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a b  s  t  r a  c t

Turbomachinery  design  is a  complex problem which  requires  a lot of experience.  The procedure may  be
speed  up  by  the  development of new  numerical  tools and  optimization  techniques. The latter  rely  on the
parameterization  of the  geometry,  a model  to  assess the  performance of  a given geometry  and  the  defi-
nition  of an  objective  functions and  constraints to compare  solutions.  In order to improve  the  reference
machine  performance, two  formulations  including the  off-design  have  been  developed.  The first  one  is
the  maximization  of the  total  nominal  efficiency.  The second  one  consists  to maximize  the  operation
area under  the  efficiency  curve.  In this  paper five  optimization methods  have been  assessed for  axial
pump  design:  Genetic  Algorithm  (GA),  Particle  Swarm  Optimization  (PSO),  Cuckoo Search  (CS), Teach-
ing  Learning  Based Optimization  (TLBO) and  Sequential  Linear Programming  (SLP). Four  non-intrusive
methods  and the  latter  intrusive.  Given  an  identical  design  point  and  set of  constraints,  each method
proposed  an optimized geometry.  Their computing  time,  the  optimized  geometry  and its performances
(flow  rate,  head (H), efficiency (�),  net  pressure  suction head (NPSH)  and power)  are  compared.  Although
all  methods  would  converge  to similar  results and  geometry,  it  is  not  the  case when  increasing  the
range  and number  of constraints. The  discrepancy  in geometries  and  the variety  of  results  are presented
and  discussed.  The computational  fluid  dynamics  (CFD)  is used  to validate  the  reference  and optimized
machines  performances in two  main formulations.  The most adapted approach is compared  with  some
existing  approaches  in literature.

1. Introduction

Turbomachines are omnipresent in  everyday domestic environ-
ment and in  industry. The applications range from air conditioning
to water distribution and from automotive to  aeronautics and naval
engines. In  the turbomachines design optimization, because of the
large number of variables of design parameters, which is  in  this case
always larger than the number of equations, this can be  handled by
the classical design methods based on the exploitation of empirical
laws like Coridier’s diagram [1,2].

Most studies concerning turbomachines optimization prob-
lem focus on the maximization of efficiency. Some optimization
approaches are based on the resolution of analytical and loss
models [3,4], others on empirical approaches [5],  but both using

∗ Corresponding author.
E-mail address: m.aitchikh@univ-boumerdes.dz (M.A. Ait Chikh).

local optimization methods. On  such methods, the performances
of turbomachines were able to be  improved by making geome-
try modifications. However, it is established that the fluid flow
in turbomachines is viscous, three-dimensional (3D) and turbu-
lent. Sorensen et al. [6,7] coupled the resolution of  the momentum
and the energy differential equations (CFD) with a nonlinear opti-
mization method to  optimize the performance of a given design.
Moreover, the use of CFD tools within 3D RANS solvers are
widely employed with evolutionary optimization algorithms, such
as genetic algorithms [8,9], with gradient methods [10] such as
Simplex, with simulated annealing (SA) [11]  and with differen-
tial evolution algorithm [12]. As  drawback, the use of  CFD for
the optimization of turbomachines remains very expensive which
directed the researches to the exploitation of alternative meth-
ods that establish a  relation between the design parameters and
the targeted performances. One can make reference to design of
experiment methods, response surface, kriging, neuron networks
and so on. In using local method optimization with a complex



problem. The missing of the global solution often happens. May
this type of method gives a  good precision result when it’s cou-
pled with a  global method as Genetic Algorithm [13]. Although
the latter is  considered as global method but the optimal solu-
tion is not granted mainly with large dimension of the problem.
May  be using the other method in parallel, tell us more about
optimal solution [14]. This work maybe considered among one of
the rare study that compared several optimization methods for
turbomachinery design namely GA,SA and Sequential Quadratic
Programming. However, the comparison study was not presented
as statistical significance. Recently, the PSO algorithm became
included in the turbomachinery design specifically in aerodynam-
ics type [15,16]. For  more information about design optimization
methods in turbomachinery aerodynamics, see Ref. [17]. Concern-
ing the optimization strategy and objective parameters, Li [18]
proposed a two stages approach to optimize the required Net Pos-
itive Section Head (NPSHr) of an axial pump. The optimization is
carried out by  applying the response surface method with the radial
equilibrium equation and the theory of actuator disks. Although
this study have allowed to reduce the NPSHr by  37% under specific
required point, the operation pump under other conditions (volu-
metric flow rate range) was not predicted. Lin et al. [19]  proposed
a complete approach to minimize the losses of an axial fan and
to reduce the overall computational time. This approach has four
stages: (1) construction of 3D blade using the “Generated Machin-
ing Method”, (2) analysis of the performances of the obtained
geometry by CFD, (3) establishment of the relation between the
geometrical parameters and flow properties by  neural networks
method, and finally (4) search for the optimal geometry by complex
optimization method. These four steps seem long and no reduction
of process’s time was mentioned. In most cases, the objective of the
design of an axial fan/pump aims at the optimization of the effi-
ciency. Huang and Gau [20] opted for a different approach, such as
the chosen cost function leads to  obtaining the desired of volumet-
ric flow rate of an axial fan, since the optimization of efficiency does
not guarantee the increase of the volumetric flow rate. They used
CFD to estimate the volumetric flow rate according to optimiza-
tion variables. Starting from an initial geometry, the updates of the
design variables were made by Levenberg–Marquardt method to
minimize the objective function.

Always concerning axial fans, Lee et al. [21] proposed a  strategy
for the optimization of an axial fan consisting in coupling experi-
mental analysis with inverse design approach (using TURBOdesign
code) for the choice of the decision variables. The response surface
method was then used for the optimization of the efficiency and the
pressure rise. In another article, Lee et al. [22] presented a  numeri-
cal procedure of a  low rotational speed axial fan optimization. The
objective function was established from a  polynomial interpolation
based on the response surface method and CFD. The method of gra-
dient was then used to find out the optimal shape of the machine.
The CPU time required was approximately 12 h with a Pentium-IV,
3.0 GHz processor. Song and Sun [23]  developed an integral design
approach of a  transonic fan. In order to  define an objective function
and then optimize the efficiency and the pressure, they combined
global optimization method, experience design method, CFD and
finally kriging reconstruction. The total running time is about 71 h
with using Dell 7500 (with 2 Xeon 2.93 GHz processors and 24 GB
RAM).

Most works that use modeling of the relationship between
design variable and machine’s performance are unconstrained or
with a low number of constraints, may  be because the expensive
computational time needed, also, the off-design still using only in
the verification of the performance and does not exploit in  the
optimization process.

Differently to the optimization methods described above, in
which the objective functions are conventional “without inte-

grating the off-design”, the number of constraint is low and the
computational time does not represent a  priority criterion, we pro-
pose in this paper an approach for the design optimization of  an
axial pump based on inverse method with some meta-heuristics
algorithms based on Bio-inspired approaches namely Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search
(CS), in one hand, and socio-inspired approaches namely Teach-
ing Learning Based Optimization (TLBO). These methods present
the advantage to be non-intrusive to the design codes. For each
method, many runs are repeated for choosing the best solution.

In this paper, starting from a reference axial pump, we  ana-
lyze the performance of several natural inspired optimization
algorithms in two main formulations of the design problem by
considering a  very large number of geometrical and mechanical
constraints handled by modified constant penalty technique for the
reducing CPU time. The first formulation consists of  maximizing
the total nominal efficiency. Five scenarios of  different complexity
have been considered using free vortex (FV), constant vortex (CV)
and forced vortex (FCV).

In the second formulation, we propose a new objective func-
tion which consist in maximizing the surface constructed by  the
total efficiency and the [−25%, +25%] range of nominal volume
flow rate, with the constraint that the variation of the pump head
within this range does not exceed 15% of that  of  the specifications.
In this formulation, three scenarios are considered using constant
vortex strategy. A SLP, which is considered as an intrusive, is  also
used for first scenario in case one in  order to compare the effi-
ciency and the performance of the proposed algorithms to intrusive
approaches family algorithms. The computational fluid dynamics
(CFD) is employed to  predict the performance of the reference and
optimized machines. Finally, after the behavior of each algorithm
was analyzed and the approaches were classified, the most adapted
approach is  selected to compare its optimized machines with some
existing machines in literature.

2. Design of axial pumps and fans

2.1. Inverse and direct approaches

The inverse design is applied to define the geometry of the
rotor from a  priori known specifications (volume flow rate, head
and rotational velocity), and geometrical parameters (inlet/outlet
hub/tip radius and rotor blades number). The direct approach con-
sists on analyzing the performances of a  given geometries, as for
instance those given by the inverse method. It  permits to define
the overall characteristics (performances) of the machine, in other
terms, the evolution of head, efficiency, power, NPSH, etc. with flow
rate.

The inverse approach uses laws based on a  simplified radial
equilibrium (1D) model to  define some coherent geometries,
whereas direct method uses loss laws (incidence, friction, flow leak-
age, etc.) to estimate the performances of the defined geometry,
see Refs. [24,25]  for more details concerning the chosen approach.
Below some parameters which used in  the present inverse design
approach:

• The type of vortex is  chosen arbitrarily with a hydraulic efficiency
(�H) of 70%.

• The rotor outlet tangential velocity Cu2(r) is variable and depends
on the radius (between hub and tip) according to  Eqs. (1)–(3) for
free vortex, constant vortex and forced vortex respectively.

Cu2(r) = K

r
(1)

Cu2(r) =  K  (2)



Fig. 1. Velocity triangles of the axial compressible rotor.

Cu2(r) = Kr (3)

where K  =  g H/(ω�H)  for free vortex, K  = gH/(ω�H(R2
i

+  R2
e )/2)

for constant vortex and K  = gH/(ω�H((R2
i

+ R2
e )/2)

2
) for forced

vortex, g is  the gravity, H  is  the head, ω is the angular velocity
and (R2

i
, R2
e ) are the hub and tip outlet radius respectively.

• The velocity triangles are calculated by applying Eulers’ equa-
tion for each section along the rotor hub and tip radius (radial
discretization) (Fig. 1).

• The stagger angle � is determined from the angle of incidence i
defined experimentally by  Eqs. (4)–(6) (�  ̌ =  ˇ1 − ˇ2)  represent
the angular deviation. It is, in fact, given by  minimizing losses
(continuity of pressure distribution on the blade pressure side)
for the case of a  blade cascade of NACA65 airfoil (10% thickness).

� = ˇ1 − i (4)

i = �ˇ  + 0.94
q(ˇ1)

+  2.07 (5)

q(ˇ1)  =  2.103 − 4.01910−7 × ˇ3.382
1 (6)

• The solidity (�2) at the outlet of the rotor in the hub and tip is
expressed according to  the diffusion factor of Lieblein D, accord-
ing to  Eq. (7) and at the intermediate radius according to Eq. (8)
respectively.

�2 = cos(ˇ1)  × |Ca1 ×  tan(ˇ1)  − Ca2 × tan(ˇ2)|
2 ×  Ca1 × (D − 1 + Ca2 × cos(ˇ1)/(Ca1 × cos(ˇ2)))

(7)

• The chord at the rotor hub and tip are calculated using Eq. (8) and
by linearization at the intermediate radius.

C = �2 2�r
Z

(8)

• The solidity (�1)  at the inlet of the rotor is expressed according
to the chord, blades number and the radius, according to  Eq. (9).

�1 = ZC

2�r
(9)

• The camber coefficients are expressed according to incidence
angle and the inlet solidity, and they are given by Eqs. (10) and
(11).

Cz∞0 = i  + 2.525
p(�1)

−  0.823 (10)

p(�1) = 15.535 − 12.467e−0.4242�1
(11)

• Finally, to  complete the empirical equations relative to  the
NACA65 airfoil, the solidity and the camber are bounded due to
geometrical and technological integrity limitation, and will be
used as constraints in the formulation of the optimization prob-
lems.

Fig. 2. Scheme of an axial rotor.

2.2. Design descriptive parameters

The definition of the geometry of turbomachines requires the
knowledge of a  set of some geometrical parameters, every valuable
variation of parameters describe a different geometrical shape, i.e.,
a  different machine with its own  performances. These geometrical
parameters will be associated with some other relevant mechanical
and fluid parameters.

2.2.1. Geometrical parameters
The geometrical parameters considered in  the context of this

study are: the slack distance between the tip of  the rotor blades
and the hull, the mean roughness of the rotor blades, the number
of the rotor blades (Z), the hub and tip inlet radius (R1

i
, R1
e ), the hub

and tip outlet radius (R2
i
, R2
e ), the diffusion factors at the hub (Di)

and the tip (De)  of the rotor blades, and the minimum value of  the
maximum thickness of an airfoil section, see Fig. 2.

2.2.2. Mechanical parameters
The token fluid properties, are the fluid density (�), and the kine-

matic viscosity of the fluid (	). The mechanical parameters are: the
(initial) theoretical volume flow rate (Qv), rotational velocity (N),
head (H).

3. Formulation of the design optimization problem

In this section, a model adapted to optimization methods is  pro-
posed, it allows to obtain an optimal geometry according to a  given
objective and needs respecting some imposed constraints.

3.1. Parameters held constant during the process of optimization

During all the process of optimization some parameters will be
considered constant, for instance:



Fig. 3. Objective function of the two cases.

• the slack distance between the rotor blades tip and the hull, the
roughness of the rotor blades, the maximal thickness of the rotor
blades;

• the fluid properties (density and viscosity),
• parameters connected to  the mechanical and fluid properties,

being a  part of a  tender specifications (operating condition needs)
such as: the rotational speed, the head, etc. are fixed a  priori;

• computational parameters such as the number of volume flow
rate point and radial sections discretization, etc. are also consid-
ered constant during all the process of optimization. Their value
has influence only on the accuracy of the results of the analysis
model. These two parameters can be however, modified for more
precision.

As already mentioned previously, the modification of this set
of parameter allows to  obtain several geometrical configurations
(several machines with their own corresponding performances).

3.2. Considered decision variables

The design variables relative to the proposed model of optimiza-
tion are considered as real numbers except the number of blades
which is  taken as integer. Decision variables are: the theoretical vol-
ume  flow rate (Qv), inlet hub and tip radius (R1

i
, R1
e ), outlet hub and

tip radius (R2
i
, R2
e ), hub and tip diffusion factors (Di, De), the num-

ber of  blades (Z); however, for the local optimization method, the
optimal number of rotor blades is  determined after analyzing the
optimum design of turbomachine with various rotor blade number.

Practically, each design variable has a variation interval (max
and min), usually named “side constraints”. This interval is defined
according to the designer’s needs and for other theoretical or envi-
ronmental constraints. Contrary to  classical optimization methods,
the meta-heuristics methods using in  this paper are based on popu-
lation constituted of individual solutions, each individual is  defined
by a set of decision variables.

3.3. Objective function

3.3.1. Non-intrusive methods
First case.  In this first case, the optimization process con-

sists on maximizing the total efficiency on the axial turbomachine
(pump/fan) by varying a  set of decision variables. In fact, the effi-
ciency depends on many parameters, but generally, the overall
performance of the machine is  described according to the volume
flow rate. A simple design on a range of [Qvmin, Qvmax] discretized
uniformly (Fig. 3)  shows that the efficiency is  a continuous func-
tion having a maximal point corresponding to a  value of the specific
volume flow rate called: “nominal” volume flow rate.

max  F  = (�nom)  (12)

Second case.  In the second case we  propose a  new objective
function in the field of turbomachine optimization. The purpose of
this function is  to maximize the area formed by the curve of effi-

Fig. 4. Comparison of the computed efficiency with a  second order interpolating
polynomial and a fourth order interpolating polynomial for different values of the
volume flow rate.

ciency and the axis of volume flow rate as shown in Fig. 3.  The
objective of this optimization approach is to  widen the range of
variation of the efficiency in the neighborhood of the design point
(nominal flow condition), a numerical integration (based on trape-
zoidal rule) is  used. The flow rate integration range varies between
−25% and +25% of the nominal volume flows rate (Qvnom), the
objective function is  then given by:

max  , F  =
∫ 1.25Qvnom

0.75Qvnom

�(QV ), dQv (13)

3.3.2. Intrusive method
The analysis formulation developed by  the authors computes

the nominal flow rate by studying the response of  the proposed
design for a  set of initial theoretical volume flow rates homo-
geneously distributed in the interval [Qvmin, Qvmax] previously
defined. Consequently, a predefined number of database points of
the efficiency–volume flow rate function can be obtained and an
approximation to the nominal flow rate can be estimated.

In this paper the authors propose the use of a  second order inter-
polating polynomial to obtain the nominal volume flow rate and the
related nominal efficiency. This approximation can be obviously
improved by increasing the order of the polynomial but, due to
practical considerations, second order has been considered by  the
authors as adequate for this problem. Some numerical tests have
been developed in  order to  verify this assumption.

Fig. 4 shows the computed values of the efficiency of an initial
design of a turbomachine and two  interpolating polynomials: a  sec-
ond order interpolating polynomial and a  fourth order interpolating
polynomial. The complete database is defined by 25 points that cor-
responds to 25 values of the flow rate homogeneously distributed in
the interval [Qvmin, Qvmax]. The second order interpolating poly-
nomial is defined by three database points: the volume flow rate
with maximum efficiency and the two neighbor volume flow rates
studied. The fourth order interpolating polynomial is  defined by
five database points: the volume flow rate of  the database with
maximum efficiency and the first and second neighbors. According
to this figure, both approximations are  adequate in an interval cen-
tered at the volume flow rate that produces maximum efficiency,
where the nominal volume flow rate and nominal efficiency are
contained. The computed values, assumed as exact in this analysis,
are obtained by using a larger database with 100 discrete values
of the volume flow rate homogeneously distributed in the interval
[Qvmin, Qvmax]. In practice, the relative error of the approximation
around the nominal volume flow rate is  adequate for this problem.

Fig. 5 shows the computed values of the efficiency and two  inter-
polating functions: a second order interpolating polynomial and a
fourth order interpolating polynomial. Both of them are obtained
with the same algorithms used in  the first study example. According
to this figure, both approximations are also adequate in  an interval
centered at the maximum value of the efficiency that contains the
nominal volume flow rate and the related nominal efficiency.



Fig. 5. Comparison of the computed efficiency with a second order interpolating
polynomial and a fourth order interpolating polynomial for different values of the
volume flow rate.

Table 1
Nominal volume flow rate and nominal efficiency for a  initial design of a turbo-
machine and comparison with the second order polynomial interpolation and the
fourth order polynomial interpolation.

Initial design Qvnom (m3/h) �nom (%)

Computed values 776.9440 60.15808
Second order polynomial approx 776.8716 60.15801
Relative error 9.31  ×  10−4 1.20 × 10−6

Fourth order polynomial approx 776.9515 60.15809
Relative error 9.65  ×  10−5 3.86 ×  10−8

Table 2
Nominal volume flow  rate and nominal efficiency for an  improved design of a  turbo-
machine and comparison with the second order polynomial interpolation and the
fourth order polynomial interpolation.

Improved design Qvnom (m3/h) �nom (%)

Computed values 719.9224 68.68955
Second order polynomial approx 720.0684 68.68900
Relative error 2.03 × 10−4 8.00 × 10−6

Fourth order polynomial approx 719.90792 68.68955
Relative error 2.01 × 10−5 1.39 ×  10−8

The computed values, assumed as exact in this analysis, are also
obtained by  using a larger database with 100 discrete values of the
initial volume flow rate homogeneously distributed in  the interval
[Qvmin, Qvmax].

Figs. 4 and 5 and Tables 1 and 2 show that the proposed second
order interpolating polynomial gives accurate approximations of
the nominal volume flow rate and nominal efficiency.

The objective function of this problem is the maximization of the
nominal efficiency. Thus, we  propose to  use the second order inter-
polating polynomial as the mathematical expression that allows to
compute the objective function. In practice, the nominal volume
flow rate can be obtained as:

Qvnom =
Si−1
Pi−1
�i−1 + Si

Pi
�i + Si+1

Pi+1
�i+1

2
(
�i−1
Pi−1

+ �i
Pi

+ �i+1
Pi+1

) (14)

being:

Pi =
∏
j /=  i

(Qvi − Qvj), j ∈ {i − 1, i, i +  1}

Si =
∑
j /= i

Qvj, j ∈ {i − 1, i, i +  1}
(15)

and �j the efficiency of the axial turbomachine related to  volume
flow rate Qvi being. The volume flow rate Qvi corresponds to  the
value of the database with the largest value of efficiency. The lower
and upper neighbor points of Qvi that defines the second order
interpolating polynomial are identified as Qvi−1 and Qvi+1, respec-
tively. The nominal efficiency related to the nominal volume flow

rate can be easily obtained by computing the second order Lagrange
interpolating polynomial as:

�nom = (Qvnom −  Qvi)(Qvnom − Qvi+1)
Pi−1

�i−1

+ (Qvnom − Qvi−1)(Qvnom − Qvi+1)
Pi

�i

+ (Qvnom − Qvi−1)(Qvnom − Qvi)
Pi+1

�i+1

(16)

Thus, the objective function of the optimization problem consists
of maximizing �nom defined according to Eq.  (16).  In practice, opti-
mization problems are usually stated as minimization problems.
Thus, the objective function consists of minimizing:

max  , F =  −�nom (17)

On the other hand, the optimization of turbomachines also requires
some specifications to be satisfied. In practice, these specifications
are treated in  an optimization problem as design constraints.

3.4. The retained constraints

3.4.1. Side constraints
In  the search for the optimal geometrical shape certain viola-

tions of the constraints must be avoided. The constraints of  the
design variable or the side constraints allow to establish inequali-
ties of the search spaces described below. These spaces represent
the first constraint that must be  treated, since in the practice, all
the design variables must be  limited by two values (min and max).
In the model of optimization all the design variables vary between
two predefined positive extremes. We note:

xj,Min ≤ xj ≤ xj,Max 1 ≤  j ≤ D (18)

Being that D is  the number of variables or the dimensions of design
optimization problems. This type of constraint is  handled differ-
ently than the other types i.e. without the integration in  the fitness
of the individual.

3.4.2. Geometric constraints
The first inclusive geometrical constraint is the hub radius

constraints. Because of the random nature of the meta-heuristics
algorithms, it can fall in cases where the hub radius at the entrance
of the rotor is  larger than that at the exit, which could cause a per-
turbed flow. A constraint of the entrance and exit hub radius must
be respected as follows:

R1
i −  R2

i ≤ 0 (19)

On the other hand, the constraint of the rotor thickness has been
added, which represents the distance between the entrance and
the exit of the turbomachine. This parameter is  calculated in  every
radius situated between hub and tip of the rotor. Every section of
the discretization has a different airfoil geometry (the stagger angle,
the chord length, the camber, the thickness of airfoil. etc.), all these
geometries of airfoil along the radial direction define the blade of
the turbomachine. In each section, the thickness of the rotor and
the chord form a stagger angle. The thickness is  the projection of
the chord on the longitudinal axis. The design of the turbomachine
must satisfy that a  predefined maximal thickness should not be
exceeded. This constraint is  represented mathematically as follows:

lr cos(�r) − thmax ≤ 0, r  = 1, . .  ., Nrd (20)

where that lr and � r represent respectively the chord and the stag-
ger angle to each section r; thmax the maximum rotor thickness
allowed, Nrd is the number of discretization sections.

This model would need local constraints due to empirical rea-
sons linked directly with the airfoil shape of  the chosen blade.



Consequently, a  maximum camber value was  imposed for each
section of the radial discretization.

Crz∞o −  2.7 ≤ 0 (21)

The same reasons for the solidity in  the entrance �1
r And at the exit

�2
r of the rotor.

�1
r − 1.5 ≤ 0 and �2

r − 1.5 ≤ 0 (22)

To ensure geometric relevance and to avoid any kind of inadequate
shapes of the optimized rotor blade. The inlet flow angle must be
greater than the exit flow angle on all radially discretized sections.

ˇr1 − ˇr2 > 0 (23)

Finally a constraint of minimum nominal value of volume flow
rate was considered to  guarantee the specifications of the turbo-
machine.

3.4.3. Mechanical constraint
To complete the constraints, the nominal volume flow rate must

be limited by a lower value. By the fact that the problem of opti-
mization consists of reducing the nominal volume flow rate in order
to increase the total efficiency.

Qvnom − Q̂v ≥ 0 (24)

Knowing that Q̂v  is  the allowed minimum nominal volume flow
rate.

The head constraint is added specially for second formulation
problem:

|H(0.75Qv)  − H(1.25Qv)| ≤ 0.15H(Qvnom) (25)

4. Constraints handling

4.1. Non-intrusive methods

A review of the literature [26–28] shows that  the constraint
handling methods can be classified as:

• Methods based on preserving feasibility of solutions;
• Methods based on penalty functions;
• Methods making distinction between feasible and unfeasible

solutions;
• Methods based on decoders;
• Hybrid methods.

The method of penalty is  the oldest one, its difficulty is  in  choos-
ing the most effective penalty coefficient according to the problem
setup. Deb [28] proposed a  technique without using the coefficient
of penalty, which is  based on the principle of feasible and unfeasible
solutions.

In our case (single-objective optimization), as mentioned above,
the total efficiency needs to be improved in  the interval [0,1]. Like
the other performances parameters, where their maximum and
minimum values can be estimated, the coefficient of penalty must
be satisfied in  order to penalize the objective function (the fitness
moves outside its theoretical interval).

The variable constraints (side constraints) are  treated differ-
ently. The constraints do  not influence on the fitness. That means
that there is no penalization of the objective function. Neverthe-
less, the constraints must be respected during the evolution of the
population.

Other types of constraints may  be handled by using the tech-
nique of static penalty function [29]. This technique consists of

penalizing the solutions located in the unfeasible region by using a
penalty constant.

fitness =  F +
m∑
i=1

Ciıi (26)

where

{
ıi = 1 if constraint is not respected

ıi = 0 else

where m is the number of constraints, C the constant of  penalty
depending on the objective function F.

In this paper, we propose a  strategy that handles the constraints
in  a  way  that it decreases the computational time as much as
possible. The evaluation of the individual begins with the inverse
design to determine the geometrical parameters of the machine,
just before passing to the direct method for analyzing the perfor-
mances, one verifies the geometrical constraints (camber, solidity,
blade thickness, etc.). The fitness of the individual is initialized by
null value, if there is at least a single violation of  the constraints,
the individual will be penalized by a constant of penalty equal to
1. In this case, it is not necessary to analyze the machine by  the
direct method. If the opposite occurs, i.e. no violation of the con-
straints is  found, one passes to the direct method to determine the
main fitness which is  the nominal total efficiency. The nominal con-
straint of minimum volume flow rate is then handled with the same
method of penalty. The elimination of the direct method for indi-
viduals who  do not  verify the geometrical constraints allows to
decrease dramatically the computational time.

4.2. Intrusive methods

The handling of the constraints in the intrusive gradient-based
methods is  strongly linked to  the design method itself, this phase
will be detailed in the algorithmic development section.

5. Optimization algorithms

Four bio- and socio-inspired meta-heuristics are used in  this
work:

• bio-inspired: Genetic Algorithm (GA), Particle Swarm Optimiza-
tion (PSO), Cuckoo Search (CS);

• socio-inspired: Teaching Learning Based Optimization (TLBO).

The proposed set of methods are iterative and non-intrusive, the
variables are modified in each iteration.

5.1. Genetic Algorithm

5.1.1. General principle
The well known Genetic Algorithms are a  part of  the evolution-

ary family based on the theory of evolution and natural selection
proposed by Darwin. The method, developed by Holland (since
1960), simulates mathematically the operators of  crossover, muta-
tion and selection [30].  GA was made popular by Goldberg [31]. An
individual (set of variables) is represented by  a  chromosome and
a gene represents a variable formed by a  string of  0 and 1. Binary
form of representing variable is the most used.

In this work, real form of variables is used, the flexibility and the
performances of the algorithm in  terms of speed of  execution are
better [32].

5.1.2. GA operators
5.1.2.1. Selection. We chose the selection by  binary tournament.
Two individuals are randomly pulled x1 and x2,  and the one who



has the best fitness will be in the next generation (t + 1), the other
one will be rejected.

if (fitness(xt1)  > fitness(xt2)) xt+1 = xt1; (27)

else xt+1 = xt2; (28)

where,

1 ≤ t ≤ iteration, max

5.1.2.2. Crossover. The intermediate crossover, proposed by Kaya
et al. [33], which allows to create two “children” from two  randomly
pulled “parents” is used, this crossover is  controlled by  a ratio.

xt+1
1 = xt1 + rand ×  ratio ×  (xt2 −  xt1) (29)

xt+1
2 = xt2 + rand ×  ratio ×  (xt2 −  xt1) (30)

where rand is  a random number between [0,1] and the ratio is a
constant between [0,1], it can be larger than 1 if there is a  problem
of premature convergence; ratio = 1.2.

5.1.2.3. Mutation. A Gaussian mutation [34]  is preferred with a
probability of Pm =  0.01. This method adds a  random normal dis-
tribution for each variable.

xt+1
id

= xtid + S  × randn × (xd, min − xd, max) (31)

S = scale ×
(

1 − shrink × (t + 1)
tmax

)
(32)

with,

1 ≤ i ≤ n, (Population, size)

1 ≤ d ≤ D, (number, of , design, variables)

xd min, xd max are respectively the minimum and the maximum
values of variable xd. Knowing that scale is  a parameter which deter-
mines a standard deviation of the generated random number, its
value is between [0,1], shrink is  a number between [0.5,1.0]; in  our
case we took scale =  0.1  and shrink =  0.5.

5.1.3. Implementation
Each decision variable xid represents a  design variable:

xid ∈ [Qv, N, R1
i , R1

e , R2
i , R2

e , De, Di, Z] (33)

Algorithm 1 shows GA optimization process of an axial pump.

Algorithm 1.  Design approach using Genetic Algorithm

1: Start
2: Input parameters:

-  Pa, side constraints, maximum iteration, population size,
number of dimensions (variable)
- Design constant: range of volume flow rate, the head H,
rotational speed N, the density and the viscosity of fluid, the
roughness, the slack distance between the tip of the rotor
blades and the hull, the maximum thickness of rotor, type of
vortex, number of the volume flow rate and the section

3:  Initialize the population randomly
4: Evaluate the population opulation:
5: - Generate the geometry (inverse design)
6:  - Check the geometrical constraints with the penalty method
7:  if no violation found then
8: - Analyze the performances (direct design)
9: - Check the  mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
10: end if
11: for iteration:=1 to Max  iteration do
12: Selection Eq. (27) or (28).
13: Crossover Eqs. (29) and (30)
14: Mutation Eqs. (31) and (32)
15: Evaluate the population:

16: -  Generate the geometry (inverse design)
17: -  Check the geometrical constraints with the penalty method
18: if no violation found then
19: Analyze the performances (direct design)
20: Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the  total fitness)
21: end if
22: end for
23: return The  best solution is obtained

5.2. Particle Swarm Optimization

5.2.1. General principle
Particle Swarm Optimization (PSO) method was developed by

Kennedy and Eberhart in 1995 [35] it is based on the simulation of
the swarm behavior of birds or fishes. A particle or  an individual
represents a  bird/fish who is analogically a set of variable in an
optimization problem. When the individual moves from a  position
to  another, it is affected by three main factors:

1.  the attraction toward the leader team,
2. the attraction toward its best position so far,
3. staying in the actual position.

V (t+1)
id

= w × V (t)
id

+ C1 × rand × (Pbest(t)
id

− x(t)
id

) +

C2 × rand × (Gbest(t)
d

−  x(t)
id

) (34)

x(t+1)
id

= x(t)
id

+ V (t+1)
id

(35)

Knowing that Pbest is the best position passed by  the individual,
Gbest (the best global individual), is  the best position of  all best
positions of the generation, V is  the velocity of the decision variable,
C1 =  C2 =  2.0 are cognitive coefficient and social coefficient respec-
tively, w is the inertia weight, it can be fixed to 0.5 or  varied between
0.4 and 0.9 during iterations. The inertia weight can be  given by,

w(t) =  wmin +
(
tmax − t

tmax

)
× (wmax − wmin)  (36)

where wmin and wmax are the minimums and the maximums values
of the inertia weight. This formulation, called Linearly Decreasing
Weight Particle Swarm Optimization (LDW-PSO), is  proposed by
Shi and Eberhart [36]. A literature review shows a lot of approachs
proposing improvements like in  [37]  who developed an automatic
restart of the calculation (multi-start PSO) with an initial popula-
tion created randomly when a  stagnation of fitness variation during
the iterations occur. Wei  et al. [38]  add elitism and mutation mech-
anisms to the PSO. In this paper, we propose to  use standard PSO
with w = 0.5 and an unlimited velocity.

5.2.2. Algorithmic implementation
For  each xid,  Pbestid and Gbestid such as:

⎧⎪⎨
⎪⎩
xid

pbestid

gbestd

⎫⎪⎬
⎪⎭ ∈ [Qv, N, R1

i , R1
e , R2

i , R2
e , De, Di, Z] (37)

we propose the PSO Algorithm 2,



Algorithm 2.  Design approach using Particle Swarm Optimization
algorithm

1: Start
2: Input parameters:

-  w,  C1, C2, space search, max  iteration, population size,
number of dimensions (variable)
-  Design constant: range of volume flow rate, the head H,
rotational speed N, the density and the viscosity of fluid, the
roughness, the slack distance between the tip of the rotor
blades and the hull, the maximum thickness of rotor, type of
vortex, number of the volume flow  rate and the section

3: Initialize the population randomly (swarm, Pbest, velocity v)
4:  Evaluate the population:
5: -  Generate the geometry (inverse design)
6:  -  Check the geometrical constraints with the penalty method
7:  if no violation found then
8: -  Analyze the performances (direct design)
9:  -  Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
10: end if
11: Obtain the global best (gbest)
12: for iteration:=1 to Max  iteration do
13: Fly Eqs. (34) and (35)
14: Evaluate the population:
15: -  Generate the geometry (inverse design)
16: -  Check the geometrical constraints with the penalty method
17: if no  violation found then
18: - Analyze the performances (direct design)
19: - Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
20: end if
21: Update the Pbest and Gbest
22: end for
23: return The  best solution (Gbest)

5.3. Cuckoo Search Algorithm

5.3.1. General principle
Following the example of the previous algorithms, the Cuckoo

Search (CS) is  a natural-inspired method formulated by Yang and
Deb [39]. CS is based on the behavior of cuckoo, which is  character-
ized by the practice of “parasitism of brood”, combined to the Levy
flight (random walk), which is another behavior of some birds. In
this algorithm, an individual (proposed solution or the set of vari-
ables) is considered as a  “nest”. A nest which has a  good quality
eggs represent an individual of good fitness.

The standard CS algorithm [40]  has three main stages:

1. each cuckoo lays an egg at a  time and drops it in a  randomly
chosen nest,

2. the best nest with a high quality of eggs continue existing in the
next generation,

3. there is  a probability Pa (between 0 and 1), that the host bird
discovers the cuckoo eggs, thus he can get rid of it either by
abandoning its nest or by reconstructing another.

The phase of choosing a  nest is described as follows:

x(t+1)
i

= x(t)
i

+ ˛  ⊕ Lévy(ˇ) (38)

 ̨ = ˛0 × (best − x(t)
i

) (39)

˛0 × (best −  x(t)
i

)  ⊕ Lévy(ˇ) ≈ 0.01



|v|
1
ˇ

(best − x(t)
i

) (40)


 ≈ N(0, �2

)  (41)

v ≈ N(0, �2
v ) (42)

�2

 =

[ (
�(1 + ˇ) sin(ˇ�/2)

)(
�[(1 + ˇ)/2] × ˇ  ×  2(ˇ−1)/2

)
] 1
ˇ

(43)

�2
	 =  1 (44)

where 
 is the normal distribution of an average 0 and a  variance
�2

,  	 is the normal distribution of an average 0 and a  variance 1.

The phase of changing the nest for the aim of finding a new solu-
tion with biased/selective random walks [41] is  given as follows:

Two  solutions are randomly pulled, xp and xq and a new nest
from these two solutions is then looked for, therefore

stepsize = rand ×  (xtp − xtq)  (45)

new xti =  xti + stepsize (46)

5.3.2. Algorithmic implementation
Every nest represents a  set of decision variables xid.  The code in

Algorithm 3 shows the process of design optimization of an axial
pump by CS.

Algorithm 3. Design approach using Cuckoo Search Algorithm

1: Start
2: Input parameters:

-Pa, space search, max iteration, population size, number of
dimensions (variable)
- Design constant: range of volume flow rate, the head H,
rotational speed N, the density and the viscosity of fluid, the
roughness, the slack distance between the tip of the rotor
blades and the hull, the maximum thickness of rotor, type of
vortex, number of the volume flow rate and the section

3: Initialize the population randomly
4: Evaluate the population:
5: - Generate the geometry (inverse design)
6: - Check the geometrical constraints with the penalty method
7: if no violation found then
8: - Analyze the performances (direct design)
9: - Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
10: end if
11: for iteration:=1 to Max  iteration do
12: Phase get a  nest Eqs. (38)–(43)
13: Evaluate the population:
14: - Generate the geometry (inverse design)
15: - Check the geometrical constraints with the penalty method
16: if no violation found then
17: -  Analyze the performances (direct design)
18: -  Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
19: end if
20: Keep the best solution
21: Phase Empty nest Eqs. (45) and (46)
22: Evaluate the population:
23: - Generate the geometry (inverse design)
24: - Check the geometrical constraints with the penalty method
25: if no violation found then
26: -  Analyze the performances (direct design)
27: -  Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)
28: end if
29: Keep the best solution
30: end for
31: return The best solution

5.4. Teaching-Learning based Optimization Algorithm

5.4.1. General principle
The previously presented algorithms are natural or bio-inspired.

Differently, the Teaching Learning based Optimization algorithm
(TLBO) proposed by Rao et al. [42]  is based on the influence of a
professor on students scholar performances and the influence of
students on each other. Therefore, this is why  this method is consid-
ered as socio-inspired. A population is  presented by  students, each
student represents an individual, that is  mean a  solution which
contains the variables, referred to as subjects. The teacher is the
best individual (reference) which can latter be  changed during the
iterations. Opposed to other algorithms like GA, PSO and CS, where



the choice of the parameters remains always dependent on several
regulation tests, TLBO do not have any regulation parameter. TLBO
was tested with several constrained benchmark functions, where
it showed good performances [43].

TLBO is  characterized by  two phases: teaching and learning.

5.4.1.1. Teaching phase. In this phase, the teacher which is the indi-
vidual who has the best fitness tries to raise or  to improve the
average of marks of his students (the individuals of the rest of the
population) by  transmitting its knowledge. A good teacher forms
good students. Xi = {xi1,  xi2, xi3, . . .,  xiD},  Xi:  individual (student),
xi1,xi2,xi3: the decision variables (the subjects) i =  {1, 2,  3,  4, 5, . . .,
N}, N is the number of student (population size).

x(t+1)
i

= x(t)
i

+  rand × (xtTeacher − TFM
t) (47)

Knowing that Mt is  a vector mean of each subject.

Mt = [mt1, mt2, mt3, mt4, . . .,  mtD] (48)

TF is not a parameter of TLBO algorithm. Several tests with various
values of TF showed that the algorithm is  more successful when
TF take a value between 1 and 2. The best manner to improve the
algorithm is to set TF as a random variable between 1 and 2 during
the iterations [44].

5.4.1.2. Learning phase. In this phase, repeatedly two students
of the population are pulled randomly, they change knowledge
between each other by a  mutual interaction. Every student learn
new “things” from the other that has more knowledge (having a
good fitness). This phenomenon was mathematically described by
Rao et al. [42]  and expresses as:

x(t+1)
i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t)
i

+  rand × (x(t)
i

− x(t)
j

) if

, x(t)
i

, is
, better
, than

, x(t)
j

x(t)
i

+  rand × (x(t)
j

− x(t)
i

) otherwise

(49)

5.4.2. Algorithmic implementation
In this algorithm, each subject xid represents one design variable,

a set of variable gives a  student i.e. a  solution, the teacher is always
the best solution provided by the TLBO. In both phases, during the
iterations, it is always necessary to  keep the good student and to
reject the one who has a low fitness.

The code in Algorithm 4 shows the design optimization process
of an axial pump by TLBO.

Algorithm 4. Design approach using Teaching-Learning-Based
Optimization Algorithm

1: Start
2: Input parameters:

-  Space search, max  iteration, population size, number of
dimensions(variable)
- Design constant: range of volume flow rate, the head H,
rotational speed N, the density and the viscosity of fluid, the
roughness, the slack distance between the tip of the rotor
blades and the hull, the maximum thickness of rotor, type of
vortex, number of the volume flow rate and the section

3:  Initialize the population randomly
4: Evaluate the population:
5: - Generate the geometry (inverse design)
6:  - Check the geometrical constraints with the penalty method
7:  if no violation found then
8: - Analyze the performances (direct design)
9: - Check the  mechanical constraints (nominal volume flow

rate) with the penalty method (compute the total fitness)

10: end if
11: for iteration:=1 to Max  iteration do
12: The teaching phase Eq. (47).
13: Evaluate the  population:
14: -  Generate the geometry (inverse design).
15: -  Check the geometrical constraints with the penalty method
16: if no violation found then
17: -  Analyze the performances (direct design)
18: -  Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the  total fitness)
19: end if
20: Keep the best solution
21: The Learning phase Eq. (49)
22: Evaluate the  population:
23: -  Generate the geometry (inverse design).
24: -  Check the geometrical constraints with the penalty method
25: if no violation found then
26: -  Analyze the performances (direct design)
27: -  Check the mechanical constraints (nominal volume flow

rate) with the penalty method (compute the  total fitness)
28: end if
29: Keep the best solution and update the  teacher
30: end for
31: return The best solution (teacher)

5.5. Sequential Linear Programming and Simplex

A mathematical model of the optimization problem has been
introduced. According to that, a set of design variables (x) has
been defined according to the stated optimization problem. The
optimization methodology proposed states an iterative procedure
where the design variables are modified at each iteration as:

xk = xk−1 +  �xk, k ≥ 1; (50)

being k  the index of the iteration. Thus, the main goal of the
optimization algorithm consists of finding the value of �xk that
minimizes the objective function and satisfies the constraints
imposed according to the definitions proposed in  Sections 3.3  and
3.4.  In this paper, the authors propose an optimization algorithm
based on the use of linearized approximations. Thus, the objec-
tive function can be approximated by using the first order Taylor
expansions as:

F(xk)  ≈  F(xk−1) + ∂F
∂x

∣∣∣∣
xk−1

�xk (51)

Thus, the minimization of the first order approximation can be
treated as the minimization of the right hand side term since F(xk−1)
is  constant in iteration k.  On the other hand, the constraints of the
optimization model must be also satisfied. Consequently,

gj(x
k)  ≤  0, j = 1, . . ., m (52)

where m is the total number of constraints. In practice, design con-
straints are usually nonlinear but, following the same idea used
in the approximation of the objective function, first order Taylor
expansions are used as:

gj(x
k)  ≈  gj(x

k−1) + ∂gj
∂x

∣∣∣∣
xk−1

�xk, j = 1, . . ., m (53)

If second and higher order terms of the Taylor expansions are
not considered, the verification of the constraints proposed can be
stated as:

∂gj
∂x

∣∣∣∣
xk−1

�xk ≥ −gj(xk−1)  (54)

The linearized problem can be solved by including slack variables
in  the design constraints as:

∂gj
∂x

∣∣∣∣
xk−1

�xk +  hj = −gj(xk−1)  (55)



Table  3
Specifications of the pump.

Characterstic Pump mono-rotor

H (m)  6
Qvmin (m3/h) 360
Qvmax (m3/h) 1800
N (rpm) 1500
Density of fluid (kg/m3)  1000

where hj ≥ 0 are the slack variables. This algorithm is based on the
validity of the first order approximation. Consequently, the side
constraints of �(xk) must be restricted to small values close to zero
in order to satisfy the validity of the first order approximation. The
definition of the side constraints is usually stated as a centered
interval around zero as:

−�x0 ≤ �xk ≤ �x0 (56)

where �x0 is usually defined as:

�x0 =  p(xmax − xmin)  (57)

being p  a  predefined percentage usually defined in the interval
[1%, 5%]. This percentage can be slightly modified during the opti-
mization process if needed. In addition, the definition of the side
constraints must satisfy:

xmin − xk−1 ≤ �xk ≤ xmax − xk−1 (58)

to verify the side constraints of the updated design variables of the
problem. This definition of side constraints is usually called moving
limits in  the literature [45–48] since the interval defined by the side
constraints of the linearized problem are usually centered around
the design variables, which are modified during the optimization
problem. The linearized optimization problem, including the side
constraints of the design variables, can be stated as:

Minimize
∂F
∂x

∣∣∣∣
xk−1

�xk

such

, that
∂gj
∂x

∣∣∣∣
xk−1

�xk + hj =  −gj(xk−1)

j =  1, . . .,  m

verifying :

−�x0 ≤ �xk ≤ �x0

xmin − xk−1 ≤ �xk ≤  xmax −  xk−1

(59)

being F the objective function defined according to Section 3.3.2.
This linearized optimization problem can be directly solved by
applying the Simplex algorithm proposed by G.  Dantzig [49]. This
algorithm obtains the most adequate value of �xk at each iteration.
Thus, the design variables of the problem can be updated according
to Section 3.2. The complete iterative optimization process pro-
posed in  this paper to solve the optimization of axial turbomachines
is usually called in  the bibliography Sequential Linear Programming
(SLP) [45–48].

5.5.1. Sensitivity analysis
The optimization algorithm proposed in  Section 5.5 requires

the computation of first order derivatives of the objective function
and constraints with respect to the design variables of the prob-
lem. These derivatives can be computed by numerical methods like
finite differences. However, this kind of methods are not advisable
if the numerical formulation for the analysis of the problem is  avail-
able. In this case, the use of analytical methods of derivation is  the
most effective technique. Numerical methods of derivation are not
usually advisable since they introduce sources of error due to the

Table 4
Hypotheses and specifications of inverse and direct design.

Theoretical parameters Pump mono-rotor

Roughness 2.0e−5 (m)
Type of vortex FV-CV-FCV
Slack distance between the tip and the hull  5.0e−4 (m)
Radial equilibrium Simplified
Fairing Without
max  thickness of the airfoil rotor 0.012
Number of sections 20
Number of the volumetric flow rate 30

Table 5
Space of search for the designs variables.

Side
constraints

Qv N R1
i

R1
e R2

i
R2
e Di De Z

Min  0.1 1000 0.03 0.105 0.03 0.105 0.3 0.3 3
Max  0.5 1900 0.100 0.150 0.100 0.150 0.7 0.7 20
Unit m3/s rpm m m m m – – –

Fig. 6.  Reference rotor CAD.

truncation of the approximation series used and due to the proper-
ties of the resulting algorithms about round-off errors propagation.
In addition, they usually require a  large number of  analyses of the
problem with different input data, which involves in practice con-
siderable computing effort, specially in CPU time. In this paper, the
authors have developed analytically the first order derivatives of
the objective function proposed in (16) and (17) and the first order
derivatives of the constraints proposed in Section 3.4.  The authors
have also computed analytically the derivatives with respect to  all
the variables of the problem in  order to  facilitate the definition of
other different optimization problems. Thus, other different opti-
mization problems according to different practical considerations
can be easily stated if needed by adequately selecting the design
variables and redefining the objective functions and the design
constraints.

6. Optimization of axial pumps

The axial pump considered as reference in  this paper consists of
a non shrouded mono rotor, presenting the specifications given in
Tables 3 and 4 (Fig. 6).



Fig. 7. Case 1–scenario 1: (a) reference rotor CAD, (b) TLBO rotor CAD and (c) SLP rotor CAD.

Table 6
Summary of cases and scenarios optimization studies.

Case 1  2

Objective max (�nom) max
(∫ 1.25Qnom

0.75Qnom
�(Qv) dQv

)
Scenario 1  2  3 4 5 1  2  3

N (rpm) 1500 1500 1500 1500 [1000,1900] 1500 1500 [1000,1900]
Qv (m3/h) [540,1800] [540,1800] [540,1800] [540,1800] 1080 [540,1800] [540,1800] 1080
R1
i

(m)  [0.03,0.1] 0.075 0.075 0.075 0.075 [0.03,0.1] 0.075 0.075
R1
e (m)  [0.105,0.15] 0.140 [0.126,0.154] 0.140 [0.126,0.154] [0.105,0.15] 0.140 [0.126,0.154]
R2
i

(m) [0.03,0.1] 0.075 0.075 0.075 0.075 [0.03,0.1] 0.075 0.075
R2
e (m) [0.105,0.15] 0.140 [0.126,0.154] 0.140 [0.126,0.154] [0.105,0.15] 0.140 [0.126,0.154]

Di  [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7]
De  [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7] [0.3,0.7]
Z  [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]
Vortex FV  FV  FV CV-FCV FV-CV-FCV CV CV CV

Table 7
Results of  different methods: case 1–scenario 1.

F Reference TLBO CS

best worst ave std best worst ave std

Efficiency (%) 60.15637 70.0543 70.0514 70.05325 8.7591e−04 70.0474 70.0038 70.02349 1.6508e−02

F  PSO GA SLP

best worst ave std best worst ave std

Efficiency (%) 70.0546 70.0398 70.05176 5.9939e−03 69.4062 68.6234 69.05351 2.9060e−01 68.82087

6.1. Data relative to the algorithmic implementation

For all presented optimization algorithms, the same variable
constraints (side constraints) are considered. The values of these
variables are given in Table 5.

Table 6 shows all the studied cases and scenarios.
The maximum number of function evaluation is fixed as 60,000

for all the algorithms and the run was repeated for 10 times for
obtaining the best solution, the worst solution, average (ave) and
standard deviation (std). The population size and number of itera-
tions were selected according to the maximum function evaluation

allowed. The same computational devices are used as well (CPU
Intel Core 2 Duo E5400, 3 GB RAM, 2.9 GHz).

6.2. Results and discussions

6.2.1. Case one: maximization of total efficiency
6.2.1.1. Scenario one. This first Scenario contains eight decision
variables, namely volume flow rate, number of blades, internal and
external radius at the inlet and the outlet of the rotor, diffusion fac-
tors at the hub and the tip of the rotor, using free vortex strategy.
The optimal pump variables with the obtained nominal efficien-

Table 8
Comparison of the  optimal solutions: case 1–scenario 1.

Methods Qv (m3/s) R1
i

(m)  R1
e (m)  R2

i
(m)  R2

e (m) Di De Z

Reference 0.3 0.075 0.14 0.075 0.14 0.68 0.32 4
TLBO  0.269755 0.0300002 0.149148 0.0674282 0.15 0.699999 0.347475 3
CS  0.27028 0.0302294 0.148827 0.0677522 0.149998 0.699927 0.343204 3
PSO  0.269788 0.0300009 0.149043 0.0673856 0.15 0.699992 0.346976 3
GA  0.282407 0.0399075 0.147405 0.0731936 0.149789 0.585075 0.33793 4
SLP  0.281981 0.0483276 0.141835 0.0739864 0.15 0.7 0.373599 4



Fig. 8. Comparison of the computational time: case 1–scenario 1.

cies obtained by  the proposed optimization methods are given in
Tables 7 and 8:

Compared to  the results of the reference machine, we record a
clear increase of the total efficiency: about 10% of increase for TLBO,
PSO and CS, and about 9% and 8% of increase is obtained by GA and
SLP respectively.

We notice also that for all the explored methods, the opti-
mal  exterior radius, at the inlet and at the outlet of the blade, is
close to  its maximal value (Fig. 7). The obtained results confirm
that the efficiency increases with the decrease of the volume flow
rate. Moreover, the diffusion factor at the rotor’s hub is  raised, but
remains as low as possible at the tip.

The average computational time is  compared for the various
optimization methods and represented in the following histogram
(Fig. 8).

It is  shown that the SLP algorithm is  by far, the heaviest because,
besides, this local method, is  restricted by a number decision vari-

Fig. 9. Comparison of best Fitness’s variation with the iterations.

able, which implies the necessity of an iterative calculation for the
additional variable. CS and PSO require relatively the same com-
putational time, TLBO records a  little decrease of computational
time and finally GA that is  considered as faster algorithm to the
previous algorithms. Modified penalty technique can decrease the
computational time with an indeterminate rate because the ran-
dom nature of used algorithms, after many tests, the value of this
rate is between 14% and 50%.

On the other hand, the fast convergence of the meta heuristics
algorithms constitutes another advantage compared to  the local
methods (Fig. 9). Despite the fact that they are  initiated with a
random population, contrary to the SLP, which is  initiated with a
reference solution, we notice that PSO and TLBO converge respec-
tively around 40th and 70th iterations, whereas the GA and CS
exceeds half the number of iteration before convergence.

Fig. 25a shows the variation of the efficiency as a  function of the
volume flow rate. The optimized machines which have the higher

Fig. 10. Case 1–scenario 1: performances.



Fig. 11. Comparison of the performance prediction of proposed approach with CFD: case 1–scenario 1.

Fig. 12. Case 1–scenario 2: A) Reference rotor CAD, B) CS rotor CAD, C)  GA rotor CAD.

Table 9
Results of  different methods: case 1–scenario 2.

F TLBO CS

best worst ave std best worst ave std

Efficiency (%) 62.0627 62.0619 62.06248 3.3599e−04 62.0626 62.0624 62.06247 6.7495e−05

F  PSO GA

best worst ave std best worst ave std

Efficiency (%) 62.0627 62.0621 62.06242 2.7809e−04 62.056 61.99784 62.0230 2.2565e−02

Table 10
Comparison of the  optimal solutions: case 1–scenario 2.

Methods Qv (m3/s)  Di De Z

TLBO 0.284529 0.699999 0.397594 9
CS  0.284537 0.699955 0.397678 8
PSO  0.284529 0.699999 0.397594 9
GA  0.284657 0.699962 0.398492 9

Table 11
Results of  different methods: case 1–scenario 3.

F TLBO CS

best worst ave std best worst ave std

Efficiency (%) 69.144 69.1395 69.13995 1.4230e−03 69.1393 69.1374 69.13855 7.6485e−04

F  PSO GA

best worst ave std best worst ave std

Efficiency (%) 69.144 69.1438 69.14398 6.3246e−05 68.5954 67.6322 68.11708 2.9908e−01

nominal efficiency present also a  higher off-design efficiency com-
pared to the reference pump.

In this paper, we  are exclusively interested on the improvement
of the total nominal efficiency, the cavitation criterion was  not con-
sidered. In Fig. 10c and d, it is  noticed that for all machines, the
required net pressure suction head (NPSHC) is  inferior to the NPSH

on all the range of volume flow rate. i.e. the cavitation criterion is
respected.

Another positive point of optimized pumps, its consumed power
is less than reference pump for all volumetric flow rate range
(Fig. 10e  and f).



Fig. 13. Comparison of best fitness’s variation with the iterations: case 1–scenario
2.

The CFD method using Ansys-Fluent is used to  predict the per-
formance of two first best optimized machines (i.e. PSO and TLBO)
as well as the reference machine. A steady flow is imposed using
Moving Reference frame with periodic boundary condition. The
turbulence model K − ω SST is chosen for solving three-dimensional
Reynolds-averaged Navier–Stokes equations. For the design point
neighborhood the results of CFD are very acceptable, is so closed
to the analysis of the proposed approaches (Fig. 11). For the refer-
ence machine, the average relative error is about 2.11% and 13.60%
for efficiency and head respectively. For TLBO’s machine, the aver-
age relative error is about 2.86% and 1.96% for efficiency and head
respectively. For the PSO’s machine, the average relative error is
about 2.96% and 3.45% for efficiency and head respectively.

6.2.1.2. Scenario two. In the second scenario, the inlet and outlet
radius are kept constant. For the following cases and starting from
this scenario, the SLP method is  not explored.

Table 12
Comparison of the optimal solutions: case 1–scenario 3.

Methods Qv (m3/s) R1
e (m)  R2

e (m)  Di De Z

TLBO 0.269755 0.153302 0.154 0.7  0.492199 11
CS 0.250453 0.153287 0.154 0.699995 0.491273 11
PSO  0.282407 0.153298 0.154 07 0.492113 11
GA  0.258843 0.150389 0.152934 0.6992 0.510518 11

Tables 9 and 10 and Fig. 13 show the convergence of the
algorithms to nearly the same solution, with an increase in total
efficiency by almost 2% relative to  the reference machine. The
performance curves presented in Fig. 14 show that the obtained
machines are similar. Further, Fig. 14e  and f  shows that the power
consumed by these machines is  less than the power consumed by
the reference machine. Figs. 14c and d shows that the cavitation cri-
terion is satisfied. Finally, the geometries are relevant in  terms of
design as shown in  Fig. 12.  Observe the difference in the rotor axial
distance between the optimized machines where the constraints
are respected and the reference machine where they are not.

6.2.1.3. Scenario three. In the third scenario, only the hub radius
are kept constant, the external radius vary in  a range of −10% to
+10% of the external radius of the reference machine.

Tables 11 and 12 and Fig. 16 show that the rate of  increase in
total efficiency is  about 9% for the TLBO, PSO and CS, and less then
9% for GA. Notice that the radius tend to their maximum value in
the search space as well as the diffusion factor at the hub. Notice
also that there is also an arguably high number of blades compared
to  the other scenarios.

Fig. 14. Case 1–scenario 2: performances.



Fig. 15. Case 1–scenario 3: (a) reference rotor CAD, (b) PSO rotor CAD and (c)  GA rotor CAD.

Fig. 16. Comparison of best fitness’s variation with the iterations: case 1–scenario
3.

Except for GA, Fig. 17 shows homogeneity and coincidence of
the efficiency curve (Fig. 17a), the head (Fig. 17b), NPSH and NPSHC

(Fig. 17d and c respectively), which verifies the cavitation criterion.
The curves of torque and power present a coincidence between
the PSO, CS  and TLBO as shown in  Fig. 17f  and e. Finally for all
algorithms, the power is always lower than that of  the reference
machine. The geometries given by PSO and GA are comparable as
shown in  Fig. 15.

6.2.1.4. Scenario four. The fourth scenario is similar to  the second
one concerning the decision variables except that optimization is
done for two  types of vortex, namely constant and forced (Fig. 18).

Tables 13 and 14 and Fig. 19 show that the use of forced and
constant vortex can slightly improve the performance, particularly
the forced vortex. For  the diffusion factor, the results show that the
obtained machine can operate with a  marginally high values, either

Fig. 17. Case 1–scenario 3: performances.



Fig. 18. Case 1–scenario 4: (a)  reference rotor CAD, (b) CS-CV rotor CAD and (c) CS-FCV rotor CAD.

Table 13
Results of different methods: case 1–scenario 4.

F TLBO CS

best worst ave std best worst ave std

Efficiency (%)  CV 63.3594 63.3527 63.35793 1.9282e−03 63.3595 63.3524 63.3565 3.4351e−03
FCV  63.6206 63.614 63.61993 2.0838e−03 63.6201 63.614 63.61604 2.7048e−03

F  PSO GA

best worst ave std best worst ave std

Efficiency (%)  CV 63.3594 63.3527 63.35739 2.5049e−03 63.3595 63.3149 63.33529 1.1766e−02
FCV  63.6206 63.614 63.61925 2.3206e−03 63.6132 63.6108 63.61202 8.5219e−04

Table 14
Comparison of the optimal solutions: case 1–scenario 4.

Methods Qv (m3/s) Di De Z

TLBO CV 0.294284 0.698088 0.516567 11
FCV 0.296991 0.55635 0.684712 9

CS  CV 0.294174 0.698246 0.515346 4
FCV 0.296967 0.556322 0.684121 6

PSO  CV 0.29425 0.69814 0.51619 11
FCV 0.297017 0.556317 0.685256 9

GA  CV 0.294325 0.699532 0.51403 4
FCV 0.297048 0.541793 0.690215 4

Fig. 19. Comparison of best fitness’s variation with the iterations for different vor-
tex:  case 1–scenario 4.

with forced or constant vortex. Fig. 20a illustrates the improvement
in the efficiency between the different types of vortex. Notice that
the optimized machines provide a little different charges depend-
ing on the vortex type, also the forced vortex and constant vortex
gives the highest and lowest heads respectively than the free vor-
tex, see Fig. 20b.

Fig. 20c and d shows that the cavitation criterion is  respected.
Fig. 20e  and f  confirms this observation for the power consump-
tion. In the other side, at nominal point, all the optimized machines
present less power compared to the reference machine for all con-
sidered types of vortex.

6.2.1.5. Scenario five. In the fifth scenario, the flow rate is kept con-
stant and the rotational speed variable and the hub radius are also
fixed. The outer radius is  variables within a  range of −10% to 10%
of the tip radius of the reference machine. The machines are opti-
mized for the three types of vortex (free, forced and constant). In
this scenario, presented in Table 15 and Fig. 21, the efficiency can be
improved by 14% and 13%. Notice that the machines operate with
the maximum rotational speed Table 16.  Moreover, all tip radius
and are close to same solution that is the maximum allowed value.
In this scenario, the relevant solutions are present comparable per-
formances as shown in  Fig. 22.

6.2.2. Case two: maximization the operation area under the
efficiency curve

In this case we propose a  new objective function for the design of
a turbomachine, it consists on maximizing the area under the per-
formance curves, in our case it is  the efficiency curves. A numerical
integration was  used on a  flow range of −25% to  25% of the nominal
rate. A constraint is added to the head, which is the head variation
within this range, and that should not  exceed 15% of the head of
the nominal point. Only constant vortex has been considered in
this case.

6.2.2.1. Scenario one. In this scenario all the parameters are consid-
ered variables. Tables 17 and 18 and Fig. 23 show an increase of this
area by 60.590% and 60.935% with TLBO and PSO respectively and
by 60.558% and 59.963% with CS and GA respectively. It  is  found that
this objective can increase the design efficiency. Fig. 24a  shows the
difference in  the neighborhood area of nominal flow rate between
the reference machine and the optimized machine. The constraint
of variation limitation of the head is well respected as presented in
Fig. 24b.  Fig. 24e and f  shows that this objective, in which the effi-
ciency variation range is  wider, causes higher power consumption,
and on a  proportionate basis with the flow rate.

Using the same CFD condition of the first case, in this second
case and for the design point neighborhood of TLBO’s machine, the



Fig. 20. Case 1–scenario 4: performances.

Table 15
Results of  different methods: case 1–scenario 5.

F TLBO CS

best worst ave std best worst ave std

Efficiency (%) FV 73.4246 73.4246 73.4246 1.4980e−14  73.4246 73.4246 73.4246 1.4980e−14
CV  74.6334 74.6334 74.6334 1.4980e−14  74.6334 74.6334 74.6334 1.4980e−14
FCV  74.734 74.734 74.734 1.4980e−14  74.734 74.734 74.734 1.4980e−14

F  PSO GA

best worst ave std best worst ave std

Efficiency (%) FV 73.4246 73.4246 73.4246 1.4980e−14 73.3955 73.3018 73.35107 3.0256e−02
CV  74.6334 73.5961 74.52967 3.2802e−01 74.63295 74.6177 74.6247 5.7797e−03
FCV  74.734 73.8391 74.64451 2.8299e−01 74.7305 74.7157 74.72102 4.1635e−03

Fig. 21. Comparison of best fitness’s variation with the iterations for different vor-
tex:  case 1–scenario 5.

results of CFD are acceptable, the average relative error is  about
1.93% and 2.274% for efficiency and head respectively.

6.2.2.2. Scenario two. This scenario has the same considerations
with the first scenario except that all the radius are kept constant
(Fig. 26). Table 19 and Fig. 27 show that the efficiency varia-
tion range may  be extended even with a  small variation about
an increase of 7.66%. Almost all algorithms converge to  the same
solution and all the obtained solutions are geometrically relevant
(Table 20). As for the previous scenario, Fig. 28 shows that the maxi-
mization of the efficiency range does not always lead to a  maximum
nominal efficiency.



Fig. 22. Case 1–scenario 5: performances.

Table 16
Comparison of the optimal solutions: case 1–scenario 5.

Methods N (rpm) R1
e (m)  R2

e (m)  Di De Z

TLBO FV  1900 0.154 0.154 0.7 0.3 4
CV  1900 0.154 0.154 0.684502 0.371043 3
FCV  1900 0.154 0.154 0.426198 0.513194 3

CS  FV  1900 0.154 0.154 0.7 0.3 5
CV  1900 0.154 0.154 0.684502 0.371043 3
FCV  1900 0.154 0.154 0.426198 0.513194 3

PSO  FV  1900 0.154 0.154 0.7 0.3 7
CV  1900 0.154 0.154 0.684502 0.371043 3
FCV  1900 0.154 0.154 0.426198 0.513194 3

GA  FV  1900 0.153843 0.153921 0.699947 0.30039 5
CV  1900 0.153999 0.153996 0.683323 0.371847 5
FCV  1900 0.153843 0.153921 0.699947 0.30039 5

Table 17
Results of different methods: case 2–scenario 1.

F Reference TLBO CS

best worst ave std best worst ave std

Area 0.05931 0.095246 0.0947645 0.09509566 1.4530e−04 0.0952269 0.0926147 0.09468864 7.5626e−04

F  PSO GA

best worst ave std best worst ave std

Area 0.0954504 0.0763508 0.09299933 5.9877e−03 0.0948743 0.0934098 0.09450688 4.3977e−04



Table  18
Comparison of the  optimal solutions: case 2–scenario 1.

Methods Qv (m3/s) R1
i

(m)  R1
e (m)  R2

i
(m)  R2

e (m) Di De Z

Reference 0.3 0.075 0.14 0.075 0.14 0.68 0.32 4
TLBO  0.441313 0.030153 0.140272 0.0348952 0.149991 0.691658 0.593822 5
CS  0.442526 0.030381 0.144615 0.0351488 0.149994 0.646998 0.638884 4
PSO  0.441199 0.03 0.145582 0.0364082 0.15 0.699095 0.6172 4
GA  0.445684 0.0317479 0.144948 0.0376835 0.149819 0.638295 0.621847 6

Table 19
Results of  different methods: case 2–scenario 2.

F TLBO CS

best worst ave std best worst ave std

Area 0.0638551 0.0638526 0.06385324 9.9017e−07 0.0638527 0.0638386 0.06384904 4.1358e−06

F  PSO GA

best worst ave std best worst ave std

Area 0.0638551 0.0638471 0.06385336 2.3477e−06 0.0638449 0.0637933 0.06382547 1.8558e−05

Fig. 23. Comparison of best Fitness’s variation with the iterations: case 2–scenario
1.

Table 20
Comparison of the  optimal solutions: case 2–scenario 2.

Methods Qv (m3/s) Di De Z

TLBO 0.426242 0.671216 0.478967 9
CS  0.426466 0.657295 0.480458 8
PSO  0.42624 0.671392 0.478946 9
GA  0.426003 0.650969 0.486162 4

6.2.2.3. Scenario three. In this scenario only the flow and the hub
radius are kept constant. The tip radius varies within a  range
of −10% to + 10% of the tip radius of the reference machine.
Tables 21 and 22 and Fig. 29 show that the algorithms converge to
the approximate solution, and the rate of increase is  lower than the
first scenario and higher than the second one (9.56%). Concerning
the performance, a  high rotational speed can increase the nominal
efficiency and the area with a  lower power consumption, as shown
in Fig. 30.

6.3. Recapitulation of algorithms behavior

TLBO, CS and PSO record a  higher and approximate solution, and
the error between each other is between 10−4 and 10−6. Compared
with previous methods, almost for all cases, GA was recorded hav-
ing the worst behavior whether of the way of the convergence or
the solution (namely with more decision variable) may  be because
it needs more function evaluations or the parameters of this algo-
rithm do not well adjusted which is  considered as an inconvenient,
because there is  no rule to determine this parameter, they are still
strongly linked to the optimization problem. SLP is  limited with
hard problem like that considered in  this paper because of its imple-
mentation complexity and its local solution.

Table 23 summarizes the performance ranking of the solutions
found and the stability of the algorithms used. For  each scenario,
the algorithms were classified from 1 to  4 according to  their best
fitness, worst fitness, average fitness and standard deviation. After
that, the sum of the rank was  computed for each algorithm and
for each statistical parameter in order to find the nearness of the
algorithm to the ideal one (that presents the first rank for all sce-
narios). Finally, the average rank of each method was  calculated to
define the overall rank. Based on this, TLBO present the best stabil-
ity (the nearest one), followed by CS  and PSO, and finally GA. We
note that the ranking is  correspond controlling parameters of  the
algorithm which the TLBO does not need any parameters flowing
by CS  that has fewer parameters (only one, the empty nest rate Pa),
in the third rank we found PSO that uses three parameters (inertia
weight, cognitive and social parameters) and final GA which works
with more than three parameters (crossover rate and mutation rate,
scale, ratio and shrink).

6.4. Comparison of the proposed approach with some existing
machines

To demonstrate the effectiveness of the proposed framework,
some baseline pumps (pump A [50],  pump B and pump C [25])
from literature are compared with optimized machines using TLBO
under same specifications. The strategy of comparison is based on
two scenarios, the first (S1) is to  fix the maximum outer radius
constraint equal to the value of the reference pump’s radius, the
second one (S2), is  to extend maximum side constraint radius with
+10% of the reference value. For  both scenarios and for pump A, the
objectives are the maximization of nominal total efficiency (main
formulation in  pervious case 1 (C1)) and area of total efficiency-flow
rate (main formulation in pervious case 2 (C2)). The maximization
of the nominal hydraulic efficiency is  considered for pump B and C.

Table 24 shows the optimal geometrical parameters and their
operating conditions compared with the reference pump A. In the
first objective and for scenario S1, the improvement of nominal
efficiency is  very small (about 0.01%) but the respecting of the head
in point of design is clear. With the second scenario, the differ-
ence between optimized pump and the reference one is  about 7%.
In addition, the optimized machines have a  good distribution of
the performance curves, as shown in Fig. 31,  the curves quality is
recorded for all flow rate range with the efficiency, and for neigh-
borhoods design point flow rate with the head curve. For the second
objective, for both scenarios the difference between the optimized
pumps area and reference pump area is  clear, it is about 8% for first



Fig. 24. Case 2–scenario 1: performances.

Fig. 25. Comparison of the performance prediction of proposed approach with CFD: case 2–scenario 1.

Fig. 26. Case 2–scenario 2: (a) reference rotor CAD, (b) PSO rotor CAD and (c) TLBO rotor CAD.



Fig. 27. Comparison of best fitness’s variation with the iterations: case 2–scenario
2.

scenario and about 27.6% for the second. In this comparison of the
two objectives, results are very close with a  little improvement on
the left of design point for the second objective.

Another comparison with pump B of Ref. [25]  is shown in
Table 25. The hydraulic efficiency improvement is about 7% and
18% for the scenarios S1 and S2 respectively. Fig. 32 displays a good
distribution of hydraulic efficiency with great precision in  design
point, (i.e. 0.6 m3/s) and wide range.

Last comparison is carried out for pump C of latter reference.
The pump is of the rotor–stator type and we focus only on rotor
optimization, i.e. during the design optimization, the stator param-
eters design is kept constant with the same value of that of the
reference pump. Despite that, the proposed approach recorded the
improvement of the efficiency with about 6.74% and 8.33% for the
scenarios S1 and S2 respectively, see Table 26. The wide operating
range is remarkable in Fig. 33. The design could be further improved
inclunding the stator parameters in  variables design.

Fig. 29. Comparison of best fitness’s variation with the iterations: case 2–scenario
3.

Numerically, these comparisons prove the effectiveness of the
proposed approach in  incompressible axial turbomachine with any
operating condition (head, rotational speed, volume flow rate).

7. Conclusion

In this paper an assessment study of some meta-heuristics
applied to the design optimization of incompressible axial turbo-
machines is performed. A design strategy based on the inverse and
direct approaches was developed using bio and socio-inspired algo-
rithms as well as a  local search algorithm. The aim is to improve the
volume flow rate efficiency while respecting a large number of  con-
straints, it is  improved about 10 ± 0.288% in case 1–scenario 1 and
about 14% in  case 1–scenario 5. Numerically, the results in  the sec-
ond formulation show that the range of efficiency/flow rate can be
increased widely (about 60 ±  0.669% in  case 2–scenario 1)  with a
little increase of nominal efficiency of reference machine. Besides,

Fig. 28. Case 2–scenario 2: performances.



Table  21
Results of different methods: case 2–scenario 3.

F TLBO CS

best worst ave std best worst ave std

Area 0.0649398 0.0642566 0.0644795 2.8594e−04 0.0648519 0.064356 0.06456078 1.4932e−04

F  PSO GA

best worst ave std best worst ave std

Area 0.0649804 0.0648374 0.06494251 4.2905e−05 0.0646773 0.0641161 0.06442932 1.9858e−04

Table 22
Comparison of the optimal solutions: case 2–scenario 3.

Methods N (rpm) R1
e (m) R2

e (m) Di De Z

TLBO 1849 0.1523672 0.153993 0.698896 0.501064 4
CS  1856 0.152128 0.1538 0.694437 0.500728 4
PSO  1899 0.152123 0.153882 0.699758 0.470388 3
GA  1841 0.149659 0.151783 0.696984 0.495498 5

Table 23
Performance and stability ranking of algorithms for all cases studied.

Methods Fitness Case 1  Case 2 Sum Rank Average rank Final rank

S1 S2 S3 S4 S5 S1 S2 S3

FV FV FV CV FCV FV CV FCV CV CV CV

TLBO best 2 1 1 3 1 1 1 1 2 1 2 16 2 1.25 1
worst  1 3 2 1 1 1 1 1 1 1 3 16 1
ave  1 1 2 1 1 1 1 1 1 2 3 15 1
std  1 3 3 1 2 1 1 1 1 1 4 19 1

CS  best 3 3 3 1 3 1 1 1 3 3 3 25 3 2.25 2
worst  3 1 3 3 1 1 1 1 3 3 2 22 2
ave  3 2 3 3 3 1 1 1 2 3 2 24 2
std  3 1 2 3 4 1 1 1 3 3 2 24 2

PSO  best 1 1 1 3 1 1 1 1 1 1 1 13 1 2.5 3
worst  2 2 1 1 1 1 4 4 4 2 1 23 3
ave  2 3 1 2 2 1 4 4 4 1 1 25 3
std  2 2 1 2 3 1 4 4 4 2 1 26 3

GA  best 4 4 4 1 4 4 4 4 4 4 4 41 4 4 4
worst  4 4 4 4 4 4 3 3 2 4 4 40 4
ave  4 4 4 4 4 4 3 3 3 4 4 41 4
std  4 4 4 4 1 4 3 3 2 4 3 36 4

Table 24
Comparison of the optimal solution: pump A [50],  N  = 1400 rpm, Qv = 1000 m3/h, H =  8  m.

Methods Efficiency (%)  Area H (m) R1
i

(m)  R1
e (m)  R2

i
(m)  R2

e (m) Di De Z

Reference 65  0.0695 7.812 0.0705 0.157 0.0705 0.157 – – 6
TLBO  C1 S1 65.78 – 8.00 0.0300249 0.149684 0.0613356 0.157 0.699 0.677 3
TLBO  C2 S1 –  0.08867 8.00 0.0308582 0.149755 0.062324 0.157 0.699999 0.681804
TLBO  C1 S2 72.13 – 8.00 0.0344461 0.169401 0.0667512 0.172699 0.699 0.638 3
TLBO  C2 S2 –  0.09637 8.00 0.0416876 0.168948 0.0721562 0.172755 0.699989 0.6204773 3

Table 25
Comparison of the optimal solution: pump B [25],  N  = 1480 rpm, Qv = 2160 m3/h, H  =  6 m.

Methods Hydraulic efficiency (%) R1
i

(m)  R1
e (m)  R2

i
(m)  R2

e (m) Di De Z

Reference 75  0.68 0.184 0.68 0.184 0.26 0.34 5
TLBO  S1 82.90 0.03 0.182813 0.03 0.184 0.214246 0.699 3
TLBO  S2 93.55 0.03 0.201887 0.03 0.2024 0.213066 0.699 3

Table 26
Comparison of the optimal solution: pump C  [25], N = 980 rpm, Qv = 2160 m3/h, H  =  6 m.

Methods Hydraulic efficiency (%) R1
i

(m)  R1
e (m)  R2

i
(m)  R2

e (m)  Di De Z

Reference 86 0.105 0.217 0.105 0.217 0.5  0.3 5
TLBO  S1 92.74 0.0750967 0.217 0.0750967 0.217 0.406172 0.7 8
TLBO  S2 94.33 0.0336081 0.238697 0.0415088 0.238581 0.513954 0.580032 5



Fig. 30. Case 2–scenario 3: performances.

Fig. 31. Pump A: performances.

Fig. 32. Pump B: performances.

an improvement of the efficiency was highlighted with regard to
the radius at the rotor inlet and outlet, also expressed when the
exterior radius is high and the interior radius is low. The best con-

figuration is  when all radius are  considered variables, this is  due to
the extension of side constraints.

A  comparative study allowed us to  highlight the robustness,
the flexibility and the implementation ease of the meta-heuristics



Fig. 33. Pump C: performances.

in terms of efficiency improvement of turbomachines. The TLBO
algorithm can be used efficiently for turbomachinery design
that includes a  high number of several constraint types. For
constraint handling, the modified penalty technique can dramat-
ically decrease the computational time. With a large number of
constraints, the optimization algorithms behave differently. The
algorithm without the controlling parameters is the most prof-
itable in  this kind of optimization problem. It  is proved also that
the TLBO, CS and PSO are more suitable than GA and SLP for the
problem treated in this work.

As an outlook, the design can be more improved with the con-
sideration of other criteria in  the context of a  multi-objective
optimization approach by the implementation of the same meta-
heuristics. The computational time may  be reduced substantially by
the integration of substituted models, where the variables will be
directly connected to  the objective function and to the considered
constraints.
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