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Abstract

In this work, a weakly compressible smoothed particle hydrodynamics (WC-
SPH) multiphase model is developed. The model is able to deal with soil-
water interactions coupled in a strong and natural form. A Regularized Bing-
ham Plastic constitutive law including a pressure-dependent Mohr-Coulomb
yield criterion (RBPMC-αµ) is proposed to model fluids, soils and their inter-
action. Since the proposed rheology model is pressure-sensitive, we propose a
multiphase diffusive term to reduce the spurious pressure resulting from the
weakly compressible flow hypothesis. Several numerical benchmarks are in-
vestigated to assess the robustness and accuracy of the proposed multiphase
SPH model.
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1. Introduction

The analysis of soil-water interactions plays an important role for the as-
sessment and mitigation of many environmental and geotechnical problems,
such as soil erosion, scouring around offshore structures, landslide-generated
tsunamis and their effect on reservoirs and adjacent structures. Numerical
simulation is considered as a powerful tool for the analysis of these prob-
lems. Soil-water interaction problems are of a multi-component nature, and
they are generally characterized by large deformations. Mesh-based numeri-
cal methods (Finite element, Finite Volume or Finite Difference ) are hardly
applicable in these problems due to the excessive winding, twisting and dis-
tortion of the mesh that may happen.

An alternative numerical method is the Smoothed Particle Hydrodynam-
ics method (SPH). This meshless method is widely used to deal with the
simulation of large deformation problems. SPH was first developed in 1977
for astrophysical applications [1] [2]. Later, in 1988 it was applied to the
simulation of fluid flows [3]. Since then, the SPH method was widely used
and got lots of improvement [4].

In the context of SPH method, four approaches are generally used in the
literature to model soil-water interactions. In all of these four approaches,
the water flow is modeled using Navier-Stokes equations or, alternatively,
Euler equations with an artificial viscosity. The difference between the four
approaches relies on the method used for soil modeling.

In the first approach, the soil is considered as a rigid solid. This is used
generally when the soil is less exposed to the deformation, and also when the
analysis is focused only on the water behavior resulting from the soil mass
motion. The landslide generated impulsive water wave is the most modeled
phenomenon using this approach [5, 6, 7] .

The second approach is based on the modeling of the soil as a Newtonian
fluid (the soil is considered as a fluid with a very high viscosity ) using Navier-
Stokes equations. This approach can give acceptable results only when an
appropriate Newtonian viscosity is used for the soil. However, the results
given by this approach are not very accurate in some problems because no
physical propriety of soil is introduced to the model. Schwaiger et al [8] used
this approach to simulate the 1958 subaerial landslide Tsunami at Lituya
Bay (Alaska) [9].

In the third approach, an elasto-plastic constitutive model is used to
describe the soil behavior. The main advantage of this approach, compared
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with the previous approaches mentioned above, is that the physical properties
of soil used in the model, such as Poisson coefficient ν, Young modulus E,
Cohesion c, angle of friction φ, are realistic. However, the motion of soil and
water particles is solved separately using different SPH models (Navier-Stokes
model for Water and an elasto-plastic constitutive model for soil) which leads
to a weak coupling between the soil and water. A special treatment is needed
for the coupling. This approach was applied on several geotechnical problems
such as, the landslides generated water wave [10], simulations of excavation
by a water jet on dry and saturated soil [11] [12], and local scouring on rubble
mound due to tsunami overflow [13].

Finally, the last approach is based on the use of a Non-Newtonian fluid
model. The soil is considered as a rigid mass under certain stress (called
yield stress τy). The yield stress can be a constant value equal to the cohe-
sion of soil τy = c for non-frictional materials (Bingham/ purely cohesional
materials) or it can be variable depending on pressure, cohesion c and angle
of friction (pressure-dependent rheology model). In this latter case, the soil
is modeled using plastic strength models such as Mohr-Coulomb [14] [15] or
Drucker–Prager [16] yield criteria. In this approach, the soil is considered
as purely plastic with negligible elasticity. The advantage compared with
all the previous models is the strong coupling between soil and water, with-
out the need of any special treatment for the coupling. In this approach,
the Navier Stokes equations are used for both water and soil phases. This
approach has been used to simulate many geotechnical problems caused by
soil-water interactions. We refer the reader to [7, 17] for applications in the
context of non-frictional soil (Bingham soil)and to [18, 19, 20, 21, 22, 23, 13]
for applications of the pressure-dependent rheology model.

In this work, a weakly compressible smoothed particle hydrodynamics
(WCSPH) model for multiphase problems was developed. The model is also
able to deal with soil-water interactions. Here, the coupling between the
soil and water is achieved with a strong and natural manner. We propose a
new regularized pressure-dependent rheology model that is capable to mimic
the behavior of soil (purely cohesive, and frictional soil) and water (or any
other Newtonian fluid). The proposed model, named RBPMC-αµ, is based
on a Regularized Bingham Plastic constitutive law including Mohr-Coulomb
failure criterion. This model depends on a positive constant parameter (αµ),
that regularizes the model and allows us to obtain greater time steps in the
simulation.

Moreover, we propose a modified version of the artificial diffusive term
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(Dδ−SPH) introduced in [24] in the context of weakly compressible flow hy-
pothesis, for the mitigation of spurious numerical high-frequency oscillations.
This modification (Dδ−MSPH) allows us to extend the Dδ−SPH formulation to
multiphase problems with constitutive law including Mohr-Coulomb failure
criterion.

Several benchmarks are investigated to validate the accuracy and appli-
cability of the proposed multiphase SPH model.

The paper is organized as follows. First, the governing equations and the
physical model are introduced, and the new RBPMC-αµ model is derived
in this section. Then, in section 3, the discrete form of the equations with
the new formulation of the artificial diffusive term is presented. Finally, in
section 4, validation examples are presented.

2. Governing equations and physical model

In this work, the soil material is assumed to be a fluid-like mass. The mo-
tion of soil and fluid phases are modeled using Navier-Stokes equations. It
is assumed that the fluid phase is weakly compressible, viscous and flow in
isothermal conditions. With this assumptions, the Navier-Stokes and dis-
placement equations can be written in a Lagrangian framework as

dρ
dt

= −ρ∇.v

dv
dt

= 1
ρ

−∇p+∇ · τ︸ ︷︷ ︸
∇·σ=∇·(−pI+τ )

+ g

dr
dt

= v

(1)

where d(.)
dt

represents the Lagrangian derivative. ∇ is the nabla operator,
ρ, p,v, r and g represent density, pressure, velocity vector, position vector,
and the gravitational acceleration vector, respectively. σ is the Cauchy stress
tensor and τ is known as the deviatoric part of the Cauchy stress tensor (for
any continuum material) or also called the viscous tensor (for fluids).

Under the weakly-compressible hypothesis, an explicit equation of state
(EOS) is used to compute the pressure from the density. In this work we use
the isothermal equation of state proposed in [25]

p = pr

{(
ρ

ρ0

)
− 1

}
(2)
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where ρ0 and pr denote the reference density and the reference pressure,
respectively. The reference density is related to the reference speed of sound
c0 by the following equation

pr = ρ0c
2
0 (3)

The reference speed of sound c0 can be determined as [25, 26]

c20 ≥ max

{
U2
0

δρ
,
‖g‖L0

δρ
,
µeffU0

ρ0L0δρ

}
(4)

Where U0, L0, µeff and σ are the reference velocity, reference length, and
effective dynamic viscosity (apparent viscosity), respectively. The term δρ
represent the ratio of density variation. In this work we set this value to 1%
(δρ = 0.01 ).

In the case of multiphase fluid flows, the reference speeds of sound are
chosen to fulfill the equality of reference pressures for each fluid phase

pr = pr1 = ... = prNf (5)

pr = ρ01c
2
01

= ... = ρ0Nf c
2
0Nf

. (6)

where the subscript Nf denotes the number of fluid phases. This condition
enhances the numerical stability of the computations [27].

The hypothesis of non-Newtonian fluids [28, 29] to model the behavior of geo-
materials (soil, land, sediment, ...) is commonly accepted. A non-Newtonian
fluid can withstand to deformation and remains rigid until a certain value
of shear stress (called the yield stress (τy)) is reached. When this value is
reached, these materials begin to flow.

The Bingham plastic model [30] is one of the simplest and more commonly
used Non-Newtonian model. In this model, when the yield stress limit (τy)
is exceeded, the material behaves as Newtonian fluid. Otherwise, it behaves
as a rigid body. The constitutive law for a Bingham Plastic can be written
in tensorial form as

{
τ =

{
τy
‖D‖F

+ µ
}

D ‖τ‖F ≥ τy

D = 0 ‖τ‖F < τy
(7)
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Where D is the rate of strain tensor and µ is the dynamic plastic viscosity
which defines the viscosity of the fluid-like material (soil) after yielding.

The rate of strain tensor is defined as D = ∇v + (∇v)T , where ∇v denotes
the velocity gradient tensor, and the superscript T denotes its transpose
tensor.

The notation ‖.‖F refers to Frobenius norm. In equation (7) the yielding
criterion of soil materials is defined using the Von Mises criterion [31].Therefore,
the quantities ‖D‖F and ‖τ‖F can be expressed as follows

‖D‖F =

(
1

2
D : D

) 1
2

(8)

‖τ‖F =

(
1

2
τ : τ

) 1
2

(9)

The discontinuity in the expression of the Bingham Plastic constitutive
model (7) leads to considerable numerical difficulties; hence, smooth models
are usually preferred and several different approaches have been used. For
instance we cite the exponential model [32] and the Bercovier and Engelman
(BE) model [33].

The Bingham model can be regularized using a control parameter (εr > 0)
for the approximation of the discontinuous model. The resulting model is
similar to the one developed in [33].

τ =

{
τy√

‖D‖2F + ε2r
+ µ

}
D (10)

When εr = 0 in equation (10) with ‖D‖F 6= 0, we return to the original
constitutive model (7). For this reason, the parameter εr must be chosen suf-
ficiently small to insure the convergence between the regularized and original
Bingham plastic models.

In the framework of Generalized Newtonian Fluids (GNL) [30, 34], the
viscous stress tensor τ is given by the following constitutive equation:

τ = µeff (‖D‖F )D (11)

Where µeff is the effective viscosity.
From the equations (10) and (11) the effective viscosity can be expressed as:
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µeff (‖D‖F ) =
τy√

‖D‖2F + ε2r
+ µ (12)

The choice of a stable simulation time step is related to the maximum
value that the effective viscosity can reach in the rigid part of the material
during the simulation period (see the viscous stability condition in section
3.2, equation (56)). The direct use of the model (10) or even the exponential
[32] or the BE [33] models can greatly restrict the simulation time step.

In order to solve this problem, we propose a new regularized constitutive
law that allows previously the choice and the control of the computational
time step. Let us suppose that the maximum effective viscosity presented in
the rigid region can be expressed linearly in terms of the yielding viscosity
(plastic viscosity) µ as max (µeff ) = αµµ, with αµ a positive constant.

It is obvious that the maximum value of µeff is reached in the unde-
formable regions (‖D‖F → 0).Therefore, from equation (12)the regulariza-
tion parameter εr of the equation (10) results εr =

τy
(αµ−1)µ . Hence, we get

τ =

 µ(αµ − 1)τy√
(µ(αµ − 1)‖D‖F )2 + τ 2y

+ µ

D (13)

In figure 1, the regularized Bingham constitutive model (13) with different
values of the constant αµ = {10, 20, 100, 1000} is plotted and compared with
the discontinuous Bingham plastic model (7). We can clearly observe that
the proposed regularized Bingham plastic model converges to the original
discontinuous model (7) when the constant αµ is sufficiently large.

The regularized Bingham plastic model presented in this work (equation
(13)) can be considered as the smooth version of the discontinuous bilinear
model presented by Hosseini [35].

2.1. Determination of the yield stress
Now, it is required the determination of the yield stress τy in order to close

the model. At continuum level, the geomaterials are generally described using
pressure-dependent yield criteria where the Von Mises criterion [31] cannot
be satisfyingly represented because it does not include the pressure in its for-
mulation. The Mohr-Coulomb [14] [15] or the Drucker-Prager [16] strength
criteria are the most widely used for pressure sensitive materials. The dif-
ference between these criteria is that the Drucker-Prager criteria includes all
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Figure 1: Proposed Regularized Bingham Plastic Model (RBPM) with αµ =
{10, 20, 100, 1000} and original Bingham Plastic Model (BPM) (solid line).

the principal stresses (Three principal stresses in 3D space and two in 2D
space) similarly to Von-Mises criterion, whereas the Mohr-Coulomb criterion
includes only two principal stress (the maximum and minimum principal
stress, similarly to Tresca criterion). Note that Mohr-Coulomb and Drucker-
Prager criteria are identical in a two dimensional space.

The Mohr-Coulomb criterion is based on a linear failure envelope which
combines the normal and shear stresses (σ, τ) on the failure plane by the
relation

τ = c− σ tanφ (14)

Where c and φ denote the cohesion and the angle of internal friction (
equivalent to the repose angle) of the material. The both parameters repre-
sent the physical proprieties of materials.

The materials governed by the Mohr-Coulomb criterion for any given
stress state fails (yields) when the Mohr’s circle is tangent to the failure
envelope (figure 2). By using trigonometric relations, an alternative form of
the relation in terms of principal stresses can be expressed as

σ1 − σ2
2

= −σ1 + σ2
2

sinφ+ c cosφ (15)
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Figure 2: Mohr-Coulomb yield criterionn. The Mohr circle is based on the principal
stresses σ1 and σ2. The onset of yielding is occurring when the Mohr circle is tangent to
the failure envelope.

The second invariant J2 of the deviatoric stress tensor and the pressure p
(negative mean stress) can be expressed in terms of principal stresses in two
dimensions space as

J2 =
1

2
τ : τ

=
1

2
tr
(
τ 2
)

=
1

2
tr

({
σ − I1

2
I

}2
)

=
1

2

(
tr(σ2)− I21

2

)
=

1

4
(σ1 − σ2)2

(16)

The notation tr(A) presents the trace of the square matrix A. The terms
σ1 and σ2 denote by convention the biggest and smallest principal stresses of
the Cauchy stress tensor σ (σ1 > σ2), respectively. While I1 represents its
first invariant that can be written in a two-dimensional space as

I1 = σ1 + σ2 (17)

The pressure p can be expressed in terms of the first invariant I1 or
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principal stresses as

p = −I1
2

= −σ1 + σ2
2

(18)

Therefore, the Mohr-Coulomb criterion envelope can also be written in
terms of pressure p and the second invariant J2 as√

J2 = p sinφ+ c cosφ (19)

As explained previously, the Bingham Plastic material starts to yield
under the Von Mises criterion when

‖τ‖F =
√
J2 = τy (20)

Hence, from the equations (20) and (19), the yielding stress τy of a material
which yields under the Mohr-Coulomb criterion can be expressed as

τy = p sinφ+ c cosφ (21)

Summarizing the previous developments, in this work the geomaterials
have a Bingham Plastic behavior and yield under the Mohr-Coulomb crite-
rion. This leads to a regularized constitutive law that we name RBPMC-αµ

τ =

 µ(αµ − 1) (p sinφ+ c cosφ)√
(µ(αµ − 1)‖D‖F )2 + (p sinφ+ c cosφ)2

+ µ

D (22)

The use of the equation of state to determine the pressure from the den-
sity can lead to a negative pressure. For this reason an alternative positive
pressure {p}+ = max{0, p} is used instead of p. Thus, the RBPMC-αµ model
(23) reads as

τ =

 µ(αµ − 1) ({p}+ sinφ+ c cosφ)√
(µ(αµ − 1)‖D‖F )2 + ({p}+ sinφ+ c cosφ)2

+ µ

D (23)

The present RBPMC-αµ constitutive law (equation (23)) can be special-
ized to other rheological models by changing the following parameters:

• Newtonian fluid (water, ...): set (c = φ = 0) in equation (23) and use
the Newtonian dynamic viscosity instead of µ;
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• Cohesionless or purely frictional materials: set c = 0 in equation (23) ;

• Bingham fluid (non-frictional/purely cohesional materials): use the
value of yielding stress τy as material cohesion c (τy = c) and set the
frictional angle to zero (φ = 0).

In this way, only the presented RBPMC-αµ constitutive model is used
to describe all fluid and/or fluid-like materials involved in the test cases
presented here. Note that the flexibility of our formulation makes very easy
its implementation in existing codes.

In some previous works [36, 37], the yielding stress of purely frictional ma-
terials is generally taken as τy = p tanφ which is equivalent to the presented
model for small values of frictional angle φ. However, for greater values of φ
this formulation becomes impractical and can distort the simulation results
[38]. Note that this problem is avoided with the use of the formulation given
by equation (23).

The effective viscosity can be expressed in term of pressure, cohesion, and
frictional angle as

µeff (‖D‖F ) =
µ(αµ − 1) ({p}+ sinφ+ c cosφ)√

(µ(αµ − 1)‖D‖F )2 + ({p}+ sinφ+ c cosφ)2
+ µ (24)

For the simulation of the granular materials the dynamic plastic viscosity
can be calculated using the µ(I) rheology method [39] , as it is considered
in [40, 36]. It’s shown in the work of Ionescu et al [36] that the choice of
constant value of the plastic viscosity does not change much the results if
it’s within the good interval comparing with those obtained from value of
the µ(I) rheology [39]. In this work the plastic viscosity is chosen to be a
constant value.

In the case of the modeling soil-water interactions ,the plastic viscosity is
set equal to the viscosity of the water [41].

3. Discrete form of governing equations

SPH method discretizes the physical space into many discrete elements, usu-
ally called particles, without any connectivity among them. This method is
based on the approximation of any physical scalar (or vector) field using a
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convolution. Numerically, it is performed by replacing the Dirac delta func-
tion with a regular smooth function, which is called kernel. This function
must satisfy some conditions such as symmetry (even function), normaliza-
tion, compactness of its support, among others. We refer the interested
reader to [42] for more details. The kernel function used in this work is the
quintic spline [43] (equation (25)). This kernel was selected since it prevents
a high disorder in the particle distribution. The kernel function depends
on a parameter h, called the smoothing length, which defines the domain
of influence of the kernel function. In this work, the smoothing length h is
a constant which is chosen relative to the initial inter-particle distance δx0
(h = 1.33δx0).

W (r, h) = αd


(3− r

h
)5 − 6(2− r

h
)5 + 15(1− r

h
)5 0 ≤ r

h
< 1

(3− r
h
)5 − 6(2− r

h
)5 1 ≤ r

h
< 2

(3− r
h
)5 2 ≤ r

h
< 3

0 r
h
≥ 3

(25)

where αd = 7
478h2π

for 2D cases, and r is the distance between two neighboring
particles i and j (r = rij = ‖ri − rj‖).

In this work, the discrete from of the continuity equation of system (1) is
expressed as

dρi
dt

= ρi

nb∑
j

Vjvij∇Wij = ρi

nb∑
j

mj

ρj
vij∇Wij (26)

Where Vi = mi
ρi

is the volume of particle i. The term
(
∇Wij =

∂W
∂rij

eij

)
is the

gradient of the kernel function, and eij =
rij
rij

=
ri−rj
rij

is the unit inter-particle
vector. The initial particle volume is taken as V0 = δx0

d, with d is the space
dimension number. The mass of each particle i of different fluid phases is
chosen to be constant and equal to m = ρ0PhaseV0 during all the simulation
time.

This formulation is accurate for the case of more than one fluid phase
and specially with large density ratios as is reported in [44, 45].

In the context of a weakly compressible flow hypothesis, the determina-
tion of the pressure via the equation of state can originate numerical arti-
facts, in the form of spurious numerical high-frequency oscillations in the
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pressure field. This is specially critical when the Mohr-Coulomb criterion is
used.Ferrari et al [46] were the first to propose the addition of an artificial
diffusive term to mitigate the spurious pressure oscillations. In their work,
Ferrari et al. added the dissipation through the introduction of a Rusanov
flux into the continuity equation. Here we follow the approach of Molteni
and Colagrossi [47], by adding an artificial diffusive term Dδ−SPH to the right
hand side of the continuity equation (26), resulting in

dρi
dt

= ρi

nb∑
j

mj

ρj
vij∇Wij +Dδ−SPHi (27)

with

Dδ−SPHi = δhic0

nb∑
j

Ψij∇WijVj (28)

and Ψij is defined as

Ψij = 2 (ρi − ρj)
rij
r2ij

(29)

Unfortunately, the use of Dδ−SPH method with equation (28)for multi-
phase fluid flows can generate important numerical issues at the interface
between the phases. These issues are principally caused by the repulsive
forces generated by the difference in density between the phases. In order
to alleviate these problems, Fourtakas and Rogers [21] proposed to use the
Dδ−SPH formulation in the fluid phase and sediment phase independently.
That is,only particles belonging to the same fluid phase are considered in the
computation of Dδ−SPH . However, this strategy does not completely solve
the numerical issues, specially in the case of simulations that present a low
motion.

In this work, we propose a modified version of the Dδ−SPH term , that
is able to deal with single and multiphase fluid applications. The principal
idea is to assume that all particles j neighbors of the particle i are part of
the same phase as i (that is, they have the same density reference ρ0i), but
they also conserve their original particle density ratio βρj =

ρj
ρ0j

(see figure 3
). Applying this assumption on the equation (29), we get:

ΨMSPH
ij = 2

(
βρi − βρj

)
ρ0i

rij
r2ij

(30)
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Then, the multiphase diffusive term can be written as

Dδ−MSPH
i = δ hi c0

nb∑
j

ΨMSPH
ij ∇WijVj (31)

The value of the dimensionless parameter δ is chosen as (δ = 0.1). This
value is used in this work for all examples.

Note that the formulation of multiphase diffusive term of equation (31)
returns the classical form (equation (28)) in single fluid phase problems.

!"#$%&'& !"#$%&(&

&

)*+,$-".&/&$&0&
)*+,$-".1&/&2&0&

3& &&

$4,.+!*-.&

Figure 3: The illustration of the hypothesis taken to calculate the diffusive term for
multiphase fluid flow (Dδ−MSPH

i ) .

Using the modified formulation in equation equation (27), the value of the
density, and thus of the pressure are significantly improved as demonstrated
later via the example of Section 4.1.
The acceleration of the particle i due to the gradient of pressure is approxi-
mated following [48] as

1

ρi
∇pi =

1

mi

nb∑
j

(
V 2
i + V 2

j

)
p̃ij∇Wij (32)

The term p̃ij is defined to ensure the continuity of pressure even for the
case of discontinuous density between fluid particles (for example, when they
belongs to different phases). Following [49] this term reads as

p̃ij =
ρjpi + ρipj
ρi + ρj

(33)
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Using the same idea for the approximation of the divergence of the viscous
tensor (deviatoric tensor) we obtain

∇ · τi =
1

Vi

nb∑
j

(
V 2
i + V 2

j

)
τ̃ij∇Wij (34)

where the inter-particle viscous tensor τ̃ij is defined as

τ̃ij =
ρiτj + ρjτi
ρi + ρj

(35)

The Taylor expansion of any quantity A around the position ri can be
expressed as

A(rj) = A(ri) +∇A(ri)(rj − ri) +O(r2ij) (36)

and ,

∇A(ri) ≈
A(ri)− A(rj)

r2ij
(ri − rj) ≈ ∇A(rj) (37)

The rate of strain stress tensor is expressed in terms of the velocity gra-
dient as D = ∇v + (∇v)T . Using equation (37) we conclude that

D(ri) ≈ D(rj) ≈ D (38)

Equation (34) can be expressed using the equations (11) and (38) as
follows:

∇ · τi =
1

Vi

nb∑
j

(
V 2
i + V 2

j

) ρiµeffjDj + ρjµeff iDi

ρi + ρj
∇Wij

=
1

Vi

nb∑
j

(
V 2
i + V 2

j

) ρiµeffj + ρjµeff i
ρi + ρj

D ∇Wij

(39)

The term (D ∇Wij) can be simplified as :

D ∇Wij = (∇v + (∇v)T )∇Wij

=
1

r2ij
(vij ⊗ rij)∇Wij +

1

r2ij
(rij ⊗ vij)∇Wij

=
1

r2ij
{vij (rij · ∇Wij) + rij (vij · ∇Wij)}

(40)
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where ⊗ denotes the outer product.
Finally, the divergence operator of the viscous tensor reads as

∇·τi =
1

Vi

nb∑
j

{
V 2
i + V 2

j

r2ij

}
ρiµeffj + ρjµeff i

ρi + ρj
{vij (rij · ∇Wij) + rij (vij · ∇Wij)}

(41)
This obtained formulation is similar to that presented in [50, 51].
The effective viscosity is calculated using the equation (24). Assuming

that the velocity vector in two-dimensional space is v = [u w]T , the Frobenius
norm of the rate strain ‖D‖F can be expressed as

‖D‖F =

√√√√2

((
∂u

∂x

)2

+

(
∂w

∂y

)2
)

+

(
∂u

∂y
+
∂w

∂y

)2

(42)

In this work, the formulation developed by Adami and al [48] is adopted
to approximate the space derivative of the velocity components. This formu-
lation achieves a first order consistency approximation without the need for
matrix inversion operations, contrary to the alternative version of Randles
and Libersky [52]. The velocity components derivatives are expressed in 2D
space as 〈

∇u
〉
=

[
∂u

∂x

∂u

∂y

]T
= 2

∑nb
j Vj(ui − uj)∇Wij∑nb

j Vjrij
∂W
∂rij

(43)

〈
∇w
〉
=

[
∂w

∂x

∂w

∂y

]T
= 2

∑nb
j Vj(wi − wj)∇Wij∑nb

j Vjrij
∂W
∂rij

(44)

The notation
〈
.
〉
denotes the first order consistency approximation of the

quantity {.}.

3.1. Wall boundary conditions
In this work, the rigid wall boundary condition method proposed by Krimi et
al [54] is used. This method is presented as the modified version of general-
ized wall boundary condition method [55] to be well adapted with multiphase
fluid flows. In this method, three layers of dummy particles must be added
in the normal direction to the wall interface (see figure 4). The Free-slip
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or no-slip wall boundary conditions can be applied using this method. The
free-slip boundary condition is applied by simply omitting the viscous in-
teraction between the fluid particle with the adjacent dummy particles in
the calculation of fluid viscous forces (equation (34)). In the case of no-slip
wall boundary condition, a virtual velocity vw is imposed to the wall-dummy
particle interacting with the fluid particle i in equation (34). This velocity
is defined as

vw = 2vi − ṽi (45)

where vi is the prescribed velocity of wall particle i and ṽi denotes the in-
terpolation of the smoothed velocity field of the fluid phase to the dummy
particle position. The term nf refers to the of neighboring fluid particles j
of the wall particle i.

ṽi =

nf∑
j

vjWij

nf∑
j

Wij

(46)

The pressure in the dummy-wall particle is calculated from the neighboring
fluid particles j according to [55]

pw =

nf∑
j

pjWwj + (g − aw)

nf∑
j

ρjrwjWwj

nf∑
j

Wwj

(47)

where the term aw represents a prescribed wall acceleration, if moving walls
are present.

This method is based on the fluid particle mirror similarity, in other words
it assumes that each fluid particle considers all their wall-dummy neighbor
particles as similar to it in terms of density, viscosity and volume. Using this
approach we need to modify equations (32), and (34) as follows
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Figure 4: Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [55]

1

ρi
∇pi =

1

mi

nb∑
j

P̃Vij∇Wij (48)

∇ · τi =
1

Vi

nb∑
j

µ̃effij
V

r2ij
{vij (rij · ∇Wij) + rij (vij · ∇Wij)} (49)

Where PVij and µ̃effij
V are defined as

P̃Vij =

{(
V 2
i + V 2

j

) ρjpi+ρipj
ρi+ρj

if the particle j is a fluid particle
V 2
i (pi + pj) if the particle j is a wall particle

(50)

µ̃effij
V
=

{(
V 2
i + V 2

j

) ρjµeffi+ρiµeffj
ρi+ρj

if the particle j is a fluid particle
2 V 2

i µeff i if the particle j is a wall particle
(51)
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3.2. Time integration
In this work a Predictor-Corrector scheme proposed by Krimi et al [54] is
used for time integration. This scheme uses an explicit Euler method to
predict the velocity (ṽn+1

i ) and the position (r̃n+1
i ) of the particle i.

Subsequently, the predicted velocities and positions are used to compute
the final velocity at n + 1 of the particle i (vi

n+1), by using an implicit
trapezoidal-rule to enhance its accuracy. The position ri

n+1 is advected by
the corrected velocity vi

n+1. The density used for the velocity correction
is the one approximated at the time step n. Finally, the density at time
n + 1 (ρn+1) is computed from the predicted particles velocities (ṽn+1) and
positions (r̃n+1) and also the density at previous time n (ρn) using equation
(27).

The following algorithm summarizes the prediction step.{
ṽn+1
i = vi

n + δt
(
dvi

dt

)n
r̃n+1
i = ri

n + δt
(
dri
dt

)n (52)

and the correction step is summarized as follows


vi
n+1 = 1

2

{
vi
n + ṽn+1

i

}
+ δt

2

(
d̃vi

dt

)n+1

ri
n+1 = ri

n + δtvi
n+1

ρn+1
i = ρni + δt

(
ρni
∑nb

j
mj
ρnj

ṽn+1
i ∇W (r̃n+1

i ) +Dδ−MSPH
i (ρn, r̃n+1

i )
)

(53)
The superscripts n and n+1 refers to the time step, whereas {̃.} refers to the

predicted physical parameter {.}. Note that the term
(

dṽi

dt

)n+1

is computed
using the predicted velocity ṽn+1

i and the density of the previous time step
ρn. This scheme is second order accurate as in [55, 56].
To ensure the stability of the method, the time step (δt) must be chosen to
fulfill, the kinetic, the body force, and viscous conditions [45] [57]

δt ≤ 0.25
h

max {c0i + ‖vi‖}
(54)
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δt ≤ 0.25

(
h

‖g‖

)1/2

(55)

δt ≤ Cµ
h2

max{νeff}
= Cµ

ρ0h
2

αµµ
(56)

In previous works [51, 35, 58, 59], other authors assign the value of Cµ =
0.1 in order to keep the simulation stable. In the present work, we have
used the value Cµ = 0.2 , that preserves the stability and accuracy of the
simulation when the viscous condition is dominated. Thus, the use of the
proposed formulation allows us the choice of a δt two times bigger than in
previous SPH formulations.

The choice of the value of the positive constant αµ depends on the applied
efforts for each case. We select a value of αµ as small as possible keeping the
stability.

Note that the use of a very large value of the control parameter αµ leads
to a more accurate approximation of the rigid part of the soil, which is
characterized by a maximum viscosity µmax (µmax = αµµ). However, this
large value of αµ leads to the use of a very small time step following the
condition (56). Because of this, a good compromise for the value of αµ must
be found for each problem.

4. Application and validation

4.1. Two phases hydrostatic stratified column
The purpose of this test is to show the ability of multiphase diffusive

terms Dδ−MSPH of the present work comparing with Dδ−SPH of equation
(28) ( applied with the procedure as in [21]) to reduce and smooth the oscil-
lations of the computational pressure in the context of multiphase WCSPH.
A two-dimensional (2D) tank of 0.6[m] long and 0.45[m] high is full with two
stratified immiscible fluids (see figure 5). The upper fluid layer is considered
as the lighter one with a density ρ1 = 1000[kg/m3], while the lower layer
is the heavier fluid with a density ρ2 = 2000[kg/m3]. The upper and lower
fluids behave as Newtonian with a constant viscosity of µ1 = 0.02[Pa.s] and
µ2 = 0.001[Pa.s], respectively. Both fluids are subjected to a vertical gravity
acceleration of −9.81[m/s2].

We investigate the stability and convergence of the pressure field using
our developed diffusive term Dδ−MSPH and the classical one Dδ−SPH applied
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Figure 5: Geometrical details of two phases hydrostatic stratified column configuration.
P1 = (0.3, 0.5), Pint = (0.3, 0.2), P2 = (0.3, 0.1) are the pressure measurement points
located at the center of the layer of the fluid 1, the interface between the two fluids and
the center of the fluid layer 2, respectively.

separately on each fluid phase as in [21]. A resolution of 59× 20 particles is
chosen for this test case. The reference speeds of sound for the lighter and
heavier fluids are chosen c01 = 20 [m/s] and c02 = 14.14 [m/s] in order to
obtain the same reference pressure pr = ρ1c

2
01

= ρ2c
2
02

= 4× 105 [Pa].
Figure 6 shows the time evolution of the pressure calculated at three

different points P1, Pint and P2 (placed at locations as indicated in figure
5). Pressures at measurement points are approximated using the Shepard
filter [60]). Thus, for the point P1 the pressure is computed as

p(P1) =

n∑
i

VipiW (P1 − ri)

n∑
i

ViW (P1 − ri)

(57)

We observe that the calculated pressures at different points stabilize to
approximate the hydrostatic pressure values after the time t = 2.5[s] when
the multiphase diffusive term Dδ−MSPH is used as is shown in figure 6 (a).

In the case of classical diffusive term Dδ−SPH the pressures remain rela-
tively instable during all simulation period (7[s]) and present an important
error specially at the interface between the fluid phases (as shown in figure
7 (b)). The pressure errors are generated accordingly to the instability of
the interface between the phases as shown in the figure 7 (b). In figure 7 (a)

21



it is observed the stability of the interface between the fluid phases and the
smoothness of pressure distribution at later time after the stabilization (at
t = 7[s]) when the formulation Dδ−MSPH is used.

In order to analyze the results without taking into account the effect of
the pressure filtration due to the use of Shepard filter (57), the pressure
distribution on each particle is plotted against the analytical hydrostatics
ones at the time t = 7[s]. This is shown in figure 8. It is observed that
computed pressures using the multiphase diffusive term Dδ−MSPH are in good
agreement with the analytical values for both fluid layers and the interface
between them (see figure 8 (a)). When the Dδ−SPH model is used, pressure
results do not match with the analytical ones specially at the interface, where
we observe important differences (see Figure8 (b)).

From this test, we can conclude that the use of Dδ−MSPH diffusive terms
in the context of the WCSPH method enhances significantly the stability and
smoothness of computed pressure for the fluid phases.
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Figure 6: Time evolution of pressure at the points P1, Pint and P2 plotted against the an-
alytical hydrostatic values represented in solid lines. The left figure represents the pressure
results using the multiphase diffusive term Dδ−MSPH of present work. The right figure
represents the pressure results using the classical diffusive term Dδ−SPH independently in
each fluid phase.

4.2. Bingham fluid dam-break
This example is investigated in order to show that the proposed SPH model
with the RBPMMC-αµ constitutive law (equation (23)) can accurately deal
with Bingham materials (non-frictional materials: with φ = 0 and c = τy)in
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Figure 7: Fluid phases distribution and hydrostatic pressure representation at t = 7[s].
The gray color is chosen for the phase 1 and the black for the phase 2). The colored part
shows the hydrostatic pressure field. Figure (a) shows the results using the multiphase
diffusive term Dδ−MSPH presented in this work, whereas figure (b) shows the results using
the classical diffusive term Dδ−SPH . Notice the smooth distribution obtained with the
proposed methodology.
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Figure 8: Computed pressure values at all particles for all fluid phases at time t = 7[s]
plotted against the analytical hydrostatic pressure (solid black line). On the left it is
shown the pressure computed using the multiphase diffusive term Dδ−MSPH presented in
this work. On the right, the results using the classical diffusive term Dδ−SPH .

simulation problems in the context of Non-Newtonian free surface flow sim-
ulations.

The dam-break benchmark proposed by Komatina and Jovanovic [61] was
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reproduced numerically in this work. This benchmark was already investi-
gated by other authors [51, 35] using SPH method.

A rectangular column of a single fluid with a height of H = 0.1[m]
and length of L = 2[m] is confined between two fixed walls (at the left
side and at the bottom) and a moving wall at the right side. The mov-
ing wall is removed and the fluid starts to flow under the effect of gravity
g = 9.81[m/s2] (see figure 9 ). The fluid is considered as a water–clay mix-
ture with a volume concentration of Cv = 27.4%. The bulk density of the
water–clay mixture is ρcw = 1200kg/m3, and the fluid is considered as a
Bingham Plastic. The plastic viscosity and the yielding shear stress area are
estimated according to [61] as µcw = 0.621 exp(0.173Cv) ≈ 0.07 [Pa.s] and
τy = 0.002 exp(0.342Cv) ≈ 25[Pa], respectively.

A distribution of 400 × 20 particles is used to discretize the rectangular
fluid column. The speed of sound is (c0 = 10u0 ≈ 14 [m/s] ) with u0 a
reference velocity that is calculated following Torricelli’s law (u0 =

√
2Hg).

Two values of the regularization parameter αµ = {100, 1000} are tested to
investigate their influence on results.

In figure 10 the time-evolution of dimensionless front position (XF/H =
(x − L)/H) is plotted for the present SPH model using two values of con-
trol parameter αµ = {100, 1000}, the incompressible non-Newtonian SPH
model (INNSPH) of Xenakis et al [51], and the experimental results of Ko-
matina and Jovanovic [61]. A good agreement between the present SPH
formulation, the INNSPH model [51] and the experimental results are ob-
served. In the case of the proposed method, the best results are obtained
when a control parameter αµ = 1000 is employed. It is also observed that
the flow tends to stabilize at a rigid form (the so-called "freeze-point") with
increasing time, since the shear stress at every computational particle do not
exceed the yield stress τy. In figure 11 the results for the particle positions
using the present SPH model with αµ = 10000 at five different time steps
t = {0.1, 0.3, 0.6, 1, 2}[s] are presented. Fluid particles are colored with the
pressure field. These results are used for a comparison between the free sur-
faces obtained with the present SPH model with αµ = 1000, the INNSPH
model [51], and the control volume finite element method (CVFEM) of [51]
at two different time instants t = {0.6, 2}[s] . This comparison is presented
in figure 12. The free surface obtained by the proposed WCSPH approach is
between those of INNSPH and CVFEM.
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Figure 9: Bingham fluid dam-break configuration.
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Figure 10: Time-evolution of dimensionless Bingham dam-break front position (XF /H =
(xF − L)/H). We compare the results obtained using the proposed method with a plas-
tic viscosity (µ = 0.07) and coefficients αmu = 100 (dotted line) αmu = 1000 (dashed
line), with INNSPH(Incompressible Non-Newtonian SPH) [51] (solid line) and with the
experimental results of Komatina and Jovanovic [61] (small triangles).

4.3. Spreading of granular pile on horizontal plan
In order to show the efficiency of the proposed SPH model including

the RPBMC-αµ rheology for the simulation of cohesionless granular flow
problems, the experimental benchmark proposed by [62] is reproduced. In
this benchmark, a heap of dry granular material (glass beads ) of length L
and height of H (aspect ratio a = H

L
) spreads on an horizontal roughness

plane. The granular heap is initially blocked between a fixed glass wall at
the left side a movable gate at the right side and a fixed rough wall at the
bottom. The channel and the granular heap have the same uniform width
(W = 0.045[m]) (see figure 13). The granular heap has a mass of 470[g], a
height of 61[mm] (H ≈ 61[mm]) and a length of 102[mm] ( L = 102[mm])(
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Figure 11: Bingham dam-break flow at times t = 0.1, 0.3, 0.6, 1, 2[s]. The particles are
colored with pressure values. The Y-axis is scaled by a factor of 5 for the sake of clarity.
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Figure 12: Comparison between the free surface profiles of the present SPH method with a
plastic viscosity (µ = 0.07) and αµ = 1000 (solid line), the INNSPH method [51] (dashed
line) and CVFEM [51] (dotted line) at times t = {0.6, 2}[s]

aspect ratio of a = 0.6). Since L >> W the behavior of three-dimensional
granular flow can be considered as a two-dimensional one. Thus, in this work
we consider only a two-dimensional configuration.

The glass bead is considered as a granular material with a grain density
of ρg = 2500[kg/m3], and angle of repose φr ≈ 22±0.5 deg (it is equivalent
to an internal friction angle φ ≈ φr ≈ 22±0.5 deg ). The bulk density is
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approximated as ρb ≈ 1673[kg/m3]. This bulk density is calculated from the
mass and volume of the granular heap by dividing the mass by the volume
of pile (ρb = Mass

HLW
) [63, 62].

In this work the dynamic plastic viscosity of the glass beads is set to
µ = 0.1[Pa.s] following [36]. Four values of control parameter of the RBPMC-
αµ (αµ = {100, 1000, 2000, 3000}) were used. The results of our simulaitons
were compared with the experimental results of [62].
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Figure 13: Spreading of granular pile on horizontal plan: Schematics of the experimental
configuration [62].

The granular column is represented by 50×30 particles ( the initial inter-
particular distance is δx = 0.002[m]). The reference speed of sound of the
granular material is set to c0 = 11[m/s] (reference pressure Pr = 202433[Pa]).
A no-slip boundary condition is applied on the horizontal wall (rough wall),
while free-slip boundary condition is applied on the vertical fixed wall.

In figure 14, the time evolution of the dimensionless front position (XF/H =
(x − L)/H) of the granular column is presented for the experimental and
numerical results. A disagreement between the numerical and experimen-
tal results is observed when the value αµ = 100 is used. In this case,
the numerical granular column continue to spread because of the low vis-
cosity value assigned by the RBPMC-αµ rheology model to the column
(µmax = 100µ = 10[Pa.s]). However, a very good agreement is observed
when the value of αµ is sufficiently higher (αµ = {1000, 2000, 3000}). The
best results are obtained by using αµ = 3000.

The shape evolution of the collapsing granular column profile for both ex-
perimental and numerical results is shown in figure 15 at times t = {0, 0.8, 0.16,
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Figure 14: Spreading of granular pile on horizontal plan: Time-evolution of the dimension-
less front position of the glass beads pile. We plot the results of the proposed numerical
method using αµ = 100 (dotted line), αµ = 1000 (dash-dot line), αµ = 2000 (dashed
line) and αµ = 3000 (solid line), and the experimental data of Lajeunesse et al [62] (small
triangles).

0.24, 0.32}[s]. A value of 3000 of the control parameter (αµ = 3000) is used
for the computation. The SPH particles are colored with the magnitude
of the velocity in order to show the dynamic and the "freeze-point" of the
collapsing column. The granular column stops spreading and takes the trape-
zoidal shape at t = 0.32[s] for both numerical and experimental results. A
very good agreement is observed between the numerical and experimental
granular column profiles at different times. Nevertheless, a difference be-
tween the numerical and experimental granular column profiles is remarked
at earlier stage at t = 0.8[s]. This is may be due to the process of moving
the gate in the initial stage of the experiment that is not represented in the
numerical simulation.

In figure 16 we present a convergence study in order to verify that grid
independent results can be achieved. The position of the free surface of
granular material is computed at time t = 0.32[s] using three different particle
resolutions (25× 15, 50× 30 , 100× 60). It is observed that the difference in
results becomes less significant as the number of particles increases indicating
the spatial convergence of our SPH model.
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4.4. Landslide-generated wave
A landslide, also known as slope failure, slumps or landslip is a big mass of

ground driven on a slope by gravity effort. Landslides can occur under-water
(submarine) or upper-water (Subaerial). The potential energy of land sliding
in the water bodies (oceans, seas, lakes and reservoirs) consequently generates
an impulse wave that may potentially cause significant disasters. Papua New
Guinea in 1998 [64] and Lituya Bay- Alaska in 1958 [65] tsunamis caused by
a submarine and subaerial landslides, respectively, are demonstrations of the
great destructive potential of these phenomena.

4.4.1. Submarine land-slide-generated water wave
In this example, we investigate the capability of the proposed multiphase

SPH model to simulate water-land interactions related to submarine land-
slides. The land here is modeled as a purely cohesional material (φ = 0,
c = τy). Here we reproduce the experiment of Rzadkiewicz et al [66, 67].
This experiment examines the water waves generated by the sliding of sand
mass along a slope of 45 deg. We compare our numerical results with those
of [17]. The SPH formulation presented in [17] is based on a bi-viscosity rhe-
ological model [68] considered within the artificial viscosity term presented
by Monaghan [45].

The dimensions of the channel are 2[m] high and 4[m] long. The ini-
tial profile of the sand mass has a triangular shape with a cross-section of
0.65[m] × 0.65[m]. The sand mass has the same wide as the channel, so
that the problem can be considered as two-dimensional. The density and
viscosity of the water are set to ρw = 1000[kg/m3] and µw = 0.001[Pa.s],
respectively. The bulk density of the sand is 1950[kg/m3]. The depth of the
water is 1.6[m] and the top of triangular sand mas is initially located below
the surface water by 0.1[m]. Figure 17 gives more geometrical details about
the submarine landslide configuration.

In the work of Rzadkiewicz et al [66] the rheological parameters were
not measured experimentally. They were chosen by numerical experience as
τy = 1000[Pa] and µ = 0[Pa.s]. In this work we choose the same yielding
stress, but a small value of plastic viscosity (µ = 0.001[Pa.s]) is chosen
instead of zero. The reason is the necessity of using a non-null plastic viscosity
in our rehological model RBPMC-αµ. The control parameter isαµ = 106.

The numerical simulations were carried out using a homogeneous resolu-
tion of 16819 particles (15916 particles for the water and 903 particles for the
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land mass ), with an initial inter-particular spacing δx = 0.0015[m] similarly
to the work of Capone et al [17].

The speed of sound is chosen equal to c0 = 55[m/s] for the water phase
which leads to a reference pressure of Pr = 3.025106[Pa]. The No-Slip bound-
ary conditions are applied on all the rigid boundaries.

The numerical results of particles distribution for both land mass (dark
gray color) and water (light grey color) are represented in the figure 18 at
times t = 0.4[s] and t = 0.8[s].

In figure 19 we present the results for the water free-surface elevation
results at times t = 0.4[s] and t = 0.8[s] using the proposed SPH model, the
SPH model of Capone et al. [17] and the experimental results of Rzadkiewicz
et al [66, 67]. Quantitatively, a good agreement between our SPH model,
the Capone SPH model and the experimental results is observed. At time
t = 0.4[s] the results given by the SPH model of Capone et al. are slightly
closer to the experiment than our current approach. However, for the time
t = 0.8[s] our multiphase SPH model gives more accurate results compared
with the experimental results.

4.4.2. Sub-aerial land-slide-generated water wave
The purpose of this example is to investigate the capability of our multi-

phase SPH model to simulate a Sub-aerial land-slide-generated water wave.
The land mass is modeled using a RBPMC-αµ rheology model where a purely
frictional/cohesionless (c = 0) model is considered (glass beads). The exper-
imental benchmark performed by Viroulet et al [69, 70] was reproduced nu-
merically (see figure 20). It consists on the study of the interactions between
the granular mass collapse and the water that generate impulse waves.

A tank of 2.2[m] long, 0.4[m] high, and 0.20[m] wide includes an inclined
plan at the left side with a slope of 45 deg to allow the slipping of the land
mass (granular material). The tank is initially filled with water until a depth
of 0.15[m]. The land mass is initially blocked on the inclined plan with
a vertical movable gate, where the bottom of the land mass is located at
the level of the free surface water (see figure 20). When the vertical gate is
opened, the land impacts the surface water at low velocity, generating impulse
waves propagating along the tank. The evolution of the generated impulse
waves and the granular flow shape are recorded experimentally with a high
speed camera. The amplitudes and the propagation of the generated waves
are measured with four resistive gauges located at four different distances
0.45, 0.75, 1.05, and 1.35[m] from the vertical movable gate.
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The granular material used for the land mass is composed of glass beads
with the following physical properties in dry state: ρs = 2500[kg/m3] , poros-
ity of n = 40%, frictional angle φ = 23.3 deg. The longitude of the hypotenuse
of the triangle formed by the land mass is l = 0.2[m], which corresponds with
a total land mass of 3[kg]. When the grains of the granular material slides
with low velocity into the water, they mix with the water sufficiently to con-
sider the granular material as fully saturated with water. Then we define the
bulk density as a mix ρb = (1− n)ρs + nρw = 1900[kg/m3].

The density and dynamic viscosity of the water are taken as ρw = 1000[kg/m3]
and µw = 0.001[Pa.s], respectively. The Plastic viscosity of the land is taken
to be equal to the water dynamic viscosity µ = µw = 0.001[Pa.s], and the
control parameter is set to αµ = 3× 107.

The simulation is performed with a resolution of 32306 particles (31225
particles for the water and 1081 particles for the land mass), with initial
spacing of δx = 0.003[m]. The reference speed of sound for water is taken
c0 = 17[m/s] (it gives a reference pressure pressure of 2.89 × 105[Pa]). At
tank walls and the inclined plan a no-slip boundary condition is used for the
computation.

In figure 21 , the elevation of the water free surface captured numerically
and experimentally at four different position of wave gauges (G1, G2, G3

and G4) is plotted. A good agreement between the numerical simulation
and experimental results during a period of 2[s] was observed. However,
an amplitude shift between the numerical and experimental results is also
observed. This can be a consequence of the use of the bulk density of the
land mass that is fully mixed with water. However, very satisfactory results
are observed concerning the water wave frequencies.

Quantitatively, a satisfactory agreement is observed between the experi-
mental and numerical sliding granular mass into the water at three different
time step t = {0.21, 0.43, 0.52}[s] as is shown in figure 22. The water ve-
locity field for the simulation and experimental results using the particle
image velocimetry technique (PIV) is also shown in the same figure. At time
t = 0.21[s], the impact of the land mass on the water and beginning of the
generated first wave are shown, Here, the elevated part of the water has a
greater velocity and also we observe that the water region closer to the land-
slide head has high velocity. for the times t = 0.43[s] and t = 0.52[s], the
slide starts to roll up creating a turbulent water region. Also we observe the
onset of the second generated wave accompanied by the propagation of the
first wave. The velocity is always greater at the more elevated part of the
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water the and at vicinity of the land front head. The roll up of the land head
is more important in the experimental than in the numerical results. This
issue is may be due to the low particle resolution that is used to simulate the
granular mass. However, very satisfactory results are observed for the shape
of the free surface water.

5. Conclusion

In this work, a weakly compressible multiphase Smoothed Particle Hydro-
static (SPH) model was developed in order to simulate soil , water (or any
Newtonian fluid) and their interaction problems. A RBPMC-αµ pressure-
sensitive rheology model is proposed to model Newtonian fluids, purely fric-
tional and cohesional (Binghamian) soils at the same time. Because of the
developed rheology model is pressure-sensitive, a multiphase diffusive term
called Dδ−MSPH is developed in order to damp the pressure oscillations due
to the use of equation of state.

The robustness, accuracy and applicability of our multiphase model has
been demonstrated via a several benchmarks. The validation of the efficiency
of the developed multiphase diffusive term Dδ−MSPH was performed using
the two stratified hydrostatics Newtonian fluid layers benchmark. The ap-
plicability on simulation of single phase of granular materials dynamics is
demonstrated via the benchmarks of Bingham fluid dambreak and spreading
of granular material pile on horizontal surface. Whereas for the simulation of
the water-soil interactions problems, the submarine and subaerial landslides
benchmarks are devoted.
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Figure 15: Spreading of granular pile on horizontal plan: Sequences of the position of the
granular material (glass beads) using the proposed SPH model with αµ = 3000 (a) and
experimental results of Lajeunesse et al [62] (b).40
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Figure 16: Spreading of granular pile on horizontal plan : Comparison between the free
surface of granular collapse of three different particle resolutions at the time t = 0.32[s].
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Figure 17: Submarine land-slide-generated water wave: Geometrical details and setup of
the problem.
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Figure 18: Submarine land-slide-generated water wave: Particle distribution at times
t = 0.4[s] and t = 0.8[s].
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Figure 19: Submarine land-slide-generated water wave: Comparison between the free
surfaces at t = 0.4[s] and t = 0.8[s] obtained with the proposed SPH model, the SPH
model of Capone et al. [17] and the experimental results of Rzadkiewicz et al [66, 67].

Figure 20: Sub-aerial land-slide-generated water wave: Schematic view of the experimental
setup and gerometrical details.
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Figure 21: Sub-aerial land-slide-generated water wave: Elevation of the free surface at
each wave gauges G1,G2, G3 and G4. The black solid line denotes the numerical results,
while the dashed lines present the experimental results [69].
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t = 0.21[s]

t = 0.43[s]

t = 0.52[s]

Figure 22: Sub-aerial land-slide-generated water wave:Comparison between the numerical
(left) and experimental (right) results at the times t = {0.21, 0.43, 0.52}[s].
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