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Abstract 

The current contribution proposes two quadratic, prismatic and hexahedral, solid–shell elements 

for the geometric nonlinear analysis of laminated composite structures. The formulation of the 

proposed solid–shell elements is based on a fully three-dimensional approach combining the 

assumed-strain method and the reduced-integration technique. In particular, only translational 

degrees of freedom are considered in the formulation and a preferential direction is chosen as the 

thickness direction, along which an arbitrary number of integration points are arranged. Making 

use of different physical local frames, these elements are coupled with fully three-dimensional 

orthotropic constitutive equations, which allows modeling multilayered composite structures with 

only a single element layer through the thickness. A series of popular nonlinear benchmark tests 

for laminated composite structures is performed to assess the performance of the proposed SHB 

elements. Compared to reference solutions taken from the literature, the results provided by the 

SHB elements show excellent agreement. Moreover, on the whole, the proposed SHB elements 

perform better than state-of-the-art ABAQUS elements, which have the same geometry and 

kinematics, using comparable mesh discretizations. 
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1. Introduction 

In recent years, composite materials have been increasingly employed in modern industries 

due to their excellent characteristics, which result from the smart combination of superior 

strength, high stiffness and lightweight. Considering these attractive properties, designers tend to 

use composite materials as alternative to conventional sheet metals for thin structures to reduce 

the product weight, while maintaining high mechanical performance. Among various types of 

composite materials, the fiber-reinforced composite laminates particularly attracted researchers’ 

attention. Thanks to the continuous development of composite manufacturing techniques, 

laminated composite materials have become among the most favorite advanced materials. Such 

laminated structures can be used to satisfy various engineering requirements, through the 

combination of different stacking sequences. In this field, much effort has been devoted to the 

numerical analysis of laminated composite materials and structures. In particular, extensive 

research work has been conducted in the literature to establish theoretical solutions or to develop 

efficient numerical methods for solving nonlinear composite structural problems. 

Early investigations mainly focused on the theoretical analysis of simple laminated plates. For 

instance, Srinivas and Rao [1] proposed a unified exact solution for bending, vibration and 

buckling of thick orthotropic rectangular plates and laminates. Constrained by the computational 

resources of that time, they only considered the small strain framework on the basis of 

Reissner‒Mindlin’s thick plate theory. Concurrently, Pagano [2], Sciuva [3] and Khdeir [4] 

derived the exact solutions for composite laminates from the classic Kirchhoff theory. One can 

also find in the literature other numerical approaches for the analysis of composite structures, 

such as the spline interpolation method proposed by Cheung and Kong [5], the meshless method 

adopted by Wang et al. [6], or the global‒local higher-order theory developed by Wu and Chen 

[7]. 

Subsequently, other researchers directed attention towards the development of efficient 

composite shell finite elements. Based on the Lagrangian formulation, Wagner and Gruttmann [8] 

proposed a simple shell finite element, which is very attractive both for static and dynamic 

nonlinear analysis of composite structures. Polit and Touratier [9] developed a higher-order 

triangular finite element for linear and nonlinear analyses of multilayered plates, in which they 

applied the Argyris interpolation for the consideration of the transverse displacement and the 

Ganev interpolation for the membrane displacements. Khare et al. [10] established a higher-order 
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facet shell element, based on the higher-order shear deformation theory, for vibration analysis of 

composite and sandwich laminates. Lee and Han [11] developed a 9-node shell element, 

combining the assumed natural strain (ANS) method and Mindlin‒Reissner’s theory, for forced 

vibration analysis of orthotropic and laminated composite materials. In the work of Arciniega and 

Reddy [12], a higher-order tensor-based shell element formulation has been proposed using 

Lagrangian interpolation in order to avoid membrane and shear locking for typical laminated 

composite problems. In conjunction with the Asymptotic Numerical Method [13], Hu et al. [14, 

15] proposed a one-dimensional finite element for the analysis of sandwich beams considering 

layer-wise higher-order transversal displacements. Nguyen-Van et al. [16] used a strain 

smoothing technique in the formulation of a quadrilateral flat shell element, which was applied to 

the analysis of buckling and vibration for composite structures. A seven-parameter high-

polynomial order continuum shell element was developed by Payette and Reddy [17] for the 

simulation of the mechanical response of composite shell structures, which requires displacement 

degrees of freedom (DOF) only and fully three-dimensional constitutive equations. More recently, 

Choi [18] proposed a geometrically nonlinear shell finite element based on a doubly curved shell 

theory and von Karman’s large deflection theory for the dynamic/impact analysis of laminates. 

Yu et al. [19] developed a two-dimensional finite element model to investigate the instability 

phenomena of sandwich plates using the classical Kirchhoff assumptions in the faces and 

enriched kinematics in the core. Yang et al. [20] proposed a new family of one-dimensional finite 

elements for wrinkling analysis of thin films using Euler‒Bernoulli’s kinematics and Carrera’s 

unified formulation [21]. Huang et al. [22] adopted a Fourier-based finite element model to study 

the instability phenomena of sandwich plates. 

From the above literature review, one can conclude that a number of conventional or improved 

degenerated shell elements are capable of simulating various types of laminated composite 

structures, due to their high efficiency and accuracy. However, some idealized assumptions are 

sometimes made in their formulation, which may limit their use in some particular composite 

structural applications. Also, some locking phenomena, such as shear locking or membrane 

locking, are often encountered in thin shell applications, thus compromising the overall accuracy 

and efficiency of the simulations. In order to circumvent these locking phenomena, special 

numerical treatments are required within these shell formulations, which makes their numerical 

implementation even more complex. Furthermore, many shell elements are not able to account 
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for thickness variation, and they cannot be directly combined with continuum solid elements, due 

to the complex shell-type kinematics. Consequently, for some particular complex structures, 

transition elements should be developed to ensure the connection between bulk and structural 

zones (see, e.g., Liao et al. [23]). 

To remedy the above-mentioned limitations, a new alternative approach for modeling thin 

laminated structures consists in the development of solid‒shell elements, in which only 

displacement DOF are involved. The solid‒shell concept combines both the advantages of the 3D 

formulation of solid elements and the desirable behavior of traditional shell elements. These 

advantages make the calculation of thickness variation very easy, as well as the connection with 

conventional solid elements. Similar to classical solid and shell formulations, solid‒shell 

elements are also likely to suffer from various locking phenomena (e.g., membrane, shear, 

volumetric, thickness locking…). The latter are generally eliminated by resorting to different 

numerical strategies, such as the reduced integration technique (RI), the assumed strain method 

(ASM), the enhanced assumed strain method (EAS) or the assumed natural strain method (ANS). 

During the last decades, much effort has been devoted to the development of efficient solid‒shell 

elements. Klinkel et al. [24] proposed a three-dimensional shell element for the nonlinear analysis 

of laminated structures, in which the ASM method was used to eliminate the membrane and shear 

locking phenomena. A low-order solid‒shell element was also developed by Vu-Quoc and Tan 

[25] for the modeling of multilayer shell structures, which combines the EAS and ANS methods 

in order to avoid locking effects. Quy and Matzenmiller [26] combined both the higher-order 

shear deformation theory and the EAS method in their solid‒shell formulation, so that to improve 

the transverse shear behavior. On the other hand, Naceur et al. [27] also adopted the combination 

of EAS and ANS methods to improve the behavior of the low-order hexahedral solid‒shell 

element, which was then applied to the modeling of composite multilayered structures. More 

recently, Hajlaoui et al. [28] developed a new solid‒shell element, using the EAS method and the 

first-order shear deformation concept, for the buckling analysis of functionally graded materials, 

while Kpeky et al. [29] proposed an assumed-strain based solid‒shell element for the modeling of 

viscoelastic sandwich structures. 

In this paper, two quadratic prismatic and hexahedral solid‒shell elements are proposed for the 

modeling of multilayered composite structures. These elements belong to a class of solid‒shell 

(SHB) elements that have been originally developed by Abed-Meraim and co-workers [30–34]. 
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This SHB element family consists of linear prismatic and hexahedral elements (SHB6 and 

SHB8PS) and their quadratic counterparts (SHB15 and SHB20). These SHB elements are based 

on a fully three-dimensional formulation with an in-plane reduced-integration scheme and an 

arbitrarily number of integration points along the thickness direction, which allows modeling thin 

structures with only a single element layer. In the earlier works on the quadratic SHB elements 

(i.e., SHB15 and SHB20), their formulation was restricted to the small strain framework, with 

applications limited to linear isotropic elastic benchmark problems [33]. In the current 

contribution, however, the quadratic SHB15 and SHB20 solid‒shell formulations are extended to 

the nonlinear analysis of orthotropic materials, which allows the three-dimensional modeling of 

multilayered composite structures with only a single element layer through the thickness. 

The paper is organized as follows. In Section 2, the general formulation of the proposed 

quadratic solid‒shell elements is presented. Then, the performance of the resulting SHB elements 

is assessed, in Section 3, through a variety of nonlinear benchmark problems for composite 

laminates. Finally, the main conclusions and remarks are drawn in Section 4. 

 

2. Formulation of the quadratic solid‒shell (SHB) elements 

Owing to several similarities in the formulation of the prismatic and the hexahedral solid‒shell 

elements (i.e., SHB15 and SHB20, respectively), a unified formulation for both solid‒shell 

elements is presented in this section, for the sake of conciseness. This general formulation was 

originally developed by Abed-Meraim et al. [33], within the framework of small strains and 

linear isotropic elasticity, while it is extended in the current work to the large strain framework 

and composite-type anisotropic behavior. 

2.1. Geometry and integration points 

Fig. 1 illustrates the three-dimensional geometry of the 15-node prismatic solid‒shell element 

(SHB15) and the 20-node hexahedral solid‒shell element (SHB20), as well as the location of 

their integration points. A special direction, denoted by ζ , is chosen as the thickness direction, 

along which an arbitrary number of Gauss integration points may be arranged. Such a strategy is 

generally very convenient for thin structures, and particularly for laminated composite structures, 

for which the whole thickness is modeled with only a single element layer. 
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(a) SHB15 (b) SHB20 
Fig. 1. Reference geometry and location of integration points for the SHB15 and SHB20 

elements. 

2.2. Kinematic fields and discrete gradient operator 

As mentioned in the introduction, the SHB elements have only displacements as degrees of 

freedom at their nodes. Accordingly, the spatial coordinates ix  and the displacement field iu  are 

interpolated within the element using the classical shape functions for quadratic prismatic and 

hexahedral elements: 

1

( , , ) ( , , )
n

i iI I iI I
I

x x N x Nξ η ζ ξ η ζ
=

= =∑ ,  (1) 

1

( , , ) ( , , )
n

i iI I iI I
I

u d N d Nξ η ζ ξ η ζ
=

= =∑ ,  (2) 

where the lowercase subscript i varies from 1 to 3, and represents the spatial coordinate directions, 

while the uppercase subscript I goes from 1 to n, with n being the number of element nodes 

( 15n =  for the SHB15 element, and 20n =  for the SHB20 element). 

Combining the above equations with the expression of the shape functions leads to an 

expansion of the displacement field which, when evaluated at the element nodes, can be written 

in the following form: 

0 1 1 2 2 3 3i i i i i ia a a a cα αα
= + + + +∑d s x x x h ,       1,2,3i =  (3) 

where ( )1 2 3, , , ,T
i i i i ind d d d=d ⋯  represent the nodal displacement vectors, while 

( )iniii
T
i xxxx ,,,, ⋯321=x  are the nodal coordinate vectors. Note that in Eq. (3) above, there is 

summation over index α , with α  ranging from 1 to 11 for the SHB15 element, and from 1 to 16 
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for the SHB20 element. Also, vector ( )1,1, ,1T =s ⋯  is a fifteen-component constant vector in the 

case of the SHB15 element, and a twenty-component constant vector for the SHB20 element. As 

to vectors αh , they are obtained by evaluating some hα  functions at the element nodes. These 

involved hα  functions, whose components are functions of the nodal coordinates ( )ζηξ ,,  in the 

reference coordinate system, are defined for the SHB15 element as: 

2 2 2
1 2 3 4 5 6 7

2 2 2 2
8 9 10 11

, , , , , , ,

, , , ,

h h h h h h h

h h h h

ξζ ηζ ξη ξηζ ξ η ζ
ξ ζ η ζ ξζ ηζ

 = = = = = = =


= = = =
 (4) 

while for the SHB20 element, their expressions are given by: 

2 2 2
1 2 3 4 5 6 7

2 2 2 2 2 2
8 9 10 11 12 13

2 2 2
14 15 16

, , , , , , ,

, , , , , ,

, , .

h h h h h h h

h h h h h h

h h h

ξζ ηζ ξη ξ η ζ ξηζ
ξ η ξ ζ η ξ η ζ ξζ ηζ
ξ ηζ ξη ζ ξηζ

 = = = = = = =


= = = = = =
 = = =

 (5) 

By applying some preliminarily established orthogonality conditions, and introducing the 

Hallquist [35] vectors 
| 0

i
ix ξ η ζ= = =

∂=
∂
N

b , with N  the vector whose components are the shape 

functions IN , the expressions of the unknown constants jia  and icα  in Eq. (3) are derived as: 

i
T

ii
T
jji ca dγdb ⋅=⋅= αα, ,  (6) 

where the detailed expressions of vectors αγ  for the SHB15 and SHB20 elements can be found 

in [33]. 

Then, the components of the linear part of the strain tensor ε  within the element can be easily 

expressed as: 

( )iIjIjIiIij NdNd ,, +=
2

1ε ,  (7) 

where, again, the lowercase subscripts i and j range from 1 to 3, while the uppercase subscript I 

goes from 1 to n. The linear part of the strain field given in Eq. (7), which is defined as the 

symmetric part of the displacement gradient ,i ju , can be rewritten in a vector form as follows: 
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where the discrete gradient operator B  takes the following matrix form: 
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Note that in Eqs. (7) and (9) above, the convention of implied summation over the repeated 

indices I  and α , respectively, has been used. 

 

2.3. Variational principle 

The Hu‒Washizu mixed variational principle, in conjunction with the updated Lagrangian 

approach, is used in this work to construct the assumed-strain formulations of the SHB15 and the 

SHB20 solid‒shell elements. More specifically, the current assumed-strain formulations are 

based on the simplified form of this three-field variational principle, as suggested by Simo and 

Hughes [36], which writes 

0=⋅−Ω⋅= ∫Ω
extTT

e

d fdσεε ɺɺɺ δδδπ )( ,  (10) 

where δ  denotes a variation, εɺ  the assumed-strain rate, σ  the Cauchy stress tensor, dɺ  the nodal 

velocities, and extf  the external nodal forces. 

The expression of the assumed-strain rate is given by 

( , )x t = ⋅ε B dɺɺ ,  (11) 
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where matrix B  is derived from the classical discrete gradient operator B  through a projection 

technique, in the aim of eliminating most locking phenomena (e.g., membrane locking, shear 

locking, thickness locking, etc.). 

Substituting Eq. (11) into the simplified form of the Hu‒Washizu variational principle, and 

taking the nonlinear part of the strain field into consideration, the expressions of the element 

stiffness matrix and internal force vector are obtained as follows: 

( ) int, ( )
e e

T T
e geomd dθ

Ω Ω
= ⋅ ⋅ Ω + = ⋅ Ω∫ ∫K B C B K f B σ εɺ , (12) 

where ( )θC  is the fourth-order tangent modulus describing the orthotropic elastic behavior of the 

material, whose expression will be detailed in the subsequent subsection, and geomK  is the 

geometric stiffness matrix, which originates from the nonlinear (quadratic) part of the strain 

tensor. 

It is worth noting that, because no noticeable locking has been observed when evaluating the 

proposed elements on selective benchmark problems, no projection has been applied to their 

discrete gradient operator. Additionally, the analysis of stiffness matrix rank deficiency did not 

reveal any potential zero-energy hourglass modes and, accordingly, no stabilization against 

spurious kinematic modes is required for the proposed quadratic solid‒shell elements. These are 

major differences with the linear versions of the SHB elements, since no additional treatments are 

required in the formulation of the proposed quadratic SHB15 and SHB20 elements, thereby 

simplifying their numerical implementation. 

 

2.4. Definition of the local frames for the SHB solid‒shell elements 

In order to extend the earlier formulations of the quadratic SHB elements to the framework of 

large strains and orthotropic elastic behavior for composite materials, two local frames are 

defined with respect to the global coordinate system. Each local frame is orthogonal and is 

identified by its rotation matrix R , which allows transferring the stress / strain state and all 

internal variables of the element from the local frame to the global one, and vice versa. Fig. 2 

illustrates the local frames used in the formulation of the proposed SHB elements. The first local 

frame, denoted as the “element frame”, is attached to the element mid-plane associated with each 

integration point. In such an element frame, the fourth-order orthotropic elasticity tensor ( )θC  is 
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specified for each ply that constitutes the composite laminate, with θ  being the fiber orientation 

angle with respect to the orthotropy directions. The second local frame is the so-called “material 

frame”, in which the constitutive equations of the material are formulated. 

 

 

Fig. 2. Illustration of the local frames used in the formulation of the SHB solid‒shell elements. 

 

2.5. Orthotropic elastic tangent modulus 

Unlike traditional shell elements, where the plane-stress assumption is used in their 

formulation, the proposed solid‒shell elements are based on a purely three-dimensional approach, 

with the consideration of fully three-dimensional constitutive laws. This interesting feature makes 

the SHB elements very attractive, as they allow 3D modeling of thin structures using only a 

single element layer. In this work, the quadratic SHB elements are formulated within the 

framework of large strains and coupled with orthotropic elastic behavior, which allows extending 

their application range to the 3D nonlinear analysis of composite laminates. 

The rate form of the stress‒strain relationship can be expressed by the following hypoelastic 

law, defined in the material frame: 

( ) eDCσ :θ=ɺ ,  (13) 
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where eD  is the elastic strain rate tensor. The fourth-order orthotropic elasticity tensor ( )θC  is 

specified with respect to the local element frame, and can be expressed as follows: 

( ) ( ) ( )1 Tθ θ θ−=C T H T ,  (14) 

where the fourth-order tensor H  represents the elastic compliance of the orthotropic material, 

which is defined in the fiber reference axes ( )1 2 3, ,m m m , with 1m  being the fiber direction, 

2m  the transverse direction, and 3m  the normal to the ply (see the illustrative Fig. 3). Its 

expression depends on the engineering constants of the ply and has the following form: 
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where iE  represents the Young modulus in the i-th direction, ijv  is the Poisson ratio associated 

with the i-th and j-th directions, and 12G , 13G  and 23G  are the shear moduli. Furthermore, the 

thermodynamic constraint on the elastic constants for orthotropic materials, which is expressed 

by the relation ijijij EE νν = , should always be satisfied. 

The rotation matrix ( )θT  in Eq. (14), which allows mapping the orthotropic elasticity tensor 

from the fiber reference axes to the local element frame, takes the following form: 
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with ( )θcos=c  and ( )θsin=s . 

 

(a) SHB20 hexahedral element 

 

(b) SHB15 prismatic element 

Fig. 3. Schematic representation of the fiber orientations with respect to the local element frame. 

 

Several techniques can be adopted for the modeling of multilayered composite structures using 

solid−shell elements. The simplest one consists in discretizing the entire thickness with one 

element layer per ply, which leads in the end to as many element layers as plies. However, this 

technique leads to a large number of degrees of freedom for the composite structure in the case of 

refined in-plane meshes, which in turn significantly increases the computational time. Another 

technique can be used, which is based on stacking the different composite plies within a single 

solid−shell element. In this latter case, each ply is modeled using one integration point and, 



 

therefore, the stiffness matrix 

Gauss integration scheme over all integration points

in this work, allows for 3D modeling 

solid−shell element through the thickness

The numerical implementation of this technique is 

of a given element, the local ele

computed using the coordinates of the element nodes

SHB15 elements. Once the element frame is built, 
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operation is repeated for all plies 
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Fig. 4. Illustration of the stacking sequence technique 
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structure applications. All finite element 

following nomenclature: for hexahedral elements, meshes of N

13 

matrix associated with the entire thickness is calculated 

over all integration points. This alternative technique
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at each integration point) in the local element frame using 
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and simulation results 
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using Eq. (14). Then, this 
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layer. 

 

multilayered composite material. 

the finite element code 

. In this section, a representative set of 

in the context of composite 

are discretized using the 

 elements are adopted, 
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where N1 denotes the number of elements in the length direction, N2 is the number of elements in 

the width direction, and N3 is the number of elements in the thickness direction; while for meshes 

with prismatic elements, the nomenclature adopted is (N1×N2×2)×N3, which corresponds to twice 

the total number of elements involved in hexahedron-based meshes, due to the subdivision of 

each hexahedron into two prisms. Since only a single SHB element layer is used to model the 

entire thickness of composite laminates, the parameter N3 is set equal to one for all simulations. 

In order to demonstrate the capabilities of the quadratic SHB elements, all simulation results 

are compared, on the one hand, to reference solutions taken from the literature and, on the other 

hand, to the results provided by ABAQUS quadratic solid elements as well as ABAQUS linear 

solid−shell elements, using the same in-plane meshes. Note that no quadratic solid−shell 

counterparts exist in the ABAQUS software. The description of all finite elements involved in 

this paper is given in Table 1. It is worth noting that the quadratic hexahedral ABAQUS element 

(C3D20) is able to model composite laminates with only a single element layer through the 

thickness, which corresponds to the same strategy used for the proposed SHB elements. However, 

this is not the case for the quadratic prismatic ABAQUS element (C3D15). Because the latter is 

not able to model composite laminates with only a single element layer through the thickness, 

one has to resort to the alternative strategy, which consists in using as many C3D15 element 

layers as plies. Note also that, in the following simulations, the obtained numerical results that are 

achieved with the designed meshes correspond to the converged solutions. Moreover, the total 

number of increments and associated number of iterations, NINC and NITER, respectively, 

required to obtain the converged solutions are reported at the end of the simulations, which 

allows evaluating the efficiency and convergence of the proposed SHB elements with respect to 

their ABAQUS counterparts. To achieve this, the default automatic incrementation procedure in 

ABAQUS is adopted for both the SHB and ABAQUS elements, with initial and maximum time 

steps equal to 0.1 and 1, respectively. 

 

 

 

 

 

 



15 

 

Table 1 

Prismatic and hexahedral finite elements used in the simulations. 

Prismatic 
elements  

SHB15 
15-node prismatic solid‒shell element with a user-defined number of 
through-thickness integration points 

C3D15 
15-node prismatic solid element with three integration points through 
the thickness 

SC6R 6-node prismatic solid−shell element with a user-defined number of 
through-thickness integration points 

Hexahedral 
elements 

SHB20 
20-node hexahedral solid‒shell element with a user-defined number 
of through-thickness integration points 

C3D20 
20-node hexahedral solid element with three integration points 
through the thickness 

SC8R 8-node hexahedral solid−shell element with a user-defined number of 
through-thickness integration points 

 

3.1. Cantilever plate with ply dropoffs 

It is well known that traditional shell elements are widely used in the literature for the 

simulation of composite structures due to their high efficiency and accuracy. However, they are 

not able to model composite laminates with zones having variable thickness, which is the case of 

the present nonlinear cantilever plate test with ply dropoffs. Therefore, only continuum finite 

elements, such as the proposed solid‒shell ones, are capable of modeling this type of composite 

structures that require a three-dimensional representation of the geometry. 

Fig. 5 illustrates the geometry of the composite cantilever plate, with three ply dropoffs. Each 

of these three ply dropoffs is modeled with a single finite element layer, and contains two plies 

with fiber directions oriented at -45º/45º from the bottom to the top with respect to the length 

direction. Hence, the thick end (clamped end) contains six plies, while the thinnest end (free end) 

contains two plies. The cantilever plate is subjected to a bending force 9 3F 6 10 h= × , with h  

being the thickness of each ply (all plies have the same thickness). The engineering constants of 

the orthotropic material are 10
11 1052 ×= .E , 9

3322 10== EE , 20231312 .=== vvv , and 

9
231312 1050 ×=== .GGG . The length of the plate is L=12, and the width is b=6 , with the top 
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layer removed after successive dropoffs at the coordinates =4x  and =8x  in the length direction. 

Three different values for the ply thickness are considered, i.e., h 0.1= , 0.01, and 0.004. 

For the hexahedral elements (i.e., SC8R, SHB20 and C3D20), the plate is discretized using six 

elements in the length direction and three elements in the width direction. In the case of the 

prismatic elements (i.e., SC6R, SHB15 and C3D15), 24 elements in the length direction and six 

elements in the width are used. The obtained final deflections, normalized with respect to the 

reference solutions given in [25], as well as the required NINCs and NITERs are reported in 

Table 2 and Table 3, respectively, for the three ply thicknesses considered. One can observe that, 

in the case of ply thickness h 0.1= , both SHB and ABAQUS elements predict well the 

maximum deflection of this composite cantilever plate, with equivalent NINC and NITER (see 

Table 3). However, for smaller thicknesses of plies (i.e., large length to thickness ratios L h ), 

the quadratic SHB elements as well as the ABAQUS solid−shell elements provide the best 

predictions with very high accuracy, while the quadratic ABAQUS solid elements reveal their 

limitations in modeling very thin 3D structures.  

 

 

Fig. 5. Cantilever plate with ply dropoffs. 

 

 

 

 

 

 

 

 



17 

 

Table 2 

Normalized deflections for the cantilever plate with ply dropoffs. 

Ply thickness 
aspect ratio 

L h  
SC6R C3D15 SHB15 SC8R C3D20 SHB20 

0.1 120 1.0684 1.0111 0.9954 1.1258 1.0003 0.9950 

0.01 1200 0.9865 0.9317 0.9980 0.9898 0.6732 1.0061 

0.004 3000 0.9851 0.8338 1.0086 0.9985 0.4644 1.0099 

 

Table 3 

NINC and NITER required by the SHB and ABAQUS elements for the cantilever plate with ply 

dropoffs. 

Ply thickness Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

0.1 
NINC 16 14 17 20 14 17 

NITER 74 64 93 92 62 94 

0.01 
NINC 47 24 40 46 15 43 

NITER 203 92 200 207 73 214 

0.004 
NINC 67 21 57 74 14 60 

NITER 292 103 264 280 68 295 

 

3.2. Cantilever bending of a laminated beam 

As illustrated in Fig. 6, a cantilever laminated beam, which is subjected to a bending load at its 

free end, is analyzed in this section. Four different stacking sequences with respect to the length 

direction are considered for the laminated beam, i.e., [0º/90º/0º], [30º/-60º/-60º/30º], [-45º/45º/-

45º/45º] and [90º/0º/90º]. The engineering constants of the orthotropic material are 6
11 10=E , 

6
3322 1030 ×== .EE , 250231312 .=== vvv , 6

1312 10150 ×== .GG , 6
23 10120 ×= .G .  
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Fig. 6. Cantilever laminated beam subjected to a bending load. 

 

Fig. 7 depicts the load−deflection curves obtained with the SHB and ABAQUS elements, 

along with the reference solutions taken from [17]. The NINC and NITER required by all 

elements are reported in Table 4. Overall, one can observe that both the proposed quadratic SHB 

elements and ABAQUS elements show excellent agreement with the reference solutions 

corresponding to the four stacking sequences. Moreover, the NINC and NITER required by the 

SHB elements are relatively equivalent to those involved by ABAQUS elements, which reveals 

the good convergence of the proposed elements. 

 

  

(a) prismatic elements (b) hexahedral elements 

Fig. 7. Load−deflection curves for the cantilever laminated beam. 
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Table 4 

NINC and NITER required by the SHB and ABAQUS elements for the cantilever laminated 

beam. 

Stacking sequence Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

[0º/90º/0º] 
NINC 17 9 18 16 13 18 

NITER 82 50 86 80 63 88 

[30º/-60º/-60º/30º] 
NINC 21 16 23 21 17 24 

NITER 111 83 119 110 90 127 

[-45º/45º/-45º/45º] 
NINC 21 12 24 22 17 21 

NITER 108 80 118 101 92 109 

[90º/0º/90º] 
NINC 23 17 27 26 22 30 

NITER 104 95 138 122 115 147 

 

3.3. Clamped laminated square plate under uniform pressure 

In this nonlinear benchmark problem, a fully clamped laminated square plate is subjected to a 

uniformly distributed pressure, as illustrated in Fig. 8. The laminated square plate is made of four 

plies, which are stacked with the following symmetric sequence [0º/90º/90º/0º]. The length-to-

thickness ratio L t  of the square plate is set equal to 125. The engineering constants of the 

orthotropic material are 6
11 1082821 ×= .E , 6

3322 1083151 ×== .EE , 239130231312 .=== vvv , 

5
231312 101253 ×=== .GGG . Considering the problem symmetry, only one quarter of the plate is 

discretized. In order to compare the numerical results with the reference solutions taken from the 

literature, the predictions are depicted in terms of non-dimensional load−displacement curves, 

which are based on the dimensionless load parameter ( )4

22q L t q E=  and the dimensionless 

displacement tww = , where q  and w  are the uniform pressure and the out-of-plane 

displacement at the central point of the square plate, respectively. Fig. 9 shows the simulation 

results obtained with the SHB and ABAQUS elements, along with the reference solutions taken 

from references [37] and [38], while the required NINC and NITER are listed in Table 5. It can 

be seen that the proposed SHB elements perform very well with respect to the reference solutions, 

which is also the case for the ABAQUS elements, although the C3D15 element requires more 

finite elements in the mesh, thus involving overall a larger number of degrees of freedom. 



20 

 

Moreover, the predicted deflections are achieved with equivalent NINC and NITER for all 

investigated elements, which proves again the good convergence of the proposed SHB elements. 

 

 

Fig. 8. Clamped laminated square plate subjected to a uniform pressure. 

 

  

(a) prismatic elements (b) hexahedral elements 
Fig. 9. Non-dimensional load−displacement curves at the center point for the laminated square 

plate. 

Table 5 

NINC and NITER required by the SHB and ABAQUS elements for the laminated square plate. 

Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

NINC 6 6 6 6 6 6 

NITER 16 18 18 18 18 20 
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3.4. Slit laminated annular plate 

The slit annular plate problem is considered in the literature as a popular benchmark test for 

the performance assessment of finite elements in the framework of large displacements and 

rotations (see, e.g., [12, 17, 39–42]). This annular plate, as illustrated in Fig. 10, is clamped at one 

end, while the other free end is subjected to a line shear load P. The inner and outer radii of the 

annular plate are equal to iR 6=  and 10Ro = , respectively, while the thickness is 030t .= . Two 

stacking sequences with respect to the radius direction are analyzed here for the composite 

laminate, i.e., [0º/90º/0º] and [90º/0º/90º]. The engineering constants of the orthotropic material 

are 7
11 102×=E , 6

3322 106×== EE , 301312 .== vv , 25023 .=v , 6
1312 103×== GG , 

6
23 1042 ×= .G . Fig. 11 reports the load−out-of-plane vertical deflection curves at the corner point 

B of the annular plate, as obtained with the SHB and ABAQUS elements, along with the 

reference solutions taken from [12, 17], while the corresponding NINC and NITER are 

summarized in Table 6. It can be seen that the prismatic SHB15 element shows excellent 

agreement with the reference solutions, which is also the case for the prismatic C3D15 ABAQUS 

element. For the latter, one recalls that three element layers are required to model the three plies 

of the laminated annular plate, while only a single layer is used for the proposed SHB elements. 

Note that a finer mesh is required for the prismatic SC6R ABAQUS solid−shell element in order 

to achieve an accurate solution. As to the hexahedral elements, Fig. 11 reveals that the proposed 

SHB20 element provides the closest predictions, with respect to the reference solutions, along the 

entire loading history, while it requires slightly higher NINC and NITER than ABAQUS 

elements to obtain accurate solution (see Table 6). 
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Fig. 10. Undeformed and deformed configurations of the slit laminated annular plate. 

 

  

(a) prismatic elements (b) hexahedral elements 

Fig. 11. Load−deflection curves at the corner point B for the slit laminated annular plate. 
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Table 6 

NINC and NITER required by the SHB and ABAQUS elements for the slit laminated annular 

plate. 

Stacking sequence Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

[0º/90º/0º] 
NINC 52 29 38 58 29 63 

NITER 261 159 213 260 163 305 

[90º/0º/90º] 
NINC 87 36 60 86 38 81 

NITER 409 215 292 390 213 407 

 

3.5. Pinched laminated semi-cylindrical shell 

A pinched semi-cylindrical shell, subjected to a concentrated force at its free end, is 

considered here to assess the performance of the proposed SHB elements in the context of curved 

composite structures. The geometric dimensions and the boundary conditions of the semi-

cylindrical shell are represented in Fig. 12. Two stacking sequences with respect to the axial 

direction of the semi-cylinder are considered here for the composite laminate, i.e., [0º/90º/0º] and 

[90º/0º/90º]. The engineering constants of the orthotropic material are 5206811 .=E , 

1255173322 .== EE , 30231312 .=== vvv , 6795231312 .=== GGG . Owing to the symmetry, only 

one half of the model is discretized. Fig. 13 depicts the load−vertical displacement curves at the 

loading point A, which are obtained using the SHB and ABAQUS elements, along with the 

reference solutions taken from [42, 43], while Table 7 reports the corresponding NINC and 

NITER. It can be seen that the results obtained with the SHB elements are in excellent agreement 

with the reference solutions along the entire loading history, while the results given by the 

prismatic C3D15 ABAQUS element show some discrepancies with respect to the reference 

solutions at large displacements. As to ABAQUS solid−shell elements (i.e., SC6R and SC8R), 

the latter provide the farthest results with respect to the reference solution. Note also that the 

prismatic C3D15 ABAQUS element requires the highest NINC and NITER to achieve the 

ultimate solution, while comparable convergence is observed for the SHB elements and the 

hexahedral C3D20 ABAQUS element (see Table 7). 
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Fig. 12. Pinched laminated semi-cylindrical shell. 

 

  

(a) prismatic elements (b) hexahedral elements 

Fig. 13. Load−displacement curves for the pinched laminated semi-cylindrical shell. 

 

Table 7 

NINC and NITER required by the SHB and ABAQUS elements for the pinched laminated semi-

cylindrical shell. 

Stacking sequence Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

[0º/90º/0º] 
NINC 41 85 38 30 47 47 

NITER 224 496 213 169 287 302 

[90º/0º/90º] 
NINC 47 105 60 35 59 51 

NITER 254 594 292 187 326 344 
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3.6. Pinched laminated hemispherical shell 

Fig. 14 depicts a free laminated hemispherical shell with a 18º circular hole at its pole. The 

shell is subjected to a pair of alternating forces at 90° intervals. The radius and the thickness of 

this thin hemispherical shell are equal to 10 and 0.08, respectively. This shell is made of a single 

ply of fiber-reinforced laminate, with fiber directions aligned to the circumferential direction. The 

engineering constants of the orthotropic material are (see [44]) 6
11 104620 ×= .E , 

6
3322 100924 ×== .EE , 3130231312 .=== vvv , 6

1312 10537042 ×== .GG , 6
23 10268521 ×= .G . 

Considering the problem symmetry, only one quarter of the shell is discretized. 

The load‒displacement curves at points A and B (see Fig. 14), which are obtained with the 

SHB and ABAQUS elements, are depicted in Fig. 15 along with the reference solution taken 

from [44], while Table 8 provides the corresponding NINC and NITER. Note that the final 

displacements of points A and B, which are of the same order of magnitude as the shell radius, 

indicate the large displacements and rotations involved in this test (see also the final deformed 

shape of the hemispherical shell in Fig. 16). Once again, one can notice the excellent agreement 

between the results obtained with the proposed SHB elements and the reference solution. Note 

also that these accurate results are obtained with NINC and NITER that are quite similar to those 

involved by ABAQUS elements (see Table 8). However, although the adopted meshes 

correspond to converged results, the simulation results given by ABAQUS elements fall far from 

the reference solution, showing the limitations of ABAQUS solid−shell and quadratic solid 

elements in modeling this severe test, which involves strong geometric nonlinearities. 

 

 

Fig. 14. Pinched laminated hemispherical shell. 
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(a) prismatic elements (b) hexahedral elements 

Fig. 15. Load−displacement curves at points A and B for the pinched laminated hemispherical 

shell. 

 

Table 8 

NINC and NITER required by the SHB and ABAQUS elements for the pinched laminated 

hemispherical shell. 

Element SC6R C3D15 SHB15 SC8R C3D20 SHB20 

NINC 9 10 10 14 10 10 

NITER 51 56 73 65 52 75 

 

 

Fig. 16. Undeformed and final deformed shapes of the pinched laminated hemispherical shell. 
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3.7. Hinged laminated cylindrical roof 

Fig. 17 depicts a cylindrical roof with two hinged straight sides (the two other curved sides 

being free), which is subjected to a concentrated load at its center. Two different thicknesses for 

this hinged roof are considered, which correspond to a thick roof with t = 12.7 and a thin roof 

with t = 6.35. Because this nonlinear benchmark test involves geometric-type instabilities (limit-

point buckling), the Riks path-following method together with a fixed arc length is adopted to 

follow the load−displacement curves beyond the limit points. Consequently, the NINC and 

NITER required by all finite elements are not shown for this test (see [42]). Four different 

stacking sequences with respect to the length direction are considered for the composite laminate, 

i.e., [0º/90º/0º], [90º/0º/90º], [30º/-60º/-60º/30º] and [-45º/45º/-45º/45º]. The engineering 

constants of the orthotropic material are 330011 =E , 11003322 == EE , 250231312 .=== vvv , 

6601312 == GG , 44023 =G . Considering the problem symmetry, only one quarter of the 

cylindrical roof is discretized for the stacking sequences [0º/90º/0º] and [90º/0º/90º], while a 

complete model is used in the simulation of the laminates with the stacking sequences [30º/-60º/-

60º/30º] and [-45º/45º/-45º/45º]. It is worth noting that two element layers are required to model 

this cylindrical roof with the ABAQUS linear solid−shell elements (i.e., SC6R and SC8R), since 

the lateral straight sides are hinged on the mid-surface nodes. By contrast, only a single element 

layer is used with the quadratic elements, thanks to the availability of mid-surface nodes in these 

quadratic elements. 

The simulation results in terms of load−vertical displacement curves at the central point A of 

the thick and thin-hinged cylindrical roofs are reported in Figs. 18‒21. From these figures, it can 

be seen that for the prismatic elements, the results obtained both with the proposed solid−shell 

element SHB15 and with the ABAQUS C3D15 solid element are in good agreement with the 

reference solutions taken from [12, 42], while the ABAQUS SC6R solid−shell element provides 

the farthest results. For the hexahedral elements, however, the proposed SHB20 solid−shell 

element provides the closest results with respect to the reference solutions, while the simulation 

results given by the ABAQUS C3D20 solid and SC8R solid−shell elements fall most often far 

from the reference solutions, thus revealing the limitations of these hexahedral solid and 

solid−shell elements in modeling this type of limit-point buckling problem (see, e.g., Figs. 18b, 

21b-d). To summarize, the snap-through and snap-back phenomena, which are exhibited by the 
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Fig. 17. Hinged laminated cylindrical roof. 
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(a) prismatic elements (b) hexahedral elements 

  

(a) prismatic elements (b) hexahedral elements 

Fig. 19. Load−vertical displacement curves at the central point A for the thick laminated 

cylindrical roof (i.e., [30º/-60º/-60º/30º] and [-45º/45º/-45º/45º], with t = 12.7). 
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(a) prismatic elements (b) hexahedral elements 

  

(c) prismatic elements (d) hexahedral elements 

Fig. 20. Load−vertical displacement curves at the central point A for the thin laminated 

cylindrical roof (i.e., [0º/90º/0º] and [90º/0º/90º], with t = 6.35). 
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(a) prismatic elements (b) hexahedral elements 

(c) prismatic elements (d) hexahedral elements 

Fig. 21. Load−vertical displacement curves at the central point A for the thin laminated 

cylindrical roof (i.e., [30º/-60º/-60º/30º] and [-45º/45º/-45º/45º], with t = 6.35). 

 

3.8. Pull-out of an open-ended laminated cylindrical shell 
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31250231312 .=== vvv , 6
231312 104 ×=== GGG . Owing to the symmetry of the problem, only 

one eighth of the cylinder is modeled. 

Note that, due to the strong geometric nonlinearities involved in this benchmark problem, a 

fixed incrementation scheme is adopted instead of the default automatic scheme in order to obtain 

accurate results. Consequently, the NINC and NITER required by all finite elements are not 

shown for this test. The simulation results in terms of load−radial displacement curves at points A, 

B and C (as depicted in Fig. 22), which are obtained with the SHB and ABAQUS elements, are 

reported in Figs. 24 and 25 along with the reference solutions taken from [44, 45]. Once again, 

the proposed SHB elements successfully pass this benchmark test as compared to the reference 

solutions, which is also the case for the prismatic C3D15 ABAQUS element, although the latter 

requires two element layers in the thickness direction. For the hexahedral C3D20 ABAQUS 

element, however, some differences with respect to the reference solutions may be observed, 

especially in the transition zone marked by the snap-through point. As to the ABAQUS solid–

shell elements (i.e., SC6R and SC8R), the latter provide the farthest results as compared to the 

reference solutions (see Figs. 24 and 25). 

 

 

Fig. 22. Geometry and boundary conditions for the open-ended laminated cylindrical shell. 
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Fig. 23. Undeformed and final deformed shapes of the open-ended laminated cylindrical shell. 

 

  

(a) prismatic elements (b) hexahedral elements 

Fig. 24. Load−radial displacement curves at points A, B and C for the open-ended laminated 

cylindrical shell with the stacking sequence [0º/90º]. 
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(a) prismatic elements (b) hexahedral elements 

Fig. 25. Load−radial displacement curves at points A, B and C for the open-ended laminated 

cylindrical shell with the stacking sequence [90º/0º]. 
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presented in this work demonstrate the good capabilities of the SHB elements and their wide 

prospective applications in the simulation of 3D laminated composite structures with only a 

single element layer through the thickness. 
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