
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/17756

To cite this version :

Mehrdad MOHAMMADI, Reza TAVAKKOLI-MOGHADDAM, Ali SIADAT, Jean-Yves DANTAN -
Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods -
International Journal of Production Research - Vol. 53, n°7, p.2202-2224 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/17756
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/
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Mehrdad Mohammadia,b*, Ali Siadata, Jean-Yves Dantana and Reza Tavakkoli-Moghaddamb

aLCFC, CER Metz - Arts et Métiers Paris Tech, Metz, France; bSchool of Industrial Engineering, College of Engineering, University
of Tehran, Tehran, Iran

This study develops a new optimisation framework for process inspection planning of a manufacturing system with mul-
tiple quality characteristics, in which the proposed framework is based on a mixed-integer mathematical programming
(MILP) model. Due to the stochastic nature of production processes and since their production processes are sensitive to
manufacturing variations; a proportion of products do not conform the design specifications. A common source of these
variations is misadjustment of each operation that leads to a higher number of scraps. Therefore, uncertainty in misad-
justment is taken into account in this study. A twofold decision is made on the subject that which quality characteristic
needs what kind of inspection, and the time this inspection should be performed. To cope with the introduced uncer-
tainty, two robust optimisation methods are developed based on Taguchi and Monte Carlo methods. Furthermore, a
genetic algorithm is applied to the problem to obtain near-optimal solutions. To validate the proposed model and solution
approach, several numerical experiments are done on a real industrial case. Finally, the conclusion is provided.

1. Introduction

Organisations in all industries that are somehow connected to supply chains have always encountered the challenge of
designing and producing high-quality products. Producing these products needs efficient production systems in order to
meet customer expectations. Therefore, developing an effective quality management system (QMS) has become one of
the most important issues of these organisations, while neglecting the development of a capable QMS causes several
inefficiencies (i.e. time and cost) across the supply chain (SC) and specially production party.

Since inefficiencies in time and cost, charges billions of dollars yearly to the organisations, several techniques have
been developed to minimise the wastes across the SC. These inefficiencies may be the result of lacking an efficient sys-
tem that ensures meeting quality requirements and customer expectations. One of the most effective approaches to han-
dle these inefficiencies is designing a capable quality control system (QCS) that guarantees the products conform to
determined specifications and they are able to meet customer expectations (Mirdamadi et al. 2011). On the other hand,
dealing with inspection and planning an effective inspection process, QCS has always been the most efficient tool for
decreasing waste and meeting customer expectations.

Inspection process planning (IPP) is an activity that determines which quality characteristics of a product should be
inspected, where and when (Pfeiffer 2002; Zhao, Xu, and Xie 2009). In almost all manufacturing organisations, inspec-
tions are used during the processes to reach quality specifications instead of having an acceptance or a rejection inspec-
tion at the end. To achieve this goal, effective inspection planning should efficiently be integrated with the production
processes.

Through an effective IPP, conformity (CI) and monitoring (MI) inspections are integrated with production processes.
CI is a collective term used for a number of activities (e.g. testing, detection and certification) to specify if a product
has met designed characteristics. In other words, CI ensures that a product has been correctly made based on the process
plan and it is in the conformance with the design data. Hence, the main aim of CI in production is to avoid nonconfor-
mity and to minimise the risk of manufacturing products that have to be rejected instead of being sold (Hinrichs 2011).
In CI, the production process is interrupted and all products (i.e. 100% frequency) are checked whether they can meet
standard specifications. Then, nonconforming products are removed from the production line and get scrapped. Since
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stopping the production process may not be cost-efficient, MI can be utilised as an indicator of process status. Using
MI, corresponding features of the process (e.g. feed speed of a drilling machine, force and temperature, etc.), which sig-
nificantly affect the final quality of the products, are checked for not deviating from their set value with lower frequency
compared to CI (Chryssolouris 2005).

Manufacturers utilise CI and/or MI in their production processes based on the importance of products’ characteris-
tics. For instance, for characteristics that directly correspond to the product function and a malfunction may adversely
affect the customer satisfaction; CI is recommended. On the other hand, using MI absolutely increases the capability of
the processes and as a result decreases the deviation from standard tolerances as well as the number of defective
characteristics. Both CI and MI eventually enhance customer satisfaction, while considering both CI and MI for all
characteristics is the most reliable way to decrease the amount of scraps and correspondingly to increase customer
satisfaction as much as possible. As a consequence of recourse limitations, this approach is not practical and increases
the production cost as well as the final cost of products. Therefore, a trade-off between customer satisfaction and
production cost should be conducted to determine whether setting inspections are cost-efficient or not.

Several techniques such as cost-benefit model (Savio 2012), simulation (Munch et al. 2002; Neu et al. 2002, 2003)
and optimisation model (Hanne and Nickel 2005; Shiau 2003a) have been proposed to planning inspection processes.
To the best of our knowledge, no study in the literature has proposed a mathematical programming model to provide an
efficient process inspection planning. Thus, this study attempts to fill this gap by developing an optimisation framework
for process inspection planning based on a mixed-integer linear programming (MILP) model that tries to make a trade-
off between cost and quality.

The rest of the study is organised as follows. Section 2 reviews the relevant literature. Section 3 shows problem
description and the MILP model. Section 4 describes the applied robust optimisation methods. The solution algorithm is
explained in Section 5. The experimental results are provided in Section 6. Finally, Section 7 concludes the study.

2. Literature review

This section reviews studies in which different optimisation techniques for process inspection planning are developed.
Inspection planning problems have been studied by many researchers since the 1960s. Lindsay and Bishop (1964) pro-
posed a basic conceptual model considering perfect inspection accuracy for workstations of attribute data (WAD). All
the rejected items in their study were assumed to become scrapped. They also supposed that the inspection station can
only check the outcome of the preceding operations right after they are performed. The extension of their study was
proposed by White (1966) where the scrapped items are replaced with conforming ones. Hurst (1973) first planned an
inspection process considering both type I and type II inspection errors. Peters and Williams (1984) provided five
heuristic decision rules to make ‘when decision’. Later, Yum and McDowell (1987) extended the formulation of this
problem in the form of a mixed-integer linear programming model by adding the assumption of rework activity.
Chakravarty and Shtub (1987) investigated the effects of set-up and inventory carrying costs on the inspection strategy
(i.e. ‘all or none’ vs. ‘partial inspection’). They suggested a shortest-path heuristic method to make decisions on when
the inspections should be performed and how much the production lot sizes better to be.

Barad (1990) presented a solution-oriented technique based on the concept of break-even quality level. Viswanadham,
Sharma, and Taneja (1996) mathematically modelled the ‘when decision’ in a multi-stage production system (MPS) and
developed two stochastic search algorithms for solving the problem. One of the algorithms was based on simulated anneal-
ing (SA) and the other utilised genetic algorithm (GA) to search in solution space. Their algorithms were developed to
determine the inspection time reflecting in a minimum expected total cost. Similarly, Bai and Yun (1996) constructed a cost
model and a method for finding the optimal time of inspections and inspection level in an MPS. Briand, Laitenberger, and
Wieczorek (1997) investigated the effectiveness of the inspection regarding the inspection team size during many
experiments and in real-life settings. Lee and Unnikrishnan (1998) developed a mathematical model in order to solve the
inspection allocation and assignment problems in an MPS in which different part types with distinctive machine visitation
sequences were processed and inspections could be performed in one of the several inspection stations with possible
inspection errors. Basili and Boehm (2001) considered the inspection planning as a key tool for finding defects and for
ensuring the quality of a product. Two questions about the characteristics that should be inspected and the number of
people that should participate in the inspection activity were answered in their study.

Lee and Kim (2001) proposed an optimisation model to integrate process planning and scheduling using simulation-
based genetic algorithm. The performance measures were calculated based on process plan combinations by a simulation
module instead of process plan alternatives. The calculated measures were used as inputs to a genetic algorithm in order
to improve the solution quality until the scheduling objectives were satisfied. In similar integration, Hanne and Nickel
(2005) developed a multi-objective inspection planning model considering objectives concerning the quality (number of



defects), project make-span and costs. Their proposed model consisted of different phases such as coding, inspection,
test and rework. This study also comprised the assignment of operations to people and the generation of a project sche-
dule (Munch et al. 2002; Neu et al. 2002, 2003). Moreover, an evolutionary algorithm (EA) was presented to solve the
proposed multi-objective inspection planning model.

Respecting the influence of inspection resource limitation on the inspection plan, Shiau (2002, 2003a) studied
inspection resource assignment and considered inspection errors in an MPS. They considered a limited number of
inspection stations for each class of inspection to plan the inspection process for satisfying customer requirements in the
times that inspection errors happen due to rapid changes of tolerances. In addition, Shiau (2003b) studied inspection–
allocation planning (IAP) in a multiple quality characteristic manufacturing system in which the production recourses
were restricted and a limited number of inspection stations of each inspection station class were considered for solving
IAP. This study solved IAP using a unit cost model in which the manufacturing capability, inspection capability and tol-
erance specified are simultaneously considered as well as a situation of unbalanced tolerance design. In a similar work,
Shiau, Lin, and Chuang (2007) integrated production process and inspection planning. They inferred that higher perfor-
mance of a production industry can be realised if process planning and inspection planning become integrated to cope
with the limited manufacturing resources. They developed a genetic algorithm for solving large-scale problems. In a dif-
ferent work, Ferreira, Almeida, and Cavalcante (2009) proposed an optimisation model in which decisions on determin-
ing inspection intervals for MI under the failure of equipment are made considering the decision-maker preferences in
cost and downtime.

Recently, Savio (2012) presented a methodology for the assessment of the economic impact of metrology in produc-
tion by studying a cost-benefit model in which several mathematical formulations were developed to evaluate costs and
benefits of inspection. Although, the evaluation of costs is facile, the calculation of benefits is challenging because of its
nature and due to issues such as product reliability improvement and related reduction in warranty costs. With relation
to these difficulties, a review of micro-economic facets in metrology was conducted emphasising on the fact that while
costs are easy to calculate, benefits are more complex to assess and should be taken into account in the context of the
entire production process (Kunzmann et al. 2005).

In regards to how experimental results are being affected by measurement uncertainty, several studies have been
published that take the uncertainty in production metrology into account. Kallgren et al. (2003) reviewed the present sta-
tus of the role of measurement uncertainty in CI assessment. Enthusiastic readers are referred to the recent review of
uncertainty impact on production metrology done by Desimoni and Brunetti (2011).

3. Problem description and mathematical formulation

3.1 Problem description

Respecting the above-mentioned concerns in Section 1 regarding to make a trade-off between cost and quality, design-
ing an effective IPP is a twofold decision: (1) which quality characteristics need what kind of inspection (known as
‘which-what decision’) and (2) when these characteristics should be inspected (known as ‘when decision’). For the first
decision, although the characteristics that have a more significant impact on product functionality and remarkably affect
customer satisfaction should certainly be chosen to be inspected, all the characteristics cannot be inspected, since this
action highly increases the inspection cost. The second decision about the stage of inspection is also challenging.
Inspection of a characteristic can be done only in special stages during the overall process. During the inspection, the
process cannot be stopped and in some occasions, accessibility to a specific characteristic is impossible unless in some
specified stages. In addition, finding and eliminating nonconforming parts at the initial steps of the process will decrease
the production cost as those parts do not go under further operations. Despite the fact that it is better to inspect each
characteristic exactly after its related operation and before the beginning of following operation, but this will increase
the number of inspection activities and consequently the total cost of inspection. For better understanding, consider a sit-
uation that each characteristic is inspected exactly after its related operation. Each inspection activity includes three steps
as follows (1) removing the part from the machine, (2) inspecting and (3) setting up the parts for the next operation;
hence, these steps are repeated for each characteristic. On the opposite site, when a set of characteristics is inspected at
the same allowable stage, removing and setting up steps are done just once. Therefore, making which-what and when
decisions are challenging issues and this study tries to address them.

3.2 Mathematical formulation

This section provides a mathematical formulation to model the problem mentioned in subsection 3.1 by making
decisions on which quality characteristics need what kind of inspections and when these inspections should be



performed. The objective function of this model attempts to minimise the total cost which consists of the costs of
production, scrap, inspection (i.e. fixed and variable costs) and warranty. The warranty cost is the cost of selling
nonconforming products.

Considering the decisions about the kind of inspection that is needed, two different strategies are assumed in the
mathematical formulation. Firstly, we consider that each quality characteristic exactly needs one kind of inspection. Sec-
ondly, the first strategy is relaxed, and we assume that none, one or both MI and CI can be performed on each quality
characteristic. Then, the first and the second strategies are called MI-or-CI and MI-and-CI strategies, respectively. In
addition, knowing that inspection is imperfect, both error types I and II should be considered in the problem. Error type
I refers to false rejections of conforming quality, while error type II represents false acceptance of nonconforming qual-
ity. These errors are taken into account to compute the amount of scrap at each stage of the inspection planning.

The necessary notations to design the mathematical model are as follows:

Sets:
p; p0 2 1; 2; . . .;P þ 1f g Set of operations
k 2 1; 2; . . .;Kf g Set of different quality characteristics

Parameters:
fr1pk Failure rate of operation p for characteristic k with MI
fr2pk Failure rate of operation p for characteristic k without MI
drpk Detection rate of the conformity inspection assigned to operation p for characteristic k
apk Error type I for CI assigned to operation p for characteristic k
bpk Error type II for CI assigned to operation p for characteristic k (bpk ¼ 1� drpk)
n Total number of parts supplied to the production process
pcp Operation p production cost
scp Scrap cost of parts between operations p and p + 1
wck Warranty cost caused by nonconforming quality characteristic k
fmpk Fixed cost of performing MI between operations p and p + 1 for quality characteristic k
fcpk Fixed cost of performing CI between operations p and p + 1 for quality characteristic k
vmpk Variable cost of performing MI between operations p and p + 1 for characteristic k
vcpk Variable cost of performing CI between operations p and p + 1 for characteristic k
fsp Fixed space cost per part of performing inspections between operations p and p + 1
dp0p 1 if the operations p0 and p are dependent, 0 otherwise
bpk 1 if characteristic k belongs to operation p, 0 otherwise
mfk Monitoring frequency for characteristic k
cfk Conformity frequency for characteristic k
M A big number

Decision Variables:
CIpk 1 if operation p needs CI for characteristic k; 0 otherwise
MIpk 1 if operation p needs MI for characteristic k; 0 otherwise
XCk

p0p 1 if CI of operation p0 for characteristic k is performed after operation p (p0 � p); 0 otherwise
XMk

p0p 1 if MI of operation p0 for characteristic k is performed after operation p (p0 � p); 0 otherwise
Np Input number of parts entering operation p
NMpk Number of MIs between operations p and p + 1 for characteristic k
NCpk Number of CIs between operations p and p + 1 for characteristic k
NSp 1 if there is an inspection between operations p and p + 1; 0 otherwise
Spk Number of scrap parts between operations p and p + 1 for characteristic k
Sp Total number of scrap parts between operations p and p + 1
OFVD Objective function value of the deterministic approach



Auxiliary Variables:
NFRpk Number of scrap characteristics k produced by operation p with inspection
NXCk

p0p Linear form of XCk
p0p � Np

NXMk
p0p Linear form of XMk

p0p � Np

RXCk
p0p Linear form of XCk

p0p � NFRp0k
RCIpk Linear form of NFRpk � CIpk
RMIpk Linear form of NFRpk �MIpk
NSNp Linear form of NSp � Np

NMIpk Linear form of Np �MIpk
NCIpk Linear form of Np � CIpk

3.2.1 Formulation of MI-or-CI strategy

This section provides the mathematical modelling for the first strategy of inspection, in which all quality characteristics
need exactly one kind of MI or CI.

minOFVD ¼
XP
p¼1

pcpNp þ
XP
p¼1

scpSp þ
XP
p¼1

XK
k¼1

fcpkNCISpk þ
XP
p¼1

XK
k¼1

cfkVCpkNXCp þ
XP
p¼1

XK
k¼1

fmpkNMISpk

þ
XP
p¼1

XK
k¼1

mfkVMpkNXMp þ
XP
p¼1

fspNSNp þ
XP
p¼1

XK
k¼1

wck RCIpkbpk þ RMIpk
� �

(1)

s.t.

XP
p¼p0

dp0pXC
k
p0p ¼ bp0kCIp0k 8p0; k; p0 �P (2)

XP
p¼p0

dp0pXM
k
p0p ¼ bp0kMIp0k 8p0; k; p0 �P (3)

CIp0k þMIp0k ¼ bp0k 8p0; k (4)

NFRpk ¼ NMIpkfr
1
pk þ NCIpkfr

2
pk 8p; k; p�P (5)

Scrappk � RXCk
p0p � drpk

h i
þ NXCk

p0p � apk � RXCk
p0p � apk

h i
� RXCk

p0p � bpk
h i

8p; p0; k; p; p0 �P (6)

Sp � Spk 8p; k; p�P (7)

Np ¼ Np�1 � Sp�1 8p; p�P þ 1 (8)

N0 ¼ n (9)

NMpk �
XP
p0¼1

XMk
p0p 8p; k; p�P (10)



NCpk �
XP
p0¼1

XCk
p0p 8p; k; p�P (11)

M � NSp �
XP
p0¼1

XK
k¼1

XCk
p0p þ XMk

p0p

� �
8p; p0; k; p; p0 �P (12)

NXCk
p0p �M � XCk

p0p 8p; p0; k; p; p0 �P (13)

NXCk
p0p �Np0 8p; p0; k; p; p0 �P (14)

NXCk
p0p �Np0 �M 1� XCk

p0p

� �
8p; p0; k; p; p0 �P (15)

NXMk
p0p �M � XMk

p0p 8p; p0; k; p; p0 �P (16)

NXMk
p0p �Np0 8p; p0; k; p; p0 �P (17)

NXMk
p0p �Np0 �M 1� XMk

p0p

� �
8p; p0; k; p; p0 �P (18)

NMIp0k �M �MIp0k 8p; p0; k; p; p0 �P (19)

NMIp0k �Np0 8p; p0; k; p; p0 �P (20)

NMIp0k �Np0 �M 1�MIp0k
� � 8p; p0; k; p; p0 �P (21)

NCIp0k �M � CIp0k 8p; p0; k; p; p0 �P (22)

NCIp0k �Np0 8p; p0; k; p; p0 �P (23)

NCIp0k �Np0 �M 1� CIp0k
� � 8p; p0; k; p; p0 �P (24)

RXCk
p0p �M � XCk

p0p 8p; p0; k; p; p0 �P (25)

RXCk
p0p �NFRp0k 8p; p0; k; p; p0 �P (26)



RXCk
p0p �NFRp0k �M 1� XCk

p0p

� �
8p; p0; k; p; p0 �P (27)

RCIp0k �M � CIp0k 8p0; k; p0 �P (28)

RCIp0k �NFRp0k 8p0; k; p0 �P (29)

RCIp0k �NFRp0k �M 1� CIp0k
� � 8p0; k; p0 �P (30)

RMIp0k �M �MIp0k 8p0; k; p0 �P (31)

RMIp0k �NFRp0k 8p0; k; p0 �P (32)

RMIp0k �NFRp0 �M 1�MIp0k
� � 8p0; k; p0 �P (33)

NSNp �M � NSp 8p; p�P (34)

NSNp �Np 8p; p�P (35)

NSNp �Np �M 1� NSp
� � 8p; p�P (36)

XCk
p0p;XM

k
p0p;NSp;CIp0k ;MIp0k 2 0; 1f g 8p; p0k; p; p0 �P (37)

Spk ; Sp;RXC
k
p0p;NMpk ;NCpk ;NXC

k
p0p;NXM

k
p0p; NFRpkRCIp0k ;RMIp0k ;NSNp;Np � 0 8p0; p; k; p0; p�P (38)

Objective function (1) minimises the total manufacturing cost consisting of the production cost, cost of scrap, CIs
fixed and variable costs, MIs fixed and variable costs, fixed cost of inspection stages and warranty cost, respectively.
Equations (2) and (3) ensure that the inspection of a quality characteristic for all parts be performed just in one inspec-
tion stage. Equation (4) implements the MI-or-CI strategy in the model and allocates one kind of inspection strategy for
each quality characteristic. Equation (5) makes a connection between an operation\primes failure rate and the decision
that whether the MI has been considered for that characteristic or not. Constraints (6) and (7) calculate the amount of
scrap based on error type I and II after each inspection stage. Constraints (8) and (9) determine the in-process parts after
each operation. Because of scrap detection and removal, the number of parts can decrease in the presence of any inspec-
tion. Equations (10) and (11) calculate the total number of MIs and CIs after operations. Constraint (12) calculates
different inspection stages among the whole process. Moreover, constraints (13) to (37) are provided to linearise the
nonlinear terms. Finally, constraints (38) and (39) are positivity and integer constraints.

3.2.2 Formulation of MI-and-CI strategy

This section provides the mathematical modelling for the second inspection strategy in which none, one or both MI and
CI can be performed for each quality characteristic. The mathematical model for the second strategy is as follows:



minOFVD ¼
XP
p¼1

pcpNp þ
XP
p¼1

scpScrapp þ
XP
p¼1

XK
k¼1

fcpkNCISpk þ
XP
p¼1

XK
k¼1

cfkVCpkNXCp þ
XP
p¼1

XK
k¼1

fmpkNMISpk

þ
XP
p¼1

XK
k¼1

mfkVMpkNXMp þ
XP
p¼1

fspNSNp þ
XP
p¼1

XK
k¼1

wck RCIpkbpk þ RMIpk
� �

(39)

s.t: (2), (3), (5)–(39).

CIp0k þMIp0k � 2bp0k 8p0; k (40)

4. Robust optimisation

In addition to the numerous concerns of manufacturers regarding the inspection planning, lack of information about pro-
duction processes and several environmental factors has imposed a degree of uncertainty to the design parameters which
directly affect other decisions of production (Galbraith 1973; Ho 1989). However, in all industries, quality of products
is decreased as a result of manufacturing variations such as performance degradation, nonconformance to specifications,
high cost of redesign or scrap and failure; classical methods consider deterministic conditions during the design of the
process, while the manufacturing processes are generally stochastic. Consequently, some of the manufactured products
do not conform to design specifications and their processes are sensitive to manufacturing variations. Traditionally, tight
tolerance or higher precision in the manufacturing process was applied to solve this issue, which leads to noticeable
manufacturing cost. Hence, manufacturers are interested in less sensitive manufacturing processes by taking into account
the effect of manufacturing variations on the products during the design phase. These manufacturing processes are
robust processes which are relatively insensitive to alteration of uncertain parameters. It is noteworthy that in the robust
manufacturing processes, the effect of uncertainty in the system is minimised without eliminating the sources of
uncertainty.

One of the most important effects of production variations and uncertainty in any industry is increasing the number
and cost of scraps. Scrap cost is a manufacturing reality affecting organisations across all industries and product lines.
No matter why scrap occurs, its impacts on an organisation are always wasted time and money, while no organisation
wants to admit it, these expenses add up quickly and negatively impact the bottom line. Although it is near impossible
to eliminate scrap completely, managers can reduce the amount of scrap in their organisation by optimising the way they
produce the products. Therefore, manufacturers can help reduce scrap by carefully and consistently monitoring the
parameters of the process to know how products are made. As a consequence of this monitoring, parameters with higher
variation are being controlled and the number of scraps is decreased.

Since one of the main resources of variation in the production process is the misadjustment of an operation, design-
ing an inspection planning that is less sensitive to the misadjustment is expected. According to Figure 1, misadjustment
of an operation has a direct impact on the failure rate and the amount of scraps. In fact, the higher the value of misad-
justment is, the higher the value of failure rate and the amount of scraps are. Besides, the failure rate of each operation
is one of the most significant parameters that affects the quality of the products. Therefore, in this study, the alteration
of operations’ failure rate is taken into account to design a robust inspection plan.

Figure 1. Effect of misadjustment on failure rate.



In the following, it will be shown that how failure rate variations indirectly affect the objective function of the pro-
posed model. The objective of the proposed mathematical model is to minimise the total cost which is the sum of the
manufacturing (i.e. production cost + inspection cost) and the warranty costs. According to the objective function (1),
the first seven terms of OFVD represent the manufacturing cost and the last term denotes the warranty cost. It can easily
be proved that these two parts of the objective function are in contrast in terms of the number of conformity inspections
(NC), where having higher NC increases the manufacturing cost and at the same time decreases the warranty cost. This
directly relates to the amount of scraps, where considering CIs in the process increases the cost of inspections (i.e. third
and fourth terms of the objective function) but decreases the warranty cost. Hence, uncertainty in the failure rate, which
directly affects the amount of scraps, makes tangible changes in the objective function.

In order to investigate the effect of failure rate in the result of the proposed model, the pseudo-trade-off diagram of
manufacturing and warranty costs is illustrated in Figures 2–4. Vertical and horizontal axes show cost and NC, respec-
tively. Figure 2 demonstrates the trade-off diagram for deterministic problem, in which no alteration in the parameters
has been considered. Since, in the deterministic problem, the increase rate of the manufacturing cost is more than the
decrease rate of the warranty cost; therefore, the minimum total cost belongs to a solution with no conformity inspection
(i.e. NC ¼ 0). It is obvious that alteration in failure rate significantly affects the amount of scraps as well as the value
of warranty cost. Figure 3 depicts the trade-off cost diagram for a problem with little increase in misadjustment which
consequently increases the failure rate. As it can be seen, the decrease rate of warranty cost is initially more than the
increase rate of the manufacturing cost for NC�N�

2 and vice versa for > N �
2. Therefore, the minimum total cost occurs

for a solution with ¼ N�
2. Similarly, Figure 4 illustrates the trade-off cost diagram for a problem with higher increases in

misadjustment compared to the problem in Figure 3. The optimal NC in the problem with higher uncertainty in misad-
justment is equal to N �

3 . It can also be inferred from Figures 3 and 4 that the higher the uncertainty in the misadjust-
ment, the higher the NC is (i.e. N �

3 [N�
2 ). It should be noted that Figures 2–4 have been conceptually illustrated based

on the proposed mathematical model; however, the curve of manufacturing and warranty cost is not so simple in the
industries, while the general results and trends are similar. For better supporting the effect of failure rate’s uncertainty,
several experiments have been done in Section 6.

Several methods have been proposed to take manufacturing variations and uncertainty in input parameter into
account in order to design a robust manufacturing process (Arvidsson and Gremyr 2008; Beiqing and Du 2006;
Gyung-Jin and Lee 2002; Hans-Georg and Sendho 2007; Michael 1996; Torben, Arvidsson, and Gremyr 2009; Wei
et al. 1996; Xiaoping and Chen 2000). In this study, we apply a special case of Taguchi’s method (Jin and Sendhoff
2003) to cope with the uncertainty of the misadjustment and in order to design a robust inspection process plan.
Robustness of an optimal solution can usually be discussed from the following two perspectives:

� The optimal solution is insensitive to any variations of the design variables.
� The optimal solution is insensitive to any variations of the environmental parameters.

Figure 2. Deterministic trade-off cost diagram.



In order to increase the robustness of the solutions, two methods have been mostly used as follows (Beyer, Olhofer,
and Sendhoff 2002; Das 2000):

� Optimisation of the expected value of the objective function under different alteration in the uncertain input
parameters.

� Minimisation of the objective function variance under different alteration in the uncertain input parameters.

It has been mentioned that although the expectation-based measure does not sufficiently take care of variations of
the objective function, these variations are symmetric around the average value; on the other hand, a purely variance-
based measure also does not take the absolute value of the solution into account. Hence, we formulate a single objective
optimisation problem which minimises both expected value and variance of the objective function to search for robust
optimal solutions. For this purpose, two different combinations of expected and variance values, namely Taguchi
methods 1 and 2 (i.e. T1 and T2), are considered as in Equations (41) and (42) that must be minimised (Gyung-Jin
et al. 2006). First, necessary notations are provided as below.

Figure 3. Trade-off cost diagram with lower uncertainty.

Figure 4. Trade-off cost diagram with higher uncertainty.



Parameters:
MCR Number of Monte Carlo runs
x Weight factor of standard deviation in Taguchi method
CPp Process capability. A simple and straightforward indicator of process capability
CPkp Process capability Index. Adjustment of CP for the effect of noncentred distribution

Variables:
lcost Cost mean value
rcost Cost standard deviation value
OFVT1 Objective function value of Taguchi method 1
OFVT2 Objective function value of Taguchi method 2

OFVT1 ¼ lCost þ xrCost (41)

OFVT2 ¼ lCost � OFVDð Þ2 þ xr2Cost (42)

The purpose of the objective function in Equation (41) is merely to minimise variation through expected value and
standard deviation; while the objective function in Equation (42) not only tries to reduce variation through expected
value and standard deviation, but also attempts to shift the mean value to a target value (i.e. deterministic value).

Now, we first need to vary the misadjustment in its variation interval then calculate the expected and standard devia-
tion values through different variations. This procedure is repeated for each solution. Finally, a solution with the mini-
mum value of objective functions (41) or (42) would be the most robust one.

To generate different values for misadjustment, a Monte Carlo simulation technique is utilised. In order to generate
random values of misadjustment, it must be regarded that the quality characteristic k of operation p needs monitoring or
conformity inspection. Based on the type of inspection, the failure rate in the presence of monitoring (FRMI

pk ) and confor-
mity (FRCI

pk ) inspections is calculated as Equations (43) and (44) (Kane 1986).

FRMI
pk ¼ 1� P z� 3� CPp � rMI

� �þ P z� � 3� CPp � rMI

� �
(43)

FRCI
pk ¼ 1� P z� 3� CPkp � rCI

� �þ P z� � 3� CPkp � rCI
� �

(44)

where rMI and rCI are uniformly generated from 0; 1½ � and 0; 2½ � intervals, respectively. It should be noted that these
intervals are provided by experts. Accordingly, the flowchart of T1 and T2 robust methods are as Figures 5 and 6,
respectively.

5. Proposed solution algorithm

In order to solve the proposed process inspection plan with stochastic complexity, the solution algorithm must be capa-
ble of obtaining the optimal or near-optimal solution within the reasonable time. There are several methods in the litera-
ture such as simplex and dynamic programming-based optimisation algorithms for providing an optimal solution for
small-size problems (Shukla, Tiwari, and Ceglarek 2013; Taha 2006). However, most of the real-world problems have
large sizes and solving them by mathematical programming approaches takes considerable computational time. There-
fore, to cope with this challenging issue, a well-known evolutionary algorithm, namely genetic algorithm (GA), is uti-
lised to solve the proposed process inspection planning. It has been shown that evolutionary algorithms such as genetic
algorithms (Holland 1975) or evolution strategies (Back, Hoffmeister, and Schwefel 1991) are efficient and robust
approaches to solve a wide range of optimisation problems. Application of these algorithms in the area of inspection
planning and allocation can be found in Hanne and Nickel (2005), Shiau (2003b), Alam et al. (2003) and Shiau, Lin,
and Chuang (2007).

GA is an algorithm inspired by natural evolution to solve optimisation problems (Goldberg 1989; Holland 1975).
Each solution of a given problem is represented in the form of a string, called chromosome, which is a combination of
several genes that hold a set of information about the problem (Goldberg 1989). GA starts with a randomly generated



population of individual solutions (i.e. chromosomes). The fitness of each chromosome reflects the value of the objec-
tive function. To find better solutions (offspring), best chromosomes share their information through crossover and muta-
tion operators. The new created solutions are then evaluated and are used to create a new generation if they provide
better fitness. This process is repeated fore given number of iterations to obtain the best individual.

Figure 5. Flowchart of the T1 method.

Figure 6. Flowchart of the T2 method.



Each chromosome of the proposed process inspection planning problem must contain information about which-what
and when decisions. For this aim, a new solution representation is developed which includes two different parts repre-
senting (1) which-what and (2) when decisions. For example, consider a problem with 6 quality characteristics with
which-what and when decisions as shown in Figures 7 and 8, respectively.

In Figure 7, each column represents a quality characteristic. Moreover, at each column, value 1 at the first row
means that the related quality characteristic needs monitoring inspection and value 1 in the second row indicates the
need for conformity inspection. Accordingly, in Figure 7, quality characteristics number 1, 2 and 4 need CI, quality,
characteristic number 3 needs both MI and CI and quality characteristic number 5 and 6 need MI. In Figure 8, the col-
umns explain the operations and the rows signify the quality characteristics. Therefore, value 1 at each array indicates
that the inspection of related characteristic (i.e. the row number of an array) is performed after the determined process
(i.e. the column number of an array). For instance, MI for characteristic numbers 3, 5 and 6 is carried out after opera-
tion number 3, 6 and 6, respectively. Besides, CI of characteristic number 1, 2, 3 and 4 is carried out after operation
number 3, 6, 6 and 6, respectively.

6. Experimental results

In this section, in order to validate the correctness and performance of the proposed mathematical model and solution
algorithm, the model is applied on an industrial case related to a part with 15 quality characteristics. The presented GA
is coded in MATLAB environment and runs using a computer with Intel Pentium 4, 2.3 GHz CPU and 4GBof RAM.

Figure 7. Which-what decision.

Figure 8. When decision.

Figure 9. Solid frame of the industrial part.



First, some information about the industrial case such as production time, process capabilities, failure rate and allowable
places to perform an inspection for each quality characteristic is presented. Then, the results of the model for the indus-
trial case are provided.

A crucial part in a car manufacturing company with 15 different quality characteristics has been selected for our
case. Figures 9 and 10 demonstrate the solid frame of the part and labelled quality characteristics which need to be
inspected. Some required deterministic information (i.e. without misadjustment) about the industrial case is listed in
Table 1, in which first to seventh columns explain the number of the operations; name of the operation; the production
time; process capability Cp and Cpk and failure rates with and without monitoring inspection. Besides, the allowable
places (AP) that inspections (i.e. CI and MI) of each quality characteristic can be performed are listed in the last

Figure 10. Labelled operations of the industrial part.

Table 1. Information about the industrial case.

Operation number Operation name

Details

PT Cp Cpk FR1 FR2 AP

1 Rough milling PL100 0.148 2 1.50 1.97e-9 6.79e-6 1→13
2 Rough milling PL100 0.166 2 1.50 1.97e-9 6.79e-6 2→14
3 Rough milling PL101 0.133 2 1.66 1.97e-9 6.35e-7 3→15
4 Boring CY110 0.154 1.60 1.33 1.58e-6 6.60e-5 4→10
5 Rough drilling CY108 & CY109 0.09 2 1.66 1.97e-9 6.35e-7 5→10
6 Chamfering CY108 & CY109 0.25 2 1.66 1.97e-9 6.35e-7 6→6
7 Chamfering CY100 & CY101 0.257 1.50 1.20 6.79e-6 3.18e-4 7→15
8 Boring CY100 0.257 1.50 1.20 6.79e-6 3.18e-4 8→15
9 Boring CY101 0.122 1.66 1.30 6.35e-7 9.61e-5 9→12
10 Rough drilling CY102 & CY103 0.109 1.66 1.40 6.35e-7 2.66e-5 10→12
11 Rough drilling CY111 0.134 1.66 1.40 6.35e-7 2.66e-5 11→15
12 Boring CY108 & CY109 0.122 1.30 1.10 9.61e-5 9.66e-4 12→15
13 Boring CY102 & CY103 0.122 1.30 1 9.61e-5 2.69e-3 13→15
14 Boring CY111 0.117 1.66 1.33 6.35e-7 6.60e-5 14→15
15 Finish milling PL100 0.129 1.66 1.33 6.35e-7 6.60e-5 15→15



column. For instance, for the characteristic number 4 which belongs to the operation number 4, MI or CI can be
performed at any place after the operation number 4 to 10 and not further.

First of all, the effect of misadjustment’s uncertainty on the objective function is investigated for both inspection
strategies as Figure 11. Vertical and horizontal axes represent per cent of increase in total cost and values of misadjust-
ment, respectively. The percentages of vertical axis have been calculated in comparison with deterministic value of the
problem. In horizontal axis, for instance, misadjustment value equal to 2 means that the expected value (EV) of the pro-
cess varies upon EV � 2r;EV þ 2r½ �, where r is the dispersion of the process. It can be seen that by increasing the
value of misadjustment, total cost of both strategies is extremely increased. In addition, the final inspection plan is also
changed. It means that an optimal solution for deterministic problems may not be optimal any more for uncertain ones
(see Figures 12–17).

In Figure 11, it can be seen that both inspection strategies are strongly sensitive to alteration of misadjustment. How-
ever, uncertainty in misadjustment leads to higher increase in cost in MI-and-CI strategy. It means that under MI-and-CI
strategy, higher cost is required to make the inspection plan robust. Figures 12–14 illustrate the result of which-what
and when decisions for deterministic (D) and T1 and T2 variants of the problem for MI-or-CI strategy. Similarly,

Figure 11. Percentage of cost increase versus misadjustment alteration.

Figure 12. Deterministic result of the MI-or-CI strategy.



Figures 15–17 illustrate the result of the which-what and when decisions for deterministic (D) and T1 and T2 variants
of the problem for MI-and-CI strategy. Besides, part (c) of all Figures 12–17 illustrates scheme of the process and
inspections. It is noteworthy that Figures 12–17 also prove the pseudo-trade-off diagrams in Section 4. Finally, details
of all the results have been presented in Table 2.

It can be seen from Figures 12 and 15 that not only no CI has been performed for all the quality characteristics, but
also operations 2, 5 and 6 do not need MI under MI-and-CI strategy. Despite of the deterministic method, considering
the uncertainty in the model causes CI to be performed for some of the quality characteristics. This study assumes that
the minimum value of lCost is OFVD. Therefore, both T1 and T2 act similarly and obtain the same solution if and only
if their objective functions are to minimise lCost and lCost � OFVDð Þ, respectively. On the other hand, considering

Figure 13. T1 result of the MI-or-CI strategy.

Figure 14. T2 result of the MI-or-CI strategy.



standard deviation as well as the variance of the solutions in T1 and T2 makes a trade-off between manufacturing and
warranty costs. It means that the lower the value of variation is, the lower the value of warranty cost is. Consequently,
solutions with lower warranty cost are obtained by setting higher values of p.

In other words, increasing the value of p decreases the value of warranty cost. However, in MI-or-CI strategy, the
results of T1 and T2 are similar with ¼ 0:4. T2 has higher manufacturing and lower warranty costs comparing to T1 in
MI-and-CI strategy. It can be explained that in T2 comparing to T1 in the same value of p, the term of minimising devi-
ation in the objective function (i.e. kr2Cost) relatively dominates the term of minimising mean cost (i.e.
lCost � OFVDð Þ2). In addition, under MI-and-CI strategy, three sets of operations {2,5,6}, {1,2,3,5,6} and {1,2,3,6} do
not need any inspection for the deterministic T1 and T2 methods. According to Table 2, the objective function values of
MI-or-CI strategy are more than those of MI-and-CI strategy for all the methods.

Figure 15. Deterministic result of the MI-and-CI strategy.

Figure 16. T1 result of the MI-and-CI strategy.



There are some characteristics which impose more variation to the objective function, and it can be proved that per-
forming CI for them will reduce the variation (see Section 4). Regarding this proof, it can be easily conceived that
FRMI

pk and FRCI
pk have an inverse relationship with CPkp and CPp, respectively. Therefore, lowering the values of CPkp

and CPp increases the values of FRMI
pk and FRCI

pk , respectively. According to what we mentioned in Section 4, more num-
bers of NC are needed once the failure rate of operations is increased. Since in the in-hand industrial case, the cost of
the conformity inspection for all the operations is the same, an operation with the lowest value of CP is selected and
goes under conformity inspection, then, this selection is continued for the next lowest values of CPs until the total cost
reaches its global minimum. Since, the ascending order of CP for the operations of the industrial case is like
CP12 ¼ CP13\CP7 ¼ CP8\CP4 ¼ CP9 ¼ CP10 ¼ CP11 ¼ CP14 ¼ CP15\CP1 ¼ CP2 ¼ CP3 ¼ CP5 ¼ CP6, the result
of T1 method under MI-or-CI strategy contains 6 conformity inspections for operations 7, 8 and 12 to 15. As a result,

Figure 17. T2 result of the MI-and-CI strategy.

Table 3. Manufacturing cost versus warranty cost.

Method Strategy Total cost Manufacturing cost Warranty cost

D MI-or-CI 5160250 5136050 24200
T1 6080603 6078843 1760
T2 6080603 6078843 1760
D MI-and-CI 5068120 5029400 38720
T1 6000253 5970993 29260
T2 6104763 6077043 27720

Table 2. Details of cost objective function for the deterministic data.

Method Strategy
Total
cost

Production
cost

Scrap
cost

Fixed
conformity

cost

Fixed
monitoring

cost
Variable

conformity cost
Variable

monitoring cost
Warranty

cost

D MI-or-
CI

5160250 4812500 0 0 9000 0 314550 24200
T1 6080603 4811774 2700 3600 5400 1045669 209700 1760
T2 6080603 4811774 2700 3600 5400 1045669 209700 1760
D MI-and-

CI
5068120 4812500 0 0 7200 0 209700 38720

T1 6000253 4811774 2700 4200 1800 1045669 104850 29260
T2 6104763 4811774 2700 4200 3000 1045669 209700 27720



Figure 18. Impact of production cost on total cost.

Figure 19. Impact of scrap cost on total cost.

Figure 20. Impact of inspections cost on total cost.



since operation number 7, 8, 12 to 15 have the lowest capability, they are selected for performing CI in any case of
uncertainty.

Other important results show that extra costs, amount to 920353 (i.e. 6080603� 5160250) and 932133
(i.e. 6000253� 5068120) are needed to obtain robust solutions for T1 method in both strategies. Similarly, for T2
method, extra costs, amount to 920353 (i.e. 6080603� 5160250) and 1036643 (i.e. 6104763� 5068120) are needed.
Therefore, in order to obtain robust solutions, T2 method is more costly comparing to T1.

Values of manufacturing and warranty cost for each method under both strategies are listed in Table 3, where manu-
facturing cost is equal to the total cost without the warranty cost. According to Table 2, although the deterministic
method under MI-and-CI strategy has lower manufacturing cost (i.e. efficient), it is less responsive regarding customers
while its warranty cost is more than MI-or-CI strategy. Similar tithe deterministic method, for T1 and T2, MI-and-CI
strategy is efficient, while MI-or-CI has higher responsiveness.

In order to investigate the effect of alteration of different cost-related parameters on the objective function, Figures
18–21 illustrate impact of increase in production, scrap, inspection and warranty costs on the objective function, respec-
tively. Although it is obvious that by increasing the value of the cost-related parameters, the objective function is also
increased, but production, inspection, scrap and warranty costs have the highest impact on the objective function value,
respectively. It is also noteworthy that despite of scrap and warranty cost, the objective function value is smoothly
increased by increasing the production and inspection costs. It means that the objective function is more sensitive to the
alteration of scrap and warranty costs. In addition, in Figure 20, it has been shown that increasing the cost of conformity
inspection has more effect on the objective function in comparison with monitoring inspection.

7. Conclusion

This study proposed a new optimisation framework to design an effective process inspection planning based on a
mixed-integer linear programming (MILP) model. Through the proposed MILP, two different kinds of inspection,
namely monitoring and conformity inspections, have been taken into account. The main purpose of the proposed MILP
model is making a twofold decision on 1) which quality characteristic needs what kind of inspection and 2) when the
inspection on these characteristics should be performed. Besides, two different strategies have been considered in the
problem, in which limitation of inspection type in the first strategy has been relaxed in the second strategy. The pro-
posed MILP model minimises the total production cost that is the sum of manufacturing and warranty costs. Due to the
stochastic nature of production processes, the proposed MILP has been studied under the misadjustment uncertainty. To
cope with this uncertainty, two robust optimisation approaches based on Taguchi and Monte Carlo methods have been
developed. To achieve optimal solutions under uncertainty for the proposed model, a well-known evolutionary algo-
rithm, namely genetic algorithm (GA), is used. Finally, applying the model on a real industrial case draws the following
conclusions:

Figure 21. Impact of warranty cost on total cost.



� Manufacturing and warranty costs are in conflict in terms of the number of scraps,
� Higher level of misadjustment uncertainty increases the number of scraps,
� Increasing the level of uncertainty increases the number of conformity inspections.
� In the presence of uncertainty, conformity inspection is performed for operations with lower capability,
� An extra cost is charged to design of a robust process inspection plan,
� The responsiveness of the robust solutions are more than deterministic ones,
� The efficiency of the deterministic solutions is more than the robust ones,
� Deterministic solution under the MI-and-CI strategy is more efficient but less responsive comparing to the

MI-or-CI strategy,
� Robust solutions of T1 and T2 methods under the MI-and-CI strategy are more efficient but less responsive rather

than the MI-or-CI strategy,
� The MI-or-CI strategy should be adopted to enhance customer satisfaction by lowering the number of scraps that

are sold to the customers,
� The MI-and-CI strategy should be adopted to reduce the total cost,
� By increasing the value of the cost-related parameters, the objective function is also increased,
� Production, inspection, scrap and warranty costs have the highest impact on the objective function value, respec-

tively,
� Despite of scrap and warranty cost, the objective function value is smoothly increased by increasing the produc-

tion and inspection costs. It means that the objective function is more sensitive to the alteration of scrap and war-
ranty costs.

Since, alteration of input parameters strongly affects the value of the objective function, designing global robust
inspection plans by considering uncertainty in other parameters such as costs, time, dispersion and inspection errors can
be a good future research direction.
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