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Abstract. In this paper, we investigate the influence of deviations in the design and 
implementation parameters on the damping properties of multilayer viscoelastic structures. 
This work is based on a numerical approach, which uses recently developed solid–shell 
elements that have been specifically designed for the modeling of multilayer structures. The 
originality in the current study lies in the analysis of variation in the design parameters, which 
could be of geometric or material type. Indeed, although several models have been proposed 
to study variability, they remain mostly complex to implement. Our approach is rather simple, 
and is based on the uncertainty on the actual values of several parameters in some well-
defined intervals. The developed method is applied to the vibration modeling of multilayer 
structures, with elastic faces and viscoelastic core material. The resulting problem is 
discretized by using quadratic solid–shell finite elements. To solve the associated nonlinear 
equations, we adopt the method that couples the homotopy technique to the Asymptotic 
Numerical Method (ANM) as well as the Automatic Differentiation (AD) and path 
continuation. The obtained results provide useful information on the error tolerance margin 
that could be allowed without compromising structural integrity. 

Keywords: Multilayer structures, Sensitivity analysis, Solid–shell finite elements, Vibrations, 

Viscoelasticity, Asymptotic numerical method. 

 

1. Introduction 

Vibration and noise control is of crucial importance in a number of engineering domains. 
Indeed, vibration issues may be encountered in automotive industry, aeronautics, navy, civil 
infrastructures, etc. and, in many situations, they cause discomfort or system dysfunction and 
may even lead to failure of structures. To reduce vibrations, thus avoiding their detrimental 
effects, one of the most effective ways is to incorporate viscoelastic materials. The latter are 
generally used in various forms, ranging from simple viscoelastic sandwich structures [1, 2] to 
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more complex composite structures (honeycombs [3, 4], viscoelastic inclusions embedded in 
an elastic matrix [5, 6], etc.). Moreover, viscoelastic materials are lightweight and, as such, 
they contribute to weight reduction for the structures in which they are used. It is therefore 
important to precisely identify the characteristics of viscoelastic materials as well as their 
damping properties for their proper implementation. The key damping features of viscoelastic 
structures are closely related to the mechanical characteristics (Young’s modulus, Poisson’s 
ratio) of the constituent materials, as well as to the geometric dimensions (layer thicknesses, 
structure length and width, aspect ratios, etc.) [7, 8]. Also, when the viscoelastic faces of 
sandwich structures are made of laminates, the resulting damping properties are linked to the 
fiber orientation angles [7, 9]. In the related literature, there have been several studies 
dedicated to the calculation of the damping properties of viscoelastic sandwich structures. 
Earlier contributions to the field were restricted to viscoelastic sandwich structures with 
isotropic layers [10-13]. Subsequent works focused on the modeling of viscoelastic sandwich 
structures with laminated faces, since laminates can be manufactured for a specific need [14-
16]. The numerical tools developed in these various works are aimed at predicting the main 
characteristics of viscoelastic structures, in order to assist engineers in the design process. 
However, in the manufacture stage of viscoelastic structures, it is quite common that 
designers face issues related to uncertainty in the mechanical characteristics and geometric 
dimensions of the structure under design. In general, two types of uncertainties are usually 
known to affect the manufacture of viscoelastic sandwich structures, which are sometimes 
designated as imperfections. The first type of these imperfections generally results from the 
manufacturing process of these structures [17], meaning potential errors made on their 
geometric dimensions (e.g., thickness of layers, length, width, aspect ratios …). The second 
source of variation arises from the mechanical parameters of the constituent materials, as 
identified in the literature (e.g., aluminum Young modulus taken equal to 70.3 GPa in [18], 
while identified to 69 GPa in [19]). Because such imperfections directly affect the damping 
properties of structures, it is therefore of major importance to quantify the impact of these 
uncertainties, in order to guaranty optimal damping characteristics and proper final in-use 
properties. To this end, several studies have been proposed in the literature, among which the 
contribution of Hu et al. [20], who proposed a comprehensive review on sandwich structure 
modeling theories. More specifically, in Hu et al. [20], relevant comparisons have been made, 
which involve various kinematic approaches for sandwich structures, through a study of the 

influence of different parameters, including the ratios of core to face thickness (/c fh h ), 

slenderness ( /L h), and Young’s modulus ( /c fE E ). More recently, Hamdaoui et al. [21] 

proposed a study where the Modal Stability Procedure (MSP) has been combined with the 
Monte Carlo Simulation (MCS). Although a number of existing methods are effective for 
variability analysis, they are essentially based on a discrete calculation and, hence, are time 
consuming. The complexity of the strongly nonlinear eigenvalue problems, which result from 
the modeling of viscoelastic sandwich structures, requires the development of new numerical 
methods that are both capable of continuously solving the resulting nonlinear problem and 
computationally efficient. In this context, worth mentioning is the work of Duigou et al. [22], 
who proposed two iterative algorithms to solve nonlinear eigenvalue problems. Their method 
has been made more robust and generic by the introduction of Automatic Differentiation (AD) 
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[23-25]. Despite its robustness, this method remains limited since it allows computing only 
one pair of solutions at a time, namely the natural frequency and the loss factor. The use of 
such an approach to solve our problem would require considerable CPU times, as the 
associated numerical technique would have to be applied incrementally over the whole range 
investigated. 

In the current work, we present finite element models based on the solid–shell approach, 
which have been specifically designed for the modeling of multilayer structures. The 
originality in the current study lies in the analysis of variation in the design parameters, which 
could be of geometric or material type. This approach is rather simple, and is based on the 
uncertainty on the actual values of several parameters in some well-defined intervals. The 
developed method is applied to the vibration modeling of multilayer structures, which consist 
of elastic faces and viscoelastic core material. The resulting problem is discretized by using 
solid–shell finite elements, which have been developed in [26, 27] and recently extended to 
viscoelastic sandwich structures in [13]. For the analysis of variability with regard to a given 
parameter, the associated nonlinear eigenvalue problem depends both on the frequency and on 
the selected parameter. Also, the range of variation of each selected parameter is restricted to 
an interval, which will be referred to as the study interval. In order to continuously solve the 
corresponding nonlinear equations, we adopt the method that couples the homotopy technique 
to the Asymptotic Numerical Method (ANM) as well as the Automatic Differentiation (AD) 
and path continuation procedure (see, e.g., [7, 28]). The obtained results provide useful 
information on the error tolerance margin that could be allowed without compromising 
structural integrity. 

2. Formulation and discretization of the problem 

2.1. Governing equations and their discretization 

In this work, we consider the free vibration problem of a multilayer structure, as illustrated 
in Fig. 1. The virtual work principle governing the equilibrium of such a structure is given as 
follows: 

( ): d 0
V

vδ ρ δ+ ⋅ =∫ ɺɺσ ε u u , (1) 

where σ , ε  and u  are, respectively, the stress and strain tensors, and the generalized 
displacement at a point within the body V  of the viscoelastic structure, while the density of 
the material is denoted by ρ . The stress and strain tensors σ  and ε  as well as the 

displacement u  can be expressed as harmonic time functions. 
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Fig. 1. Sandwich plate with elastic faces and viscoelastic core material. 

 

The viscoelastic damping behavior is accounted for through the stress–strain constitutive 
law, which can be written in the form: 

( ) :         with        ( ) ( ) ( )R Iiω ω ω ω= = +C C C Cσ ε , (2) 

where ( )R ωC  and ( )I ωC  are, respectively, the tensors characterizing the energy storage and 

dissipative behavior of the viscoelastic material. 

Combining Eqs. (1) and (2), and using a finite element discretization, the natural vibration 
problem of viscoelastic structures can be written in the following form: 

{ }2( )ω ω  = −K M 0U , (3) 

where K  and M  denote, respectively, the stiffness and mass matrix of the structure, and the 
complex nodal vibration eigenmode is denoted by U . The above matrices are obtained by 
finite element discretization using the solid–shell elements SHB20 and SHB15. The 
formulation of these two solid–shell elements is briefly outlined hereafter, the interested 
reader may refer to [27, 13] for the complete details. 

2.2. Solid–shell finite element formulation 

2.2.1. Kinematics and interpolation 

The above-described vibration problem is discretized using the solid–shell finite elements 
SHB20 and SHB15, originally proposed by Abed-Meraim et al. [27]. These SHB20 and 
SHB15 elements denote a twenty-node hexahedral element and a fifteen-node prismatic 
element, respectively. Based on a fully three-dimensional approach, these elements have only 
three displacement degrees of freedom per node. Nevertheless, to improve the performance of 

Elastic layersViscoelastic layer
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these solid–shell elements, and to provide them with some desirable shell features, a number 
of enhancements are introduced within their formulations based on the assumed-strain method 
(ASM). In particular, a special direction is chosen, designated as the “thickness”, normal to 
the mean plane of these elements, along which a user-defined number of integration points are 

arranged. Also, an in-plane reduced-integration rule is used, with int4 n×  integration points for 

the SHB20 element and int3 n×  for the SHB15 (see, e.g., Fig. 2, in the particular case when 

the number of through-thickness integration points is int 5n = ). 

 

Fig. 2. Schematic representation for the reference geometry of the SHB20 and SHB15 
elements as well as for the location of their integration points in the case when the number of 

through-thickness integration points is int 5n = . 

For the SHB20 and SHB15 elements, the spatial coordinates ix  are related to the nodal 

coordinates iJx  using the conventional quadratic shape functions, as follows: 

( ), ,i iJ Jx x N ξ η ζ= , (4) 

where i  represents the spatial directions and ranges from 1 to 3; while J  stands for the node 
number, which ranges from 1 to 20, for the SHB20 element, and from 1 to 15 for the SHB15. 

Likewise, the displacement field iu  is related to the nodal displacements iJu  using the same 

quadratic shape functions: 

( ), ,i iJ Ju u N ξ η ζ= . (5) 

Note that in Eqs. (4) and (5) above, the convention of implied summation over the repeated 
index J  has been adopted. 
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2.2.2. Discrete gradient operators 

For both elements SHB20 and SHB15, the corresponding discrete gradient operator [ ]B  

can be derived in the following compact form: 

1 ,1

2 ,2

3 ,3

2 ,2 1 ,1

1 ,13 ,3

3 ,3 2 ,2

T T

T T

T T

T T T T

T TT T

T T T T

h
h

h

h h

hh

h h

α α

α α

α α

α α α α

α αα α

α α α α

 +
 + 
 +
 =

+ + 
 

++ 
 + + 

0 0

00

0 0
B

0

0

0

b γ

b γ

b γ

b γ b γ

b γb γ

b γ b γ

, (6) 

where T
ib , ,ihα  and T

αγ  have been fully detailed in [27]. Note again that, in Eq. (6) and in 

what follows, the convention of implied summation over the repeated index α  is adopted, 
with α  ranging from 1 to 16, for the SHB20 element, and from 1 to 11 for the SHB15. 

The discrete gradient operator given by Eq. (6) allows us to compute the stiffness matrix 
for each of the SHB20 and SHB15 solid–shell elements. In the same way, the corresponding 
mass matrices, involved in the vibration problem governed by Eq. (3), are easily computed 
using the classical shape functions associated with these quadratic elements. Once the 
governing equations have been discretized in the form of Eq. (3), it is relevant to develop an 
effective method for solving the associated nonlinear problem, which will be the object of the 
next section. 

3. Numerical resolution method 

The simplest approach to solve the above-described nonlinear governing equations is to 
use the incremental method, which consists in performing computation for each value of the 
design parameter in its predefined range of variation. However, such an approach has two 
main drawbacks. On the one hand, it requires a huge amount of CPU time, due to the number 
of points to be chosen in the analysis range for a more efficient result. On the other hand, this 
method may not distinguish singular points that would represent optimums. To overcome 
these limitations, the generic numerical resolution method, which has been proposed by 
Akoussan et al. [7] and applied to thickness sensitivity analysis, is adopted here. This method 
consists in recasting the frequency-dependent nonlinear eigenvalue problem, as defined by 
Eq. (3), into a nonlinear eigenvalue problem depending both on the frequency and on the 
modeling parameter (see Eq. (7) below). The new resulting problem is then continuously 
solved using a method that couples the homotopy technique to the ANM as well as the AD 
and path continuation procedure [23-25]. 

{ }2( ) ( ), ,p p p Iω ω  = ∈ −  0K M U . (7) 
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In this Eq. (7), p  represents the selected modeling parameter, whose variation will be 

analyzed, and I  is the interval in which this parameter will vary (denoted hereafter as the 
study interval). Generally, the stiffness and mass matrices involved in Eq. (7) are expanded in 
the form of Eq. (8) below, in order to avoid differentiation of large size matrices, which would 
give rise to computational memory issues and substantial computation times during the 
calculations. 

[ ]

[ ] [ ]

* *

1

1

( ) (, , ) ( )

( ) ( ) (

,

,)

Q

gq q gg
q

L

ml ml g
l

p E p E p

p E p E p

λ λ λ
=

=


   = =    



  = =  

∑

∑

K K K

M M M

 (8) 

where * ( ),gqE pλ  and ( )mlE p  are analytical functions of the modeling parameter p , and the 

associated constant matrices are denoted q  K  and j  M , respectively. Adopting such a 

transformation, the differentiation of the stiffness and mass matrices simply reduces to the 

differentiation of the analytical functions * ( ),gqE pλ  and ( )mjE p . 

In what follows, the main lines of this solution procedure will be described. 

3.1. Residual problem 

To solve the nonlinear eigenvalue problem given by Eq. (7), using the generic method 
developed in [7], the problem is first transformed into a residual eigenvalue problem by 

setting 2λ ω=  and applying the decomposition depicted above for the stiffness and mass 
matrices, which gives: 

{ }*( , ) ( ), (, ,)g g m gp p p IE pEλ λ λ− = = ∈ R K M 0U U . (9) 

A perturbation technique pδ  is then applied to the modeling parameter p . The eigenpair is 

additionally developed as Taylor’s expansions of pδ , truncated at a user-defined order N : 

( ) ( )
0

( ) ( )

( , )( ) ( ( ,)

, ( ) , ( )

)( )

1 1
( , )( )

!
,

!

n n

n

n n

N

n n
n

n

n

p p p p

p p
n n p

p

λ λ

λ

δ δ

λ λ

=

∂

+ =

==
∂

∑U U

U U U
 (10) 

The residual problem is similarly expanded into a Taylor series form, by introducing the 
Taylor expansion of the eigenpair ( , )λU  as follows: 
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( ) ( )

( ) ( )
0

( ), ( ), ( ( ), ( ),

1
( ), ( ), ( ( .

)

), ),
!

n

N
n

n

n n

n

p p p p p p p p

p p p p p p
n p

δ δλ λ

λ λ

=

=

∂
∂

+ =

=

∑R R 0

R
R

U U

U U
 (11) 

By identifying the terms of same power in pδ , the residual problem is sent into a recurrence 

form, which needs to be solved for each value of n  (0 n N≤ ≤ ) 

{ }
{ } { } { }

0

1 1 1 1

0 0| 0

1| , 0 1| , 1 | , 0 , 1.
n n

Id

n d n n n nλ λ λλ

=

= = = = = =

=

=

=

= + + ≥0 0

R R 0

R R R R 0         

U

U I U U

U

U
 (12) 

3.2. Resolution of the residual problem at order 0 

The residual problem at order 0n =  is written explicitly as: 

( ) { } ( ) ( ) { }
0

*
0 0 0 0| 0 0 0 0, , ,d g g m gE p E ppλ λ λ=   = = =  −R R K M 0U IU U U , (13) 

which is a nonlinear frequency-dependent eigenvalue problem, since the analytical function to 

be differentiated depends on the unknown 0λ . Another difficulty in this Eq. (13) is the choice 

of the departure value for the modeling parameter, which varies within the study interval I . 
This departure value can be chosen as being the upper bound or the lower bound of the study 
interval. This choice should however be motivated by a preliminary study, since in some 
cases, choosing the upper bound as departure value for the modeling parameter allows 
reducing the computation times as compared to the case when the lower bound is chosen. In 
practice, the Young modulus of the viscoelastic layer of the sandwich structure is decomposed 
into two parts: 

( ) ( ) ( )* *, 0, ,λ λ= +g g gE p E p E p , (14) 

where * (0, )gE p  represents the delayed elasticity of the core. 

Let us take as appropriate departure value for the modeling parameter 0p p= . The residual 

problem given by Eq. (13) becomes: 

( ) ( )( ) ( ) { }*
0 0 0 0 0 0 0 0 00( , ) 0, ,,λ λ λ = = + −K M 0R g g g m gE p E p E ppU U . (15) 

This residual problem can be solved by any numerical method dedicated to solving nonlinear 
frequency-dependent eigenvalue problems. A representative selection of these methods has 
been presented and compared in [29]. In the current work, the above nonlinear eigenvalue 

problem, which allows computing the first eigenpair 0 0( , )λU , is solved by using the method 

that couples the homotopy technique to the Asymptotic Numerical Method as well as the 
Automatic Differentiation and path continuation procedure. This method consists in 
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transforming the residual problem at order 0  into a new problem, which is split in turn into 
two sub-residues: 

( ) ( )
( ) ( ) ( ) [ ]

( ) ( ) ( )
( ) ( )

0 0 0 0 0

0

*
0 0

0

, , , , , 1

, , , , , , 0,1

, 0,

, , ,

h

h

g g m g

g g

p p a

p a a a

E p E p

E p

λ γ
γ γ γ

γ γ

γ γ

= = =
= + = ∈

 = −





 

 =  



0

0

K

R R

R S T

S M

KT

U V

V V V

V V

V V

 (16) 

where a  is the homotopy parameter. The new functions and unknowns are then expanded in 
Taylor’s series of the homotopy parameter a , which are truncated at the order N . Inserting 

their expressions into the new residual problem hR  allows deriving a generic linear system to 

be implemented into the DIAMANT Toolbox. This generic form is obtained using the 

derivative chain rule with suitable initialization, in order to first compute the unknown iγ  by 

the following expression: 

{ } { }
{ } { }

1 1 1 1

0 | , 0 | , 0 1

0 1| , 1 1| , 1

   , 1,2,...,i i i i

t
i i i

i t

a
N

a
i

γ γ

γ γ

γ
= = = = −

= = = =

 + + = − =
 + 

0 0

0 0

V V

V V

V S T T

V S T
, (17) 

and to use the obtained value for this unknown in the following system to get the second 

unknown iV : 

{ } { } { }0 i| i| 1

0

, 1,2,...,
0 0

 i ii i
t

a
Ni

χ
= = −

 − − −     = =    
     

0 0A V VV S T TV

V
, (18) 

where *
0 0 0(0, ) ( ) ( , )g g m g g gE p E p aE pγ γ   = − +   A K M K  is the linear tangent matrix and 

χ  is the Lagrange multiplier. The iterative solution ( ),γV  is then determined using the 

continuation procedure until 1a ≥ . Finally, the eigenpair solution of the residual problem at 
order 0  is computed by: 

( ) ( ) ( )0 0
0

, ,1
N

i

i

i iaλ γ
=

= −∑U V . (19) 

More details about this resolution procedure can be found in [24, 30]. 

3.3. Resolution of the residual problem at order n 

Once the first eigenpair ( )0 0,λU  has been obtained by solving the residual problem at 

order 0 , the residual problem nR  is solved at each order n  to determine the other eigenpair 

solutions ( , )n nλU  of the series. The residual problem given by Eq. (12) is not well defined, 



10 

since it represents one equation with two unknowns nU  and nλ . To solve this equation, the 

mode orthogonality condition (see Eq. (20) below) is added: 

( )0 0 0t − =U U U . (20) 

From the two Eqs. (12) and (20), a generic system is built at each iteration n : 

{ } { }
1 10 1| , 1 | , 0

0 0 0
n nn nt

t
n λ λλ

χ
= = = =

 − −     =    
     

0 0K U UR RU U

U
. (21) 

Before solving this system, the value of nλ  is first calculated by using the following generic 

Eq. (22): 

1 1

0 | , 0

0 1| , 1

n n

n

t

t

n λ

λ

λ = =

= =

 



=
 

− 0

0

U

U

RU

RU
. (22) 

In the generic system given by Eq. (21), ( )*
0 0 0 0 0(0, ) ( , ) ( )t g g g m gE p E p E pλ λ = + − K K M  

represents the linear tangent matrix of the series. At the end of each series, the convergence 
radius is evaluated using a precision parameter ε , provided by the user (see Eq. (23) below), 
which will allow the modeling parameter p  to be updated: 

1

1
1

N

N

pδ ε
− 

=   
 

U

U
. (23) 

This update is achieved in two different ways, according to the choice of the departure value 
for the modeling parameter p . Hence, when the departure value is taken to be the upper 

bound of the study interval, the modeling parameter is updated as follows: 

00 δ−=p p p, (24) 

otherwise, when the departure value is taken to be the lower bound, the update of the 
modeling parameter is achieved as follows: 

0 0 δ+=p p p. (25) 

In case the update Eq. (24) is used, if the convergence radius computed by Eq. (23) does not 
allow covering the study interval, a new branch of series is built, and its starting values are 
obtained from the former series as follows: 

( ) ( ) ( )0 0
0

, ,
N

n

n n
n

pλ δ λ
=

= −∑U U , (26) 



11 

otherwise, when the update Eq. (25) applies, the new series, when required, is built using the 
following stating values: 

( ) ( ) ( )0 0
0

, ,
N

n

n n
n

pλ δ λ
=

=∑U U . (27) 

Finally, the damping properties, namely the damped frequency Ω  and the loss factor η , are 

obtained from the eigensolution λ  as follows: 

( )2 2 1

,

ω η λ λ λ
λλ η
λ

= Ω + = + =

Ω = =

R I

I
R

R

i i
. (28) 

4. Results and discussions 

The interest and the effectiveness of the proposed numerical tool are shown in this section 
through a set of representative benchmark tests. For all subsequent analyses, we consider as a 
reference problem a sandwich plate with elastic faces and viscoelastic core material. This 
sandwich plate is clamped at all of its four edges, as illustrated in Fig. 3. The viscoelastic core 
is made of ISD112-27°C. The properties of the adopted materials, both in the elastic layers 
and in the viscoelastic core, are reported in Table 1. The viscoelastic behavior of the core 
material is described, based on generalized Maxwell’s model, by: 

( )
3

0
1

1 j

j j

G G
i

ω
ω

ω=

 ∆
= +  − Ω 

∑ , (29) 

where 0G  is the shear modulus of the delayed elasticity, while the remaining parameters 

( , )j j∆ Ω  are reported in Table 2. 

 

Fig. 3. Sandwich plate with the initial geometric properties. 

hf =0.75 mm

hf=0.75 mm
hc=0.25 mm

b= 250 mm

a= 300 m
m
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Table 1. Material properties of the constituent materials. 

Elastic layers 

3
ρ =2766 Kg m

E =69.0 GPa

= 0.3

f

f

f

ν

−⋅

 

Viscoelastic layer 
0

0

0

-3

c

c

c

ρ =1600 Kg m

E =1.49 MPa

= 0.49ν

⋅

 

 

Table 2. Viscoelastic parameters of the ISD112-27°C material. 

j j∆  -1(rad.s )jΩ   

1 0.746 468.7 
2 3.265 4742.4 
3 43.284 71532.5 

 

The aim of this study is to assess the influence of variation in a number of parameters on 
the damping properties of the above-described sandwich structure. In this analysis, we will 
limit ourselves to five main distinct parameters associated with the viscoelastic core layer: 

- the thickness variation, 

- the Young modulus variation, 

- the Poisson ratio variation, 

- the density variation, 

- the temperature variation. 

For the sake of comparison, all of the subsequent simulations are performed using three 
different finite element discretizations. The latter consist of the proposed quadratic solid–shell 
elements SHB15 and SHB20, with 15 and 20 nodes, respectively, as well as the standard 
quadratic 20-node solid element HEX20. For all of the simulations, the mesh nomenclature 

adopted for the hexahedral elements is as follows: ( )1 2 3 N N N× ×  elements, where 1 N  

denotes the number of elements in the length direction, 2 N  is the number of elements in the 

width direction, and 3 N  is the number of elements in the thickness direction. For the 

prismatic element, however, the adopted mesh nomenclature is ( )1 2 3 2N N N× × × , where the 

multiplication by 2 is due to the subdivision of each original hexahedron into two prisms. 
Note also that, for the proposed solid–shell elements SHB15 and SHB20, two integration 
points along the thickness direction are sufficient for the following computations, as the 
corresponding benchmark tests do not involve material nonlinearities. However, it must be 
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noted that, when nonlinear material behavior models enter into play, more through-thickness 
integration points are required (for instance, five through-thickness integration points are 
recommended when elasto-plastic constitutive models are used, see, e.g., reference [26]). 

4.1. Variation of core thickness 

For this first analysis, the incremental method is exceptionally used, due to the mesh 
dependence of the problem. Indeed, the fully 3D finite element modeling adopted here does 
not allow for an analytical expression for the thickness dependence of the problem, as can be 
done in some particular situations (e.g., an example of such an analytical expression has been 
achieved within a 2D finite element modeling framework [7]). This first test will also enable 
us, among other things, to bring out some limitations of this finite element method, which 
have been already mentioned before. 

We investigate the influence of the core thickness 
0

50%c ch h= ±  on the damping 

properties of the sandwich structure. Thirty points have been taken to cover the interval of 
study. The results are presented in Fig 4 for the three different finite element discretizations 
discussed above. In terms of finite element performance, it can be observed that the proposed 
solid–shell elements are generally more efficient, as compared to the standard solid element 
HEX20, especially the hexahedral SHB20 element, which requires coarser meshes (i.e., four 
times less elements) for comparable accuracy. The analysis of the curves reported in Fig. 4 
also shows that the frequencies decrease slightly with the increase in the core thickness. 
Indeed, this frequency reduction is of 14% for the first mode, and of 13% for the third one. 
There is also a decrease in the loss factors as the core thickness increases. For the first mode, 

the loss factor increases very slightly to a core thickness of bout 0.14ch = , before decreasing 

almost linearly. The loss factors for the second and third modes decrease more noticeably (a 
decrease ranging from about 14% to 17%). From this analysis, it can be concluded that a 
larger thickness for the viscoelastic core layer does not necessarily enhance the damping 
properties as one might think. 

Moreover, it comes from this first analysis that the incremental method, although simple to 
implement, does not make it possible to identify singular points. 
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Fig. 4. Sensitivity of the damping properties to the core thickness. 

In all of the following analyses, it is the resolution method presented in section 3 that will 
be used. 

4.2. Variation of the Young modulus of the core material 

In this subsection, we analyze the influence of a 50% variation on the Young modulus of 
the viscoelastic core material on the damping properties of the sandwich structure. For this 
purpose, Eq. 7 can be rewritten in the following form: 

( ) { }
1 2

1 0 2 0

2, , ,

where  0.5   and  1.5 ,

R C C C C C

C C C C

E E I E E

E E E E

ωω   + − = ∈ =   

= × = ×

K K M 0U
 (30) 

One of the main benefits brought by the new numerical method is that the user only needs to 

define the matrices RK , CK , M , the bounds 
1CE  and 

2CE  of the investigated modeling 

variable, as well as the desired precision δ . As outputs from the analysis, the user obtains in a 

straightforward way the damping parameter curves )( Cf E  and )( CEη . 

The results plotted in Fig. 5 show a more or less significant increase in the damping 
parameters. Indeed, this increase is quasi-linear for the first three frequencies (21% for the 
first frequency, and 16% for the third frequency). On the other hand, there is a very marked 
increase in the loss factors of the three modes investigated. This increase ranges from 72% for 
the first mode to 105% for the third mode. Overall, this analysis reveals that the damping 
parameters increase with the Young modulus of the viscoelastic core material. 
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Fig. 5. Sensitivity of the damping properties to the Young modulus of the core material. 

4.3. Variation of the Poisson ratio of the core material 

Here, the effect of the Poisson ratio of the viscoelastic core material on the damping 
properties of the sandwich structure is investigated. The interval of study is set as follows: 

[ ] 0.1, 0.5C Iν ∈ = . For this analysis, Eq. (7) can be rewritten as: 

( ) { } [ ] 
2, , 0.1, 0.5R C C C Iωω ν ν + − = ∈ = K K M 0U . (31) 

The analysis of the curves plotted in Fig. 6 reveals a relatively small decrease in the damping 
parameters. Indeed, this reduction is quasi-linear, and quite weak for the first three 
frequencies (around 5%). With regard to the loss factors, we observe a monotonous decrease 

until 0.48Cν = , followed by a slight increase. Overall, within the interval of analysis ranging 

between the above-defined two bounds, the loss factor is reduced by 9% for the first 
frequency, and 13% for the third one. 

From this analysis, one can conclude that the more incompressible the core material, the 
less effective the corresponding damping. 
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Fig. 6. Sensitivity of the damping properties to the Poisson ratio of the core material. 

4.4. Variation of the density of the core material 

This fourth type of analysis is concerned with the investigation of the impact of density 

variation, within the interval 
0

50%Cρ ± , on the damping properties of the sandwich structure. 

For this analysis, Eq. (7) is rewritten in the form: 

( ) ( ) { }
1 2

1 0 2 0

 
2 ,   ,

where  0.5   and  1.5 ,

R C C C C C C

C C

F

C C

Iω ρ ρ

ρ ρ

ω ρ ρ

ρ ρ

  + − + = ∈ =   

= × = ×

K K M M 0U
 (32) 

The results of this study, which are depicted in Fig. 7, reveal a slight variation of the damping 
parameters. Indeed, the curves plotted in Fig. 7 show a very small linear decrease in both the 
frequencies and the loss factors for the first three modes investigated. This reduction is of 
about 4% for the first three frequencies, and of about 2% for the corresponding loss factors. It 
can be concluded that the reduction in the mass density of the viscoelastic core material has a 
very small impact on the damping capabilities of the host structure. This result may reveal 
useful for the design of lightweight structures, while maintaining effective damping 
properties. 
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Fig. 7. Sensitivity of the damping properties to the density of the core material. 

4.5. Influence of temperature variation 

This last test is devoted to the analysis of the influence of the variation of the temperature 
of the viscoelastic core material on the damping properties of the sandwich structure. For the 
sake of simplicity, it will be assumed that the variation of temperature only affects the 
viscoelastic layer. The analysis is carried out for a modeling parameter (here the temperature) 

ranging in the interval [ ]63 ;87I = − ° ° . In this special case, Eq. (7) can be rearranged in the 

following form: 

( ) { } [ ] 
2 63 , 8, ,  7 R C C CT T Iω ω + − = = − °∈  °K K M 0U . (33) 

The viscoelastic modulus of the ISD112 material, which takes into account the double 
frequency-temperature dependence, is given by the following relations (see [31]): 
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Fig. 8. Sensitivity of the damping properties to the temperature of the core material. 

The simulation results relating to the influence of temperature are reported in Fig. 8. A 
decrease in frequencies over the entire interval is observed, whereas the loss factors increase 
to a peak value, before decreasing beyond this limit. Indeed, the damping parameters remain 
almost unchanged for temperature values lower than 0°C, which corresponds to the 
temperature range where the viscoelastic core is frozen and rigid. This also explains the high 
values for the frequencies and quasi-zero value for the loss factors, which describe the 
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damping properties. From 0°C, the core in ISD112 material becomes more viscous, which 
very rapidly leads to an increase in the loss factors and a decrease in the frequencies, since the 
rigidity of the structure drops. Beyond 53.4°C, the viscoelastic core material becomes less and 
less viscous and the damping capability begins to fall. This phenomenon explains the decrease 
in the loss factors (see Fig. 8). As to the frequencies, the latter stabilize towards their lowest 
values, as the contribution of the viscoelastic core to the rigidity of the structure becomes 
quasi constant. 

The results of this analysis of temperature effect are particularly interesting in the search 
for optimal damping, which is identified here at a temperature of 53.4°C for this specific 
configuration of sandwich structure. 

5. Conclusions 

In the current contribution, the sensitivity analysis of the damping properties of a sandwich 
plate with viscoelastic core has been carried out for a selected set of representative modeling 
parameters. The sandwich structure has been modeled by using newly developed finite 
elements of solid–shell type, which have been shown to be more efficient for the same 
accuracy, as they require less degrees of freedom for the analysis, compared to conventional 
finite elements with equivalent kinematics. To solve the resulting highly nonlinear problems, 
a generic method has been designed, based on the Asymptotic Numerical Method coupled to 
the homotopy technique, which has been automated with the help of the Automatic 
Differentiation within the DIAMANT approach. These choices are motivated by the various 
advantages afforded by the proposed numerical tool, as compared to the classical incremental 
method. In addition, the proposed method is not only fast and effective, but it also allows 
potential singular points to be located with more accuracy. The analysis results highlight the 
sensitivity of the damping properties to the various factors investigated, namely the thickness 
of the core material, its Young modulus, its Poisson ratio, its density, and its temperature. 
This sensitivity study also allows the more influential modeling parameters to be identified, 
which could be advantageously used in the design of lightweight structures with improved 
and optimal damping properties. 

In future work, it would be interesting to consider various combinations involving several 
modeling parameters, in order to further optimize the final damping properties of multilayer 
viscoelastic structures. We also propose that the effects of imperfections at the interfaces 
between the different layers be taken into account to allow more realistic results. Another 
important point would consist in extending the current study to active control, by means of 
piezoelectric materials. 
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