number of calls to the finite element model. The402

procedure is described in Section 4.403

� The total number of calls to the performance functions should be reduced404

since a non-linear FE model is involved. An advanced procedure, based405

on AK methods, is implemented to determine the defect probability with406

reduced numerical efforts; this algorithm is described in details in Section 4407

Evaluation of the performance functions408

The identification of the minimum of the performance function expressed by409

Equation (8) is numerically demanding. A non-linear finite element simulation is410

required, and the identification of the minimum is thus numerically prohibitive.411

Surrogate models are used to reduce the computational efforts associated with412

Equation (8). A response surface is calibrated for each performance function and413
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for each realization of the random variables (generated by the reliability algo-414

rithm). The response surfaces involve as input parameters the coefficient of fric-415

tion and the force applied as a boundary conditions. The calibration set consists416

of nine samples selected such that they cover the range of variation of these pa-417

rameters. In the case where the force F is near its lower bound, the coefficient418

may vary over a large range of values, and hence the design of experiments points419

are scattered. In the case where the applied force is near its upper bound, the420

coefficient of friction varies over a narrower range, and the design of experiments421

points are concentrated. Finite element simulations are performed using realiza-422

tions of the random variables generated by the reliability algorithm, which define423

the geometry of the model. For each realization, nine simulations are performed;424

the boundary conditions are set for the nine pairs (µ(k) − F (k)), k = 1...9, as425

shown in Figure 10. The position in the wiper is not considered at this stage426

and only the parameters associated with the boundary conditions (i.e. µ and427

F ) are involved in this design of experiments. In case the reliability procedure is428

performed using N samples; 9N finite element simulations are performed in total.429

430

For each realization of the random variables, the performance functions gi, i =431

1...5 are subsequently approximated by second order polynomials:432

gi(D
(j),P (j), x) ' Q

(j)
i (F (x), µ(x)) (9)433

where Q
(j)
i denotes second order polynomials. Unlike surrogate model based434

reliability algorithms (see e.g. (Bucher and Bourgund 1990)), the polynomials435

Q
(j)
i are not expressed with respect to the random variables and the polynomial436

coefficient need to be determined for each realization. The experience showed437

that the responses of the finite element model are quasi-linear with respect to the438
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force and the coefficient of friction (for the considered range of variation of these439

parameters). Therefore, second order polynomials provide a suitable framework440

to approximate the mechanical response, as they account for the linear trend and441

the slight non-linearities. These polynomials are solely used to reduce the efforts442

associated with the optimization problem described in Equation (8).443

The quality of the polynomial fit is checked using cross-validation. The ap-444

plied strategy consists of excluding a sample-result pair from the calibration set,445

then calibrating the response surface using the remaining data and using it to446

predict the outcome of the finite element model associated with the excluded447

sample. As the response is known, the error associated with the surrogate model448

can be estimated. The method is repeated multiple times, for all the nine de-449

sign of experiments samples and for multiple realizations of the random variables.450

The coefficient of determination for prediction R2 is determined; it provides an451

appropriate metric of the quality of the fit (Myers et al. 2008). All the design452

of experiments points shown in Figure 10 are tested for 100 independent realiza-453

tions of the random variables, and we obtain R2 > 0.99 for all the performance454

functions. It can be concluded from the high R2 values that second-order poly-455

nomials accurately approximate the response of the finite element models, and in456

the following all nine design of experiments samples are used for the calibration457

of the response surface.458

459

Reliability analysis using AK methods460

Probability evaluation using sampling techniques consists in classifying a large461

population (obtained using Monte Carlo sampling or any equivalent procedure)462

into safe and unsafe realizations according to the sign of the performance function463

g(x), where x denotes the random variables, i.e. xT = [DT ,P T ]. A schematic464
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representation of the classification between the failure domain and the safe do-465

main is shown in Figure 11a. Such approaches can become prohibitively expensive466

in terms of computational effort, especially for low probability evaluations and/or467

complex numerical performance functions. A possible solution consists of replac-468

ing the latter with a surrogate model that can be evaluated inexpensively. Active469

learning and Kriging based methods (AK) use Kriging in an iterative procedure470

to build a separator of safe and unsafe realizations with only a few well-chosen471

performance function evaluations. The AK-SYS method (Fauriat and Gayton472

2014) is used in this application, since a system reliability problem is involved.473

This algorithm is an adaptation of the AK classification principle for system re-474

liability evaluation based on Monte Carlo simulation. The classification of the475

AK-method is decomposed into 5 steps (Echard et al. 2011):476

1. Generation of a Monte Carlo population S of size nMC : x(1)...x(nMC).477

At this stage none of them are evaluated on the mechanical performance478

function.479

2. Definition of the initial design of experiments by randomly select N points480

in S. Compute all of the N points on the mechanical model.481

3. Computation of the Kriging surrogate model according to the design of482

experiments;483

4. Prediction by Kriging on S and estimation of the probability of failure;484

5. Identification of the best next point in S to evaluate on the performance485

function if the stopping criterion is not yet reached.486

A schematic representation of the AK method is shown in Figure 11b.487

The main originality of the AK method is the preliminary choice of the pop-488

ulation S. In the case of a unique performance function, the learning criterion is489
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defined by:490

U(x(j)) =

∣∣ĝ(x(j))
∣∣

σg(x(j))
for j = 1 : nMC (10)491

where ĝ
(
x(j)
)

and σg
(
x(j)
)

are respectively the Kriging prediction and standard492

deviation estimation. Under Gaussian assumptions, U(x(j)) is linked to the prob-493

ability that ĝ(x(j)) would not have the same sign as g(x(j)). The stopping criterion494

is reached when all the points of S are considered to be well classified, i.e. when495

min(x(j)) > 2. For system reliability, the AK-SYS method (Fauriat and Gayton496

2014) deals with m different performance functions gj(x) and union probability497

is required:498

Pf = Prob(g1(x) ≤ 0
⋃

...
⋃

gm(x) ≤ 0) (11)499

The AK-SYS method is based on the AK-classification principle and the follow500

enrichment criterion is adopted as discussed in (Fauriat and Gayton 2014):501

U(x(j)) =

∣∣ĝs(x(j))
∣∣

σgs(x
(j))

for j = 1 : nMC (12)502

where s is the performance function index that minimizes gj(x). The advantage503

procured by this approach is that no calls (or only a small number) will be made504

to the true performance functions that have little or no influence on the system505

failure domain.506

In the implementation of the procedure, a constant trend is used for the507

Kriging surrogate model, together with a Gaussian isotropic covariance function.508

Therefore, three hyperparameters are used in total: the mean value, the variance509

and the correlation length. They are identified using the method of the maximum510

of likelihood.511

Figure 12 represents the workflow implemented for the reliability analysis; it512

can be described as a double loop approach. The outermost loop is the AK-513
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based reliability method, which iteratively generates realizations of the random514

variables. The innermost loop evaluates the performance functions associated515

with the samples generated by the AK method. These functions also involve the516

x-coordinate. For each realization, a response surface is calibrated and used to517

eliminate this additional variable.518

RESULTS519

Figure 13 shows the variation in defect probability as the AK method is used.520

In total, approx. 1300 finite element simulations are required to run the proce-521

dure, as multiple analyses are performed for each evaluation of the performance522

functions, as discussed in Section 4.523

During the first few iterations of the procedure, the design of experiments524

does not include enough samples and the Kriging surrogate models have low525

fidelity. As a result, the confidence interval associated with the defect probability526

is wide. During the subsequent iterations, the design of experiments is enriched527

with additional samples, which improves the fidelity of the surrogate models and528

reduces the width of the confidence intervals.529

Defect probability remains below the predefined quality threshold, indicated530

by a dashed line in Figure 13. The procedure is stopped prematurely, even though531

it has not fully converged. Indeed, multiple nonlinear analyses are required,532

which causes excessive numerical efforts. The defect probability is smaller than533

its threshold value and the confidence interval does not include this threshold534

value either. It can hence be concluded that the quality requirements are met535

and no additional simulation is performed. The failure probability is determined536

by counting the total number of samples in the failure domain using the surrogate537

model (i.e. the samples with ĝ(x) 6 0). It is assumed that the sample x(j) is538

very likely to be well classified in case U(x(j)) > 2, the relevance of this threshold539
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value is discussed e.g. in (Echard et al. 2011). This criterion is used to determine540

the confidence bounds of the failure probability. The lower bound of the failure541

probability is obtained using the samples in the failure domain with a low chance542

of misclassification, i.e. the samples with ĝ(x) 6 0 and U(x) > 2; the upper543

bound of the failure probability is determined using the samples in the safe domain544

with a low chance of misclassification, i.e. the samples with ĝ(x) > 0 and U(x) >545

2.546

The method also enables us to identify the dominant failure mode. This547

information may be used as an input for quality improvement.548

CONCLUSIONS549

A procedure for the tolerance analysis of a deformable system is proposed550

in this study. The method is used to determine the defect probability associ-551

ated with an industrial problem: a wiper blade manufactured by Valeo Wiper552

Systems. The distributions of the uncertain dimensions are estimated directly553

from measurements obtained from the factory. The performance of the system554

is obtained from the structural response. A finite element model is of the rub-555

ber blade is prepared; it includes uncertainties in the geometry of the profile.556

Structural reliability methods are subsequently used to compute the defect prob-557

ability. The problem is formulated using a double loop approach: the outermost558

loop consists of the reliability analysis and realizations of the random variables559

are generated. The innermost loop consists of solving an optimization problem560

for each realization of the random variables. The numerical efforts are reduced561

using a surrogate model based procedure. In the innermost loop, design of ex-562

periments is used for each sample and the structural responses are approximated563

by second order polynomials. The so-called AK methods are used to reduce the564

numerical efforts associated with the reliability analysis; such algorithm rely on565
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the use of Kriging surrogate models. It is concluded from this study that quality566

requirements are met by the wiper blade.567

Two major original features are introduced in this study. Firstly, the distri-568

butions associated with the dimensions are directly identified from their realiza-569

tions, obtained from parts collected on the production lines. This strategy also570

provides the correlation between the dimensions, which is important information571

that designers often lack. It is necessary to adopt such an approach, based on in-572

dustrial data, to obtain a realistic estimation of the defect probability. Secondly,573

the approach is directly deployed on a full scale industrial model. Because of574

the considerable uncertainties in the dimensions, the stiffness matrix cannot be575

assumed to be constant, and the influence method is not applicable. A structural576

reliability algorithm is used instead, and defect probability is computed using AK577

methods.578

Future work is geared towards improvements of the geometrical modeling of579

the wiper blade by considering form defects.580
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FIG. 1: Alternating movement of the wiper system. The local coordinate system,

associated with the wiper blade, is indicated by the arrows.
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FIG. 2: Blade profile. (a) Description of the profile. (b) Functional requirements

associated with the profile.
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FIG. 3: Wiping defects
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(a) (b)

FIG. 4: (a) Reference cross-section of the blade as it appears in the drawings of

the component. (b) Cross-section of a blade as obtained after extrusion (image

courtesy of Valeo, copyright Valeo).
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FIG. 5: Parameterization of the reference cross-section to take into account man-

ufacturing uncertainties.(a) Length of subcomponents. (b) Height of subcompo-

nents. (c) Angles and fillet radii.
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FIG. 6: Correlation between the dimensions. The black crosses represent the

data measured on parts and the grey points represent 1000 samples generated

using Monte Carlo simulation. (a) H1 and H2. (b) H2 and H4.
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FIG. 7: Explained variance in terms of the number of eigenvalues used in the

Karhunen-Loève expansion.
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FIG. 8: (a) Variation in force with respect to position along the wiper blade.

(b) Variation in the coefficient of friction between the blade and the windshield,

expressed with respect to the position along the wiper blade.
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FIG. 9: Finite element model of the blade profile.
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FIG. 10: Generation of the calibration set used for the response surfaces (hollow

points).
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(a) (b)

FIG. 11: Schematic representation of the reliability procedures. (i) Classification

of samples (represented by the black points) into failure domain and safe domain.

The thick black line represents the limit state. (b) Basic concept of the AK

methods. The black points represent the enriched points where the performance

function is evaluated; the gray points represent the samples where the surrogate

model is used instead. The gray line represents the actual limit state, the black

line represents the approximate limit state obtained using the surrogate model

and used for the classification.
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FIG. 12: Workflow of the procedure.
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FIG. 13: Variation in defect probability (solid line) during the iterations of the

AK method. The dashed line represents the confidence bounds of the defect prob-

ability; the thick dashed line represents the upper bound of the defect probability

defined by the quality standards.
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