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Hybrid constitutive modeling: data-driven learning of corrections

to plasticity models

Rubén Ibaiez! - Emmanuelle Abisset-Chavanne' - David Gonzalez? - Jean-Louis Duval? - Elias Cueto? -

Francisco Chinesta®

Abstract
In recent times

a growing interest has arose on the development of data-driven techniques to avoid the employ of

phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and
present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon
completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is,
by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in

constitutive modeling.

Keywords Machine learning - Data-driven computational mechanics - Plasticity - Model learning

Introduction

Plenty of effort has been dedicated throughout history to
create very accurate models. As an example, the reader may
think about all different models formulated, for instance,
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in hyperelasticity. These include the classical Saint-Venant,
Neo-Hookean, Ogden [1], Arruda and Boyce [2], Holzapfel
and Gasser [3], to name but a few. Another field in
which plenty of constitutive models have been developed is
plasticity, where we can highlight the classical models by
Tresca, Von Misses [4] or Hill [5], among others.

However, we also know that no model is perfect:
it is always subjected to certain limiting hypothesis,
experimental noise, etc. Indeed, even if you could calibrate a
model perfectly well, no guarantee is given that for another
set of experiments, different from the calibration ones, the
model is going to provide you a perfect result.

It has been argued that constitutive models are of a lower
epistemic level than other, more fundamental, equations.
This last group includes equilibrium and compatibility, for
instance. This reasoning is at the origin of the so-called
data-driven computational mechanics approach. In essence,
this approach tries to substitute phenomenological, always
imperfect models by experimental data. These techniques
employ a variety of methods to determine, in essence,
the stress tensor corresponding to a given strain state.
Thus, for instance, works by M. Ortiz and coworkers
employ nearest neighbor interpolation [6, 7], while in
[8-12] the authors employ different manifold techniques
to define the constitutive manifold of a given material,
i.e., a low-dimensional representation of the constitutive
equation based solely on data. Liu and coworkers [13]
employ clustering techniques, while Montans et al. employ
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spline approximation to the strain density functional in a
hyperelastic context [14, 15].

These approaches can be embedded in an even more
general context. Several works have been devoted to unveil
governing equations from data [16—18]. These may include
laws in the form of partial differential equations, for
instance [19-21].

The main aim of this work is to provide an alternative
route by enhancing or correcting existing, well-known,
models with information coming from data, thus performing
a sort of data-driven correction. In this first work a special
effort is put on the correction of plastic yield functions,
while work in progress adresses more complex scenarios
involving hardening and damage.

The proposed data driven correction technique is
conceptually simple. Imagine that our departure point is a
given, well-known parametric model M (p). It is important
to keep in mind that we are looking for an enhancement
or correction of the previous model based on the available
experimental results. Therefore, a discrepancy model D(c),
which applies to the first model, needs to be defined. So to
speak, reality, R, is approximated as

R =M(p) +D(),

where p represents the set of parameters governing the
model and ¢ represents the set of parameters needed to
define the necessary correction.

Since our measurement capabilities will in general be
constrained to some experimentally observable quantities,
both our objective reality and the correction to the model

Fig.1 Different views of Barlat
Y1d2004-18p plastic yield

function. Color map represents 1
the value of .y
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will be restricted to these experimental settings. In other
words,

R|, ~ M(p) + D(c)|p’s.

It is worth to mention that the way we define the
observables s could have an important impact over the
calibration of the set of correction parameters, ¢. We assume
that a set of experiences is defined such that the entire
parametric space ¢ could be determined.

The outline of the paper is as follows. In Section “Problem
statement” we present the developed methodology with the
help of a toy problem. Section “Reconstruction of the error
response surface by sparse sampling” introduces a sparse
sampling technique able to describe the error surface with a
minimum number of control points. In Section “Numerical
results” the numerical results are presented, showing the
performance of the proposed methodology.

Problem statement

In the present work, we will try to capture the plastic yield
function of a particular material with the help of a well
known plasticity model and try to develop the necessary
corrections based on data. Recall that a plastic yield function
can be seen as a hypersurface living in the stress space, o €
R®. Typically, this surface is parameterized using a finite
set of parameters (p) given by the physics-based model,
M(p). Moreover, it will depend also on the correction or
discrepancy model D(c). Therefore, our reality R, in the
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form of a general, yet unknown, plastic yield function, can
be written as

R =Fy(o; p,c)=0.

For the sake of simplicity and ease of representation,
but without loosing generality, we will constraint ourselves
to the plane stress hypothesis. Therefore, our plastic
yield function is defined in a three dimensional space
corresponding to the three active stress components, oy,
oyy, and Tyy. This three-dimensional stress state is easily
expressed in spherical coordinates as

oxx = R(a, B) cos(a) sin(B),
Oyy = R(a, B) sin(x) sin(B),
Txy = R(a, B) cos(B),

since the plastic yield function is often a convex closed
surface. Here, R(w, ) defines the radius in spherical coor-
dinates for any possible angle. Therefore, a parameterization
R(a, B; p) directly determines the shape of Fy.

Let us assume that reality, R, is perfectly described by a
Barlat Y1d2004-18p yield function [22, 23], shown in Fig. 1,
so that R = }'f . Assume that this model has never been
defined, so that we need to approximate reality —known
indirectly through experimental results— by employing a
well-known, yet inexact model. For this purpose we have
chosen a quadratic Hill plastic yield function

M(p) = «F)I;I(Gva Oyy, Ty, F, G, H, N)
= Fayzy + Gol, + H(ow — ayy)2 + Nrfy — ag.

Fig.2 Different views of the
quadratic Hill plastic yield
function. Color map represents
the value of 7,,. F = 2.1,
G=18 H=07and N =19
were taken

HILL

As it can be noticed, this yield criterion presents a
parameterization based on four coefficients, i.e., |p| = 4
and p ={F, G, H, N}.

Both Hill’s and Barlat’s models have been chosen to
represent a well-known model that does not fit exactly to
reality, and to govern the reality, respectively. This choice
purely arbitrary, and its sole purpose is to show that a
model can effectively be corrected so as to fit experimental
evidence.

Figure 2 depicts the shape of a quadratic Hill yield
criterion with F = 2.1, G = 1.8, H = 0.7,and N = 1.9.
As it can be noticed, convexity is fulfilled and it defines a
smooth closed surface in the stress space.

The discrepancy model D(c) is assumed to provide a
correction to the Hill model so as to satisfy the Barlat
Y1d2004-18p model, from which the (synthetic) experimen-
tal data were obtained. To construct this discrepancy model,
in the absence of any knowledge about the sought Bar-
lat model, we chose to employ an as general as possible
parameterization. We defined a set of eight control points
distributed along the plane 7., = 0 —corresponding to a bi-
axial experiment—, plus another degree of freedom relative
to the maximum shear points defined along the line o, = 0,
oyy = 0 —thus giving a pure shear experiment—. Hence,
le] = 9. Obviously, more control points could be added, if
more precision is sought. The method does not present any
limitation in this sense.

Interpolation between all degrees of freedom is done by
means of natural neighbor interpolation, which provides C!-
continuous shape functions, except from the data points,
where it is simply continuous [24]. Figure 3 depicts the
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Fig.3 Perturbed quadratic Hill
plastic yield function by moving
only one degree of freedom of
D(c). Color map represents the
magnitude of the perturbation.
F=21,6G=18 H=07,
and N =19

HILL0+DD

sensitivity of perturbing one degree of freedom in D(c) on
the quadratic Hill yield function. Note that the maximum of
the perturbation is achieved where the degree of freedom is
placed and the magnitude is smoothly decreasing towards
the original yield surface.

Remark Convexity of the resulting corrected yield surface
can be enforced by generating many points on the corrected
yield surface and then considering their convex hull.

A general expression for the error caused by the adoption
of a corrected poor model (in this case represented by Hill’s
criterion) with respect to the experiments could be

Is|

ES(C)ZZ/t i e p(x.t, ¢) — eR (x,1)||dxdt,
s=1 70 7 ¥s

where x; is the region of the solid in which measurements
are performed and ¢ represents the time interval of duration
of the experiment. In this particular case, we chose to
measure the error in the strain field, but we could have done
it with the displacement field as well. It is worth noting that,
at this stage, if the poor model is already calibrated, the only
parametric space that could vary is the one related to the
discrepancy model, c.

Reconstruction of the error response surface
by sparse sampling
Sparse approximation in high-dimensional spaces

The objective of this procedure is to build a response
surface for the error Es(c) so as to characterize the
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parametric space based on the existing set of experiments.
Once the response surface is built, the global minimum of
the error response surface will provide the point ¢ in the
parametric space which is closest to reproduce the set of
experiments.

Since the reference solution is known—it is provided by
Barlat’s model—it can be convenient to use it to check if
our minimization problem in the kinematic variables also
implies a good correction in the model. Certainly, this good
correction is closely related with the good definition of the
experiments.

At this point, several options could be adopted to
reconstruct this response surface. Even though any non-
structured interpolation technique based on Delaunay
triangularization can be used, it will suffer when the
dimensionality of the parametric space increases. In this
particular case, a non-linear sparse identification technique
called Sparse Proper Generalized Decomposition (s-PGD)
is used [25]. s-PGD strongly relies on the separation of
variables to circumvent the problem of high dimensional
spaces. Indeed its main objective is to capture the whole
response surface using as few points as possible.

In brief, the s-PGD technique seeks to obtain a sparse
regression of a parametric function—in our case, E(c)—by
assuming a separate representation of the sought regression,
say £(c),

/ w*(e) [£(c) — Eg(o)]de,
T

where Z represents the phase space in which ¢ evolves and
w* a suitable test function.



The main ingredient of the s-PGD technique relies on the
assumption of a separate form for the sought approximation,
ie.,

M
00 ~ () = 3 Xken X5 XE | Coppun)-
k=1

This type of separate approximation has been tested in up
to one hundred dimensions without any major difficulty, nor
need of supercomputing facilities. The interested reader can
consult [26] for more details.

In turn, the test function w* is chosen as formed by a sum
of Dirac delta functions collocated at the sampling points,

P
w*(e) = £*(e) ) 8(ci),

i=1
where ¢; represents one of the P sampling points in the para-
metric space. Of course, if we are looking for a new term k
in the separated representation, the test function will look like

() = (X5 *(enXh(er) - -- XX

Nparam (Cnparam )

+XIIC(C1)(X]2€)*(C2) e Xll'clpamm (cnparam) +..
+X5 (e X5 ) - (xk

k
TNparam ) (Cnpamm ) :

The precise form of the approximating functions X ’; (cj)
is found by resorting to a greedy algorithm followed by
a fixed point linearization scheme, since we look for the
precise form of products of functions, thus leading to a
non-linear problem. To avoid Runge’s phenomenon, that is,
spurious oscillations in the approximated one-dimensional
functions based on data-points that do not correspond
to the Gauss-Lobatto-Chebyshev ones, interpolation based
on kriging is retained.The interested reader will find
every detail of the s-PGD methodology in [25]. Kriging
possesses some interesting features. Since it is based on the
fundamental assumption of data being Gaussian, it provides
an easy filtering of noise, by giving the best linear unbiased
prediction of the intermediate values.

Line search in high-dimensional spaces

The s-PGD algorithm provides a set of one-dimensional
functions or, more commonly, modes which are able to
reproduce a given function £ in the high dimensional space
when they are combined as

M D
l(c1,¢2,...,CD) = Z H X];l(cd).
k=1d=1
Function ¢ is stored in a separated format, which
has demonstrated to be very convenient in terms of
memory consumption. However, sometimes the local
extremes of ¢ are required, as in this case. Even if
the simplest option could be to reconstruct the response

surface €(c1, ¢z, ..., cp) in the high dimensional space, the
memory requirements will increase exponentially with the
dimensionality of the problem. In other words, if each mode
is approximated by means of a finite element mesh of, say,
10 degrees of freedom, a problem defined in dimension D
implies to store 10” nodal values.

In this case, we made an adaptation of the so-called
line search minimization algorithm so that the consequent
search directions coincide with the cartesian axes, thus
exploiting the separated representation format.

Let us assume that the i-th dimension is going to be mini-
mized. Consequently, the other coordinates are freezed at
some value within their correspondent intervals of defini-
tion, i.e., ¢4 for d # i. By doing that, the problem reduces
to a minimization problem in a one dimensional space:

M D
¢ =n2nz [T x5@D | Xf .
k=1 \d#i

When this minimization problem is finished, the search
direction is updated to dimension i = i 4 1, repeating the
same procedure. When the ¢, coordinates do not change
noticeably after one iteration for each dimension, the line
search algorithm is finished.

To sum up the properties of the cartesian line search:

— There is no need to reconstruct the function
£(c1,c¢2,...,cp) in the high dimensional space,
circumventing memory issues related to the storage.

— The global minimization problem is transformed into
a set of one-dimensional minimization problems which
are very efficient because all minimization directions
coincide which the directions in which the solution has
been separated.

— There is no guarantee that the obtained minimum is the
global minimum of the function. In order to circumvent
that problem, the algorithm is initialized at different
starting positions, selecting the final point that presents
the lower value of the function. This problem may
appear in functions living in a high-dimensional space
which do not have a certain level of regularity.

Numerical results

Squared coupons
Test description

Two different quadratic Hill criterions have been used as
a starting point in our discrepancy model. The first one,
M(p,), is defined by F; = 2.1, Gy = 1.8, H = 0.7
N; = 1.9, while the second one, M(p,) is defined by
F, = 23, G, = 20, Hb = 0.8 Ny = 1.7. While



Fig.4 Different views of

M(p)) plastic yield function.

The color map represents the 1
mismatch between the M(p,)
criterion and the Barlat
Y1d2004-18p, and thus v 0
R — M(p,) = D, the objective
function to be captured by our
discrepancy model. 1

Ery (M(py)) = 1.57

M(p,) is already quite close to Barlat’s criterion, with
an error Ex,(M(py)) = 1.57, the second one presents
an error Er, (M(p,)) = 24.9. This could correspond, so
to speak, to the case of a poorly calibrated poor model.
Figure 4 depicts the point-wise difference between the
M(p,) criterion and the Barlat Y1d2004-18p projected on
the M (p,) surface. Figure 5, in turn, presents the same error
for the model M(p,).

Regarding the set of experiments s necessary to calibrate
the discrepancy model, we have chosen to use a set of simple

Fig.5 Different views of
M(p,) plastic yield function.
The color map represents the
point-wise difference between
the M (p,) criterion and the
Barlat Y1d2004-18p.

EFr, (M(py)) =249
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tests in a coupon of size Q2 = [0, 1] x [0, 1]. These will be
defined by the following set of boundary conditions,

uy(0,y) =0,
uy(x,0) =0,
o(l,y)n = ti,
o(x, Hn = t.

Hence, varying both tractions #1 and ¢,, different regions of
the stress space inside the coupon are explored. Indeed, 40
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Fig.6 Error in the reconstruction Eg (M (p,) +D; ¢) using half of the
points in the data base for training

different experiments have been included in order to create
Eg(c), so that |s| = 40.

Construction of the error response surfaces

In order to build the response surfaces Eg(M(p;); ¢) and
Eg(M(p,); ¢), 1000 simulations, randomly sampling the
parametric space ¢, have been accomplished for each model
M(p;) and M(p,). Each realization in the parametric
space follows a uniform distribution from [—0.1, 0.1] in the
M(p,) case and [—0.15, 0.15] in the M (p,) case, since we
expect the need for a major correction.

As can be noticed in Fig. 6 the obtained response surface
for M(p,) presents around 8% of mean relative error. This

Fig.7 Different views of
M(p,) + D plastic yield
function. The color map
represents the mismatch between
the M(p,) + D criterion and
the Barlat Y1d2004-18p.
Er,(M(py) +D) =127

HILL0+DD

error could be decreased easily if more sample points are
added to the s-PGD algorithm.

Error minimization and obtention of the sought correction

Once the response surface has a continuous and separated
representation, the minimum is searched by employing a
line search in each one of the separated directions. The
initial point at which the line search algorithm is started
is changed randomly to ensure the global character of the
minimum.

Figure 7 shows the error when the yield surface M(p,)
is corrected with the obtained discrepancy model. Note
that the final reconstructed error Ex, (M(p) + D), has
been reduced with respect to the Er, (M(p;)) error,
passing from 1.57 to 1.27. This is equivalent to a 19% of
improvement thanks to the data driven correction for this
particular case.

Figure 8 shows the error when the yield surface M (p,) is
improved with the data driven correction. In this particular
case, the final reconstructed error Er, (M(p;) + D) has
been reduced as well from 24.9 to 4.63. Therefore, some
81% of improvement has been obtained in this particular
case.

Coupon subject to bending loads

In this example a bar with both ends clamped, in which
a uniform vertical negative distributed load is acting along
both top and bottom sides.

Figure 9 (top) shows the cumulated strain error between
Barlat’s and Hill’s M(p,) yield functions. The bottom
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Fig.8 Different views of
M(p,) + D plastic yield
function. The color map
represents the mismatch between
the M(p,) + D criterion and
the Barlat Y1d2004-18p.

Ez, (M(py) + D) = 4.63

HILL +DD HILL +DD
0.02 0.02
0.015 0.015
001 X 0.01
0.005 0.005
0 0
-1 0 1 -1 0 1
g ag
X X
HILL0+DD
0.02
s 0.015
K0 0.01
05 0.005
0
-1 0 1
g
Y.
Conclusions

figure shows the error between Barlat’s and the corrected
Hill’s yield functions. As it can be noticed, the error in
the strain field is reduced when considering the correction.
However, this error does not vanish, since the correction
does not reproduce perfectly well Barlat’s criterion for the
considered sampling. It asymptotically decreases, however,
when more data points are considered.

In light of the results, the importance of data driven
corrections is higher when the model is less accurate, since
few data produce important improvement.
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In recent times a lot of attention has been paid to
the development of machine learning techniques able to
unveil governing equations from data. This is specially
important for constitutive equations that, unlike other more
epistemologically sound equations—like equilibrium, for
instance—are often phenomenological and inexact. Their
precise expression is found by data fitting, leading very
often to poor fitting to the experimental results.
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Fig.9 Cumulated strain error between Barlat’s and Hill’s models (top) and between Barlat’s and Hill’s plus data correction (bottom)



Unlike previous approaches, we believe that it is
important not to discard all the existing knowledge
concerning constitutive equations (particularly plastic yield
functions, for which an extensive corps of literature exists).
Instead of learning models from scratch, we believe that it
will be much more efficient and appealing to try to correct
existing models in light of the obtained experimental results
and the observed discrepancies.

In this paper we have developed a method for the
correction of plasticity models with the help of experimental
data that makes use of sparse identification techniques
in high-dimensional spaces. Particularly, we employ the
sparse-PGD method [25], that has rendered excellent results
for the examples considered herein. In order to circumvent
the problem of approximating a function in the high
dimensional space, it is important to make use of adequate
interpolation techniques, which are able to provide us with
a reasonable estimation of the response surface.

Noteworthy, results obtained numerically from a Barlat
Y1d2004-18p yield function were approximated by assum-
ing a Hill model and then obtaining, in a completely
automated fashion, a suitable correction.

The presented method paves the way for the development
of a completely general, hybrid constitutive modeling
methodology for the obtaining of accurate constitutive
models by summing up the best of both worlds: all the
experience accumulated in the last century with constitutive
modeling of solids and the best of machine learning.
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