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Abstract. In this paper, we investigate the influence of idgens in the design and
implementation parameters on the damping propediesultilayer viscoelastic structures.
This work is based on a numerical approach, whisbsurecently developed solid—shell
elements that have been specifically designedhimtodeling of multilayer structures. The
originality in the current study lies in the anadysf variation in the design parameters, which
could be of geometric or material type. Indeech@lgh several models have been proposed
to study variability, they remain mostly complexingplement. Our approach is rather simple,
and is based on the uncertainty on the actual safiieseveral parameters in some well-
defined intervals. The developed method is appieethe vibration modeling of multilayer
structures, with elastic faces and viscoelastice coraterial. The resulting problem is
discretized by using quadratic solid—shell finiteneents. To solve the associated nonlinear
equations, we adopt the method that couples theotopy technique to the Asymptotic
Numerical Method (ANM) as well as the Automatic ferentiation (AD) and path
continuation. The obtained results provide usdfifbrimation on the error tolerance margin
that could be allowed without compromising struatumtegrity.

Keywords. Multilayer structures, Sensitivity analysis, $eishell finite elements, Vibrations,
Viscoelasticity, Asymptotic numerical method.

1. Introduction

Vibration and noise control is of crucial importano a number of engineering domains.
Indeed, vibration issues may be encountered innaatige industry, aeronautics, navy, civil
infrastructures, etc. and, in many situations, tbayse discomfort or system dysfunction and
may even lead to failure of structures. To reduiteations, thus avoiding their detrimental
effects, one of the most effective ways is to ipooate viscoelastic materials. The latter are
generally used in various forms, ranging from senpkcoelastic sandwich structurds?] to



more complex composite structures (honeycordbd][ viscoelastic inclusions embedded in
an elastic matrixy, 6], etc.). Moreover, viscoelastic materials are tiggight and, as such,
they contribute to weight reduction for the struetuin which they are used. It is therefore
important to precisely identify the characteristafsviscoelastic materials as well as their
damping properties for their proper implementatibine key damping features of viscoelastic
structures are closely related to the mechanicatagteristics (Young’s modulus, Poisson’s
ratio) of the constituent materials, as well ashi® geometric dimensions (layer thicknesses,
structure length and width, aspect ratios, et¢,)8]. Also, when the viscoelastic faces of
sandwich structures are made of laminates, thdtirggalamping properties are linked to the
fiber orientation angles7[ 9]. In the related literature, there have been s#vstudies
dedicated to the calculation of the damping progerof viscoelastic sandwich structures.
Earlier contributions to the field were restrictea viscoelastic sandwich structures with
isotropic layers 10-13. Subsequent works focused on the modeling ofo@kstic sandwich
structures with laminated faces, since laminatesbsamanufactured for a specific neéd-|
16]. The numerical tools developed in these varioask® are aimed at predicting the main
characteristics of viscoelastic structures, in prideassist engineers in the design process.
However, in the manufacture stage of viscoelastiactires, it is quite common that
designers face issues related to uncertainty inntbehanical characteristics and geometric
dimensions of the structure under design. In géntwa types of uncertainties are usually
known to affect the manufacture of viscoelasticdsanh structures, which are sometimes
designated as imperfections. The first type of éhiesperfections generally results from the
manufacturing process of these structurgg|, [ meaning potential errors made on their
geometric dimensions (e.g., thickness of layemsgtle width, aspect ratios ...). The second
source of variation arises from the mechanical ipatars of the constituent materials, as
identified in the literature (e.g., aluminum Youngdulus taken equal to 70.3 GPa ][
while identified to 69 GPa inlP]). Because such imperfections directly affect daenping
properties of structures, it is therefore of majoportance to quantify the impact of these
uncertainties, in order to guaranty optimal dampohgracteristics and proper final in-use
properties. To this end, several studies have pegposed in the literature, among which the
contribution of Hu et al.40], who proposed a comprehensive review on sandsficicture
modeling theories. More specifically, in Hu et[&l0], relevant comparisons have been made,
which involve various kinematic approaches for s@ol structures, through a study of the
influence of different parameters, including théias of core to face thicknessh.(/ h,),

slendernessl(/h), and Young's modulusK,/ E, ). More recently, Hamdaoui et aR]]

proposed a study where the Modal Stability Procedi¥SP) has been combined with the
Monte Carlo Simulation (MCS). Although a numberedfisting methods are effective for
variability analysis, they are essentially basedaatiscrete calculation and, hence, are time
consuming. The complexity of the strongly nonlinesyenvalue problems, which result from
the modeling of viscoelastic sandwich structureguires the development of new numerical
methods that are both capable of continuously sglthe resulting nonlinear problem and
computationally efficient. In this context, wortrentioning is the work of Duigou et aR7],
who proposed two iterative algorithms to solve nodr eigenvalue problems. Their method
has been made more robust and generic by the udtiod of Automatic Differentiation (AD)



[23-25. Despite its robustness, this method remainstdichsince it allows computing only
one pair of solutions at a time, namely the nattreuency and the loss factor. The use of
such an approach to solve our problem would reqooesiderable CPU times, as the
associated numerical technique would have to bé&eapmcrementally over the whole range
investigated.

In the current work, we present finite element niedmsed on the solid—shell approach,
which have been specifically designed for the madelof multilayer structures. The
originality in the current study lies in the anadysf variation in the design parameters, which
could be of geometric or material type. This apphos rather simple, and is based on the
uncertainty on the actual values of several pararsah some well-defined intervals. The
developed method is applied to the vibration maaebf multilayer structures, which consist
of elastic faces and viscoelastic core materiaé fdsulting problem is discretized by using
solid—shell finite elements, which have been dgwedbin 6, 27] and recently extended to
viscoelastic sandwich structures it]. For the analysis of variability with regard taaen
parameter, the associated nonlinear eigenvaludgmmotbepends both on the frequency and on
the selected parameter. Also, the range of vanaifceach selected parameter is restricted to
an interval, which will be referred to as the stuilerval. In order to continuously solve the
corresponding nonlinear equations, we adopt théadethat couples the homotopy technique
to the Asymptotic Numerical Method (ANM) as well tie Automatic Differentiation (AD)
and path continuation procedure (see, e.g.,2B]). The obtained results provide useful
information on the error tolerance margin that dobk allowed without compromising
structural integrity.

2. Formulation and discretization of the problem

2.1. Governing equations and their discretization

In this work, we consider the free vibration praoblef a multilayer structure, as illustrated
in Fig. 1. The virtual work principle governing the equiiilom of such a structure is given as
follows:

J'V(U:Je‘+pUB5u)dv:O, 1)

where o, & and U are, respectively, the stress and strain tensord, the generalized
displacement at a point within the body of the viscoelastic structure, while the density o
the material is denoted by. The stress and strain tensogs and & as well as the

displacementu can be expressed as harmonic time functions.



Viscoelastic laye Elastic layer

Fig. 1. Sandwich plate with elastic faces and viscoelasire material.

The viscoelastic damping behavior is accountedHosugh the stress—strain constitutive
law, which can be written in the form:

g=C(e):e with C{EC?YiC b, @)

where CR(«) and C'(w) are, respectively, the tensors characterizingetiergy storage and
dissipative behavior of the viscoelastic material.

Combining Egs. ) and @), and using a finite element discretization, théural vibration
problem of viscoelastic structures can be writtethe following form:

[K(@)-aM [{u} =0, 3)

whereK and M denote, respectively, the stiffness and mass xnatrihe structure, and the

complex nodal vibration eigenmode is denotedlby The above matrices are obtained by
finite element discretization using the solid—shelements SHB20 and SHB15. The
formulation of these two solid—shell elements igefty outlined hereafter, the interested
reader may refer t&[, 13] for the complete details.

2.2. Solid—shell finite element formulation
2.2.1. Kinematics and interpolation

The above-described vibration problem is discretiasing the solid—shell finite elements
SHB20 and SHB15, originally proposed by Abed-Merainal. P7]. These SHB20 and
SHB15 elements denote a twenty-node hexahedralesliemnd a fifteen-node prismatic
element, respectively. Based on a fully three-disr@mal approach, these elements have only
three displacement degrees of freedom per nodeerbiwless, to improve the performance of



these solid—shell elements, and to provide therh saime desirable shell features, a number
of enhancements are introduced within their formaoihes based on the assumed-strain method
(ASM). In particular, a special direction is choseéesignated as the “thickness”, normal to
the mean plane of these elements, along whichradedmed number of integration points are

arranged. Also, an in-plane reduced-integratioa islused, wittdxn _ integration points for

int

the SHB20 element andxn, for the SHB15 (see, e.g., Fig, in the particular case when

the number of through-thickness integration poists,, =5).
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Fig. 2. Schematic representation for the reference gegroéthe SHB20 and SHB15
elements as well as for the location of their inéign points in the case when the number of

through-thickness integration pointsris =5.

For the SHB20 and SHB15 elements, the spatial comies X, are related to the nodal

coordinatesx;, using the conventional quadratic shape functiaagpllows:

x =% N, (&n.7), (4)

wherei represents the spatial directions and ranges fram3; while J stands for the node
number, which ranges from 1 to 20, for the SHB20r&nt, and from 1 to 15 for the SHB15.

Likewise, the displacement field is related to the nodal displacements using the same
guadratic shape functions:

U=y, N, (677.0). (5)

Note that in Egs.4) and 6) above, the convention of implied summation over tepeated
index J has been adopted.



2.2.2. Discrete gradient operators

For both elements SHB20 and SHB15, the correspgndiscrete gradient operat{)B]
can be derived in the following compact form:

b +h, ] 0 0
0 by +h, 7, 0
0 0 b] +h, p,
B= a3 a '
by +h, 2, B+h g, O (6)
by +h, »; 0 bl +h, 7,
0 b; +h, 2, b +h, )

where b' , h,; and . have been fully detailed i2]. Note again that, in Eq6) and in

what follows, the convention of implied summatioveo the repeated inde& is adopted,
with a ranging from 1 to 16, for the SHB20 element, adnf1 to 11 for the SHB15.

The discrete gradient operator given by Ej.dllows us to compute the stiffness matrix
for each of the SHB20 and SHB15 solid—shell elesentthe same way, the corresponding
mass matrices, involved in the vibration problenvegaed by Eg. 3), are easily computed
using the classical shape functions associated thi#se quadratic elements. Once the
governing equations have been discretized in tha fuf Eq. @), it is relevant to develop an
effective method for solving the associated nomlir@oblem, which will be the object of the
next section.

3. Numerical resolution method

The simplest approach to solve the above-descmiogdinear governing equations is to
use the incremental method, which consists in peifty computation for each value of the
design parameter in its predefined range of vamatHowever, such an approach has two
main drawbacks. On the one hand, it requires a hugmunt of CPU time, due to the number
of points to be chosen in the analysis range fmoge efficient result. On the other hand, this
method may not distinguish singular points that Motepresent optimums. To overcome
these limitations, the generic numerical resolutrorthod, which has been proposed by
Akoussan et al.7] and applied to thickness sensitivity analysisadepted here. This method
consists in recasting the frequency-dependent meauli eigenvalue problem, as defined by
Eq. @), into a nonlinear eigenvalue problem dependinth mm the frequency and on the
modeling parameter (see Eq) (below). The new resulting problem is then conbunsly
solved using a method that couples the homotopyntgue to the ANM as well as the AD
and path continuation procedu@sf23.

[K(wp)-e#M(p) [{u}=0,  pOI. (7)



In this Eq. {), p represents the selected modeling parameter, whasation will be

analyzed, and is the interval in which this parameter will vafgenoted hereafter as the
study interval). Generally, the stiffness and massrices involved in Eq.7f are expanded in

the form of Eq. ) below, in order to avoid differentiation of largeze matrices, which would

give rise to computational memory issues and suobatacomputation times during the
calculations.

[K(A,p)]ilE;q(A, oK, ]= £, p[K,]

L 8)
[M(P)] =2 Eu(P[M]= B(A[M, ],

where E;q(/l, p) and E_,(p) are analytical functions of the modeling paramgperand the

associated constant matrices are dengiéd] and [M |, respectively. Adopting such a

transformation, the differentiation of the stiffseand mass matrices simply reduces to the
differentiation of the analytical functiorE;q(/l, p) andE,(p).

In what follows, the main lines of this solutioropedure will be described.

3.1. Residual problem

To solve the nonlinear eigenvalue problem givenBuoy (7), using the generic method
developed in 7], the problem is first transformed into a resideajenvalue problem by

setting A =«’ and applying the decomposition depicted abovettier stiffness and mass
matrices, which gives:

R(U,A,p)=| E;(A, DK, =AE(PM ,J{U} =0,  pO1. (9)

A perturbation techniqué@ p is then applied to the modeling parameger The eigenpair is
additionally developed as Taylor's expansion®@f, truncated at a user-defined ordéct

U,A)(p+0p) =Z(5p)”(Un,/‘n)( P

1 10" )
— Ly 30\ ()=
U AP = (VA7) (B =3

(U.4) (p),

The residual problem is similarly expanded into ayldr series form, by introducing the
Taylor expansion of the eigenpdly, A) as follows:



R@Kmﬁﬂﬁp+5@=§X5W“AU(Qﬁﬂi9=0

R, (U(P.A(P), P) :ﬂpff

(11)

(U(P.A(D, B

By identifying the terms of same power dp, the residual problem is sent into a recurrence
form, which needs to be solved for each valueafo<n< N)

R, :{ Ropozld} U,=0
(12)
R, :{ RlLJl:IdAl:O} U, +{ Ry z0as J} A, +{ Riy,-04,- } =0, nzl
3.2. Resolution of the residual problem at order O
The residual problem at order=0 is written explicitly as:
Ry (Us Ao B) = Ropyas {U =[E (Ao )K= AE(BM JU =0, (13)

which is a nonlinear frequency-dependent eigenvatablem, since the analytical function to
be differentiated depends on the unknodyn Another difficulty in this Eq.13) is the choice

of the departure value for the modeling parametéich varies within the study interval .
This departure value can be chosen as being ther inmpind or the lower bound of the study
interval. This choice should however be motivatgdabpreliminary study, since in some
cases, choosing the upper bound as departure Yatuthe modeling parameter allows
reducing the computation times as compared to dse when the lower bound is chosen. In
practice, the Young modulus of the viscoelastietayf the sandwich structure is decomposed
into two parts:

E, (A p)=E(0. p+ E(4 1, (14)

where E; (0, p) represents the delayed elasticity of the core.

Let us take as appropriate departure value fomthdeling parametep = ,. The residual
problem given by Eq.13) becomes:

Ro(Uos Ao 1) = (E; (0, Po) + By (Aoy ) K g =AoE( M [{U } =0. (15)

This residual problem can be solved by any numenehod dedicated to solving nonlinear
frequency-dependent eigenvalue problems. A reptatses selection of these methods has
been presented and compared 26][ In the current work, the above nonlinear eigénea
problem, which allows computing the first eigenp@ik, A,), is solved by using the method
that couples the homotopy technique to the Asynptdtimerical Method as well as the
Automatic Differentiation and path continuation @edure. This method consists in



transforming the residual problem at orderinto a new problem, which is split in turn into
two sub-residues:

Ro (Ui Ao Po) =R, (V .y, pp,@=1 =0
Ry (V. V. py,8) =S(V y)+aT (V,y) =0, a[ 0,1

S(V.1) =[E; (0. R)K = VEo( R)IM |V (16)
T(V.Y)=E(rm)[K, ]V,

where a is the homotopy parameter. The new functions arkthowns are then expanded in
Taylor’s series of the homotopy paramegey which are truncated at the ordir. Inserting

their expressions into the new residual problemallows deriving a generic linear system to
be implemented into the DIAMANT Toolbox. This geigeform is obtained using the
derivative chain rule with suitable initializatiom, order to first compute the unknown by
the following expression:

Y= v [{S'V =0= 0}+a{TiM=0y.=o}+Ti-J
. tVO[{ S]M:Oyl:]}+ a{Tm:o,/l:}] :

and to use the obtained value for this unknownhmm following system to get the second
unknownV, :

{A voHvi}:{-{Sw}-a{TaMw}‘{Ti—l}}, 1=1,2,..N, (18)

tVoo)( 0

i=1,2,..N, (17)

where A :[E;(O, K, - VE.(RM g]+ ak (v, Q)[K g] is the linear tangent matrix and

X is the Lagrange multiplier. The iterative solutiaﬁ\ﬂ,y) is then determined using the

continuation procedure untd > 1. Finally, the eigenpair solution of the residuadiem at
order O is computed by:

(Ug, o) i (19)

i=0

More details about this resolution procedure cafobad in P4, 30].

3.3. Resolution of the residual problem at order n

Once the first eigenpai(Uo,/lo) has been obtained by solving the residual prokdém
order O, the residual problen® is solved at each order to determine the other eigenpair

solutions (U,,A,) of the series. The residual problem given by B&) (s not well defined,



since it represents one equation with two unknoWpsand A,. To solve this equation, the
mode orthogonality condition (see Eq. (20) belosvadided:

‘U, (U -U,)=0. (20)

From the two Eqs.1@) and @0), a generic system is built at each iteration

Kt Uo U, _ _{R11=0 1=J}/]“_{R”n=° n:(}
{tuo OH}(}—{ bh=04 : Vn=04 } (21)

Before solving this system, the value Af is first calculated by using the following generic
Eq. 22):

. ~'Uo| Rup0sm0) | 22)

" Uy Ryonn)

In the generic system given by EQ1L), K, :[(E;(O, R)+ B Uy, p_.,))Kg—AOEm( M g]

represents the linear tangent matrix of the seAeshe end of each series, the convergence
radius is evaluated using a precision parametgprovided by the user (see E83) below),
which will allow the modeling parametgy to be updated:

( U] J (23)
N

This update is achieved in two different ways, adow to the choice of the departure value
for the modeling parametep. Hence, when the departure value is taken to beufiper

bound of the study interval, the modeling paramistepdated as follows:

op=

=R -op (24)

otherwise, when the departure value is taken taheelower bound, the update of the
modeling parameter is achieved as follows:

=ptap. (25)

In case the update EQ4) is used, if the convergence radius computed hy(ZR) does not
allow covering the study interval, a new branclsefies is built, and its starting values are
obtained from the former series as follows:

UO’A i n’ n ! (26)

n=0

10



otherwise, when the update E@5) applies, the new series, when required, is lgilbg the
following stating values:

(Ups ) = (30)" (U, ). @)

n=0

Finally, the damping properties, namely the damipequencyQ and the loss factop, are
obtained from the eigensolutioh as follows:

o =Q*(1+in) = AR +iA' =4

4. Resultsand discussions

The interest and the effectiveness of the proposederical tool are shown in this section
through a set of representative benchmark testsalFsubsequent analyses, we consider as a
reference problem a sandwich plate with elastiedaand viscoelastic core material. This
sandwich plate is clamped at all of its four edgesillustrated in Fig3. The viscoelastic core
is made of ISD112-27°C. The properties of the agldphaterials, both in the elastic layers
and in the viscoelastic core, are reported in Tabl&he viscoelastic behavior of the core
material is described, based on generalized Majsamibdel, by:

=1 C()—IQJ

G(w) =G{1+ i j (29)

where G, is the shear modulus of the delayed elasticityilevthe remaining parameters
(A,,Q,) are reported in Tab2

4 h=0.75 mm

T h=0.25 mm
T h=0.75 mm

Fig. 3. Sandwich plate with the initial geometric propesti
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Table 1. Material properties of the constituent materials.

p, =2766 Kgm®
Elastic layers E, =69.0 GPa

v,=0.3

p., =1600 Kgn

Viscoelastic layer  E;=1.49 MPa
v, =0.49

Table 2. Viscoelastic parameters of the ISD112-27°C madteria

j A, Q(rad.s")
1 0.746 468.7

2 3.265 4742.4
3 43.284 71532.5

The aim of this study is to assess the influenceaoifation in a number of parameters on
the damping properties of the above-described smhdstructure. In this analysis, we will
limit ourselves to five main distinct parametersasated with the viscoelastic core layer:

- the thickness variation,

- the Young modulus variation,

- the Poisson ratio variation,

- the density variation,

- the temperature variation.

For the sake of comparison, all of the subsequemtlations are performed using three
different finite element discretizations. The lattensist of the proposed quadratic solid—shell

elements SHB15 and SHB20, with 15 and 20 nodepgeotisely, as well as the standard
guadratic 20-node solid element HEX20. For allteg simulations, the mesh nomenclature

adopted for the hexahedral elements is as folloWs; x N,x N,) elements, whereN,
denotes the number of elements in the length dimectN, is the number of elements in the
width direction, and N; is the number of elements in the thickness diwectiFor the
prismatic element, however, the adopted mesh nolatene is (le N, x N3)><2, where the

multiplication by 2 is due to the subdivision ofchaoriginal hexahedron into two prisms.
Note also that, for the proposed solid—shell elem&HB15 and SHB20, two integration
points along the thickness direction are sufficiéat the following computations, as the
corresponding benchmark tests do not involve nmat@anlinearities. However, it must be

12



noted that, when nonlinear material behavior modater into play, more through-thickness
integration points are required (for instance, fibeough-thickness integration points are
recommended when elasto-plastic constitutive maalelsised, see, e.g., refereri)]

4.1. Variation of core thickness

For this first analysis, the incremental methodexceptionally used, due to the mesh
dependence of the problem. Indeed, the fully 3Mdierlement modeling adopted here does
not allow for an analytical expression for the kmess dependence of the problem, as can be
done in some particular situations (e.g., an exarnpkuch an analytical expression has been
achieved within a 2D finite element modeling franoekv[7]). This first test will also enable
us, among other things, to bring out some limitagi@f this finite element method, which
have been already mentioned before.

We investigate the influence of the core thickneh@s:h%iSO% on the damping

properties of the sandwich structure. Thirty poinése been taken to cover the interval of
study. The results are presented in &ifpr the three different finite element discretiaat
discussed above. In terms of finite element peréoree, it can be observed that the proposed
solid—shell elements are generally more efficiastcompared to the standard solid element
HEX20, especially the hexahedral SHB20 elementclwinequires coarser meshes (i.e., four
times less elements) for comparable accuracy. Tiaéysis of the curves reported in F#.
also shows that the frequencies decrease slightly thie increase in the core thickness.
Indeed, this frequency reduction is of 14% for tinet mode, and of 13% for the third one.
There is also a decrease in the loss factors asotieethickness increases. For the first mode,

the loss factor increases very slightly to a chiekness of bouh, =0.14, before decreasing
almost linearly. The loss factors for the second tnird modes decrease more noticeably (a
decrease ranging from about 14% to 17%). From dhelysis, it can be concluded that a
larger thickness for the viscoelastic core layeesdoot necessarily enhance the damping
properties as one might think.

Moreover, it comes from this first analysis that thcremental method, although simple to
implement, does not make it possible to identifigsiar points.

13
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Fig. 4. Sensitivity of the damping properties to the dhiekness.

In all of the following analyses, it is the resadut method presented in sectidrthat will
be used.

4.2. Variation of the Young modulus of the core material

In this subsection, we analyze the influence oD% %ariation on the Young modulus of
the viscoelastic core material on the damping ptagee of the sandwich structure. For this
purpose, Eq. 7 can be rewritten in the followingyo

[Ke+Ko(wEg)-e#M J{U} =0, E.O1=|Eg,E ]
whereE; = 0.%E, andg. = DOE.

(30)

One of the main benefits brought by the new nuraénmethod is that the user only needs to
define the matriceX ,, K., M, the boundsk; and E; of the investigated modeling

variable, as well as the desired precisibnAs outputs from the analysis, the user obtaires in
straightforward way the damping parameter cur¢€s.) and7(E.) .

The results plotted in Figb show a more or less significant increase in thegag
parameters. Indeed, this increase is quasi-lineathie first three frequencies (21% for the
first frequency, and 16% for the third frequendn the other hand, there is a very marked
increase in the loss factors of the three modessiyated. This increase ranges from 72% for
the first mode to 105% for the third mode. Overtiis analysis reveals that the damping
parameters increase with the Young modulus of theoelastic core material.
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Fig. 5. Sensitivity of the damping properties to the Youmgdulus of the core material.

4.3. Variation of the Poisson ratio of the core material

Here, the effect of the Poisson ratio of the vitastec core material on the damping
properties of the sandwich structure is investidatéhe interval of study is set as follows:

v Ul :[0.1, O.E}. For this analysis, Eq7) can be rewritten as:

[Ke+K(wve)-aM [{u} =0, v.OI=[0.1,04. (31)

The analysis of the curves plotted in Fégeveals a relatively small decrease in the damping
parameters. Indeed, this reduction is quasi-linearg quite weak for the first three
frequencies (around 5%). With regard to the los$ofa, we observe a monotonous decrease

until V. =0.48, followed by a slight increase. Overall, withiretinterval of analysis ranging

between the above-defined two bounds, the losorfast reduced by 9% for the first
frequency, and 13% for the third one.

From this analysis, one can conclude that the mmam@mpressible the core material, the
less effective the corresponding damping.
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Fig. 6. Sensitivity of the damping properties to the Passatio of the core material.

4.4. Variation of the density of the core material

This fourth type of analysis is concerned with theestigation of the impact of density
variation, within the intervajo, +50%, on the damping properties of the sandwich strectu

For this analysis, Eq7) is rewritten in the form:

[KR+KC(w)_a)2(MF+pCM C)]{U}=O, p Ol =[,0q,pcj
where p. = 0.%p. ando. = 1¥Ho.

(32)

The results of this study, which are depicted m Fj reveal a slight variation of the damping

parameters. Indeed, the curves plotted in Fighow a very small linear decrease in both the
frequencies and the loss factors for the firstehmodes investigated. This reduction is of
about 4% for the first three frequencies, and @ual2% for the corresponding loss factors. It
can be concluded that the reduction in the massityesf the viscoelastic core material has a
very small impact on the damping capabilities & tiost structure. This result may reveal
useful for the design of lightweight structures, ilwhmaintaining effective damping

properties.
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Fig. 7. Sensitivity of the damping properties to the dgnsf the core material.

4.5. Influence of temperature variation

This last test is devoted to the analysis of tliiémce of the variation of the temperature
of the viscoelastic core material on the dampirapprties of the sandwich structure. For the
sake of simplicity, it will be assumed that the isdon of temperature only affects the
viscoelastic layer. The analysis is carried outdanodeling parameter (here the temperature)

ranging in the interval :[—63°;87°] . In this special case, Eqgf)(can be rearranged in the

following form:
[Ke+Ko(wT)-aM[{u} =0, T.01=[-63,8"]. (33)

The viscoelastic modulus of the ISD112 materialiclwhtakes into account the double
frequency-temperature dependence, is given byollening relations (see3[l]):
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EC(MTC):2(1+VC)[|31+ B{lJ, Eé[icg:oj_ +[iaTa)j_ J]

B;
with:
Iog(aT) :a(%—%] 2.30{%— bj |0§{TTZJ (?bo—%— %Zj( T- 'g)
where:

B, =0.4307 MPa;B, = 1200 MPaB,= 1543000;
B, =0.6847; B, = 3.241;B, = 0.18

T, =290 K; T, = 290 K; T, = 360 K;S, = 0.05959K ;
S, =0.1474 K*; S, = 0.009725 K

2
1 1 1 1
CA:[ j ;CB:( __j; CC:SAL_ %z;

(34)
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Fig. 8. Sensitivity of the damping properties to the terapge of the core material.

The simulation results relating to the influencet@perature are reported in F&j. A
decrease in frequencies over the entire intervabgerved, whereas the loss factors increase
to a peak value, before decreasing beyond thid.limdeed, the damping parameters remain
almost unchanged for temperature values lower tB&@, which corresponds to the
temperature range where the viscoelastic coreorefr and rigid. This also explains the high
values for the frequencies and quasi-zero valuether loss factors, which describe the

18



damping properties. From 0°C, the core in ISD112eni&l becomes more viscous, which
very rapidly leads to an increase in the loss facémd a decrease in the frequencies, since the
rigidity of the structure drops. Beyond 53.4°C, thecoelastic core material becomes less and
less viscous and the damping capability beginaltoThis phenomenon explains the decrease
in the loss factors (see Fig). As to the frequencies, the latter stabilize tasatheir lowest
values, as the contribution of the viscoelasticectar the rigidity of the structure becomes
guasi constant.

The results of this analysis of temperature eféeet particularly interesting in the search
for optimal damping, which is identified here ateamperature of 53.4°C for this specific
configuration of sandwich structure.

5. Conclusions

In the current contribution, the sensitivity anadysf the damping properties of a sandwich
plate with viscoelastic core has been carried ouafselected set of representative modeling
parameters. The sandwich structure has been modsledsing newly developed finite
elements of solid—shell type, which have been shtovibe more efficient for the same
accuracy, as they require less degrees of freedorthé analysis, compared to conventional
finite elements with equivalent kinematics. To sothie resulting highly nonlinear problems,
a generic method has been designed, based on yinepfatic Numerical Method coupled to
the homotopy technique, which has been automatdd the help of the Automatic
Differentiation within the DIAMANT approach. Thes#oices are motivated by the various
advantages afforded by the proposed numerical &sotompared to the classical incremental
method. In addition, the proposed method is noy dast and effective, but it also allows
potential singular points to be located with moceusacy. The analysis results highlight the
sensitivity of the damping properties to the vasidactors investigated, namely the thickness
of the core material, its Young modulus, its Paissatio, its density, and its temperature.
This sensitivity study also allows the more infltishmodeling parameters to be identified,
which could be advantageously used in the desigiigbfweight structures with improved
and optimal damping properties.

In future work, it would be interesting to consid@rious combinations involving several
modeling parameters, in order to further optimize final damping properties of multilayer
viscoelastic structures. We also propose that tferts of imperfections at the interfaces
between the different layers be taken into accdordllow more realistic results. Another
important point would consist in extending the eatrstudy to active control, by means of
piezoelectric materials.
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