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1/f noise and long-term memory of coherent structures in a turbulent shear flow
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A shear flow of liquid metal (Galinstan) is driven in an annular channel by counter-rotating traveling magnetic
fields imposed at the endcaps. When the traveling velocities are large, the flow is turbulent and its azimuthal
component displays random reversals. Power spectra of the velocity field exhibit a 1/ f α power law on several
decades and are related to power-law probability distributions P(τ)∼ τ−β of the waiting times between succes-
sive reversals. This 1/ f type spectrum is observed only when the Reynolds number is large enough. In addition,
the exponents α and β are controlled by the symmetry of the system : a continuous transition between two
different types of Flicker noise is observed as the equatorial symmetry of the flow is broken, in agreement with
theoretical predictions.

A puzzling problem in physics is the ubiquity of ’1/f’ noise
or ’Flicker’ noise, i.e. the existence of a wide range of fre-
quencies over which the low frequency power spectrum S( f )
of a physical quantity follows a power law S( f ) ∼ f−α , with
α close to 1 (or more generally 0 < α < 2). Such behavior is
observed in a broad variety of physical systems, ranging from
voltage and current fluctuations in vacuum tubes or transis-
tors [1, 2] to astrophysical magnetic fields [3], and including
biological systems [4], climate [5] and turbulent flows [6–9]
to quote a few .

Surprisingly, this ubiquity of 1/ f noise does not seem to
rely on a single explanation : although many interesting mo-
dels have been proposed during the last 80 years, there is
currently no universal mechanism for the generation of 1/ f
fluctuations. Different levels of theoretical description of 1/ f
noise involve, the existence of a continuous distribution of re-
laxation times in the system [10, 11], fractional Brownian mo-
tion [12], low dimensional dynamical systems close to tran-
sition to chaos [13–15]. These systems often display an in-
termittent regime with bursts occurring after random waiting
times τ . For this type of point processes, it has been shown
that a f−α spectrum is related to a power law distribution
P(τ) ∝ τ−β with some relation between α and β that depends
on the symmetry of the signal [16].

Although most of the early experimental observations
of 1/ f α noise do not display such discrete events in their
time recordings, switching events have been observed in
small electronic systems [17] and more recently in blinking
quantum dots [18–20]. These waiting times, distributed as a
power-law, reflect the scale-free nature of the statistics, and
are associated to durations spent by the system in two dif-
ferent states (bright or dark state in the case of quantum dots).
More recently, statistical analysis of quasi-bidimensional
turbulence of an electromagnetically forced flow exhibited a
similar dynamics, in which a large scale circulation driven by
a turbulent flow randomly reverses [21]. In this experiment,
both 1/ f power spectrum and power-law inter-event time
probability distribution functions were observed. These
results indicate that coherent structures generated in turbulent

flows play a crucial role in the occurence of 1/ f noise. On
the other hand, it is known that such large scale coherent
structures can exhibit very different dynamics depending on
the level of turbulent fluctuations or the symmetry properties
of the system. Whether these properties could affect 1/ f
noise is an open question. By carefully tuning the parameters
of the experiment reported here, both the level of turbulence
and the symmetry between two states can be independently
controlled, allowing for such investigation : we show how
the occurence of 1/ f fluctuations is directly related to the
power-law PDF of waiting times, but critically depends on
the level of turbulence generated in the flow. In addition,
the symmetry of the forcing plays a crucial role : different
relations are satisfied by α and β depending on whatever the
two opposite states are symmetrical or not. In particular, a
continuous transition between the different regimes predicted
in [16] can be obtained as a function of the skewness of the
velocity PDFs, ultimately controlled by the symmetry of the
external driving.

Fig.1 shows a schematic picture of the experiment : an an-
nular channel made of Polyvinyl Chloride (PVC), with inner
radius ri = 65 mm, outer radius ro = 98 mm, and vertical
height H = 47 mm, is filled with liquid Galinstan (GaInSn),
an eutectic alloy which is liquid at ambiant temperature, with
kinematic viscosity ν = 0,37 ·10−6 m2.s−1, density ρ = 6,44 ·
103 kg.m−3 and electrical conductivity σ = 3,46 ·106 S.m−1.

At a distance h = 10mm above and below the channel are
located two rotating discs, each containing 16 Neodymium
magnets disposed with a regular spacing along a circle of
radius R = 83mm. These magnets are cylinders of diame-
ter dm = 20mm and height hm = 10 mm, generating a ma-
gnetic field B0

m = 0.45T at their surface. They are arran-
ged such that two adjacent magnets, separated by a distance
dm = 2πR/16 = 32.5mm, are oriented with opposite polarity.
The rotating discs therefore generate on each side of the chan-
nel a spatially periodic magnetic field traveling in the azimu-
tal direction with an angular frequency Ωi = 2π fi/16 and a
wavenumber k = π/dm, where fi is the rotation frequency of
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FIGURE 1: Schematic view of the experiment. An annular channel
made of PVC of mean radius R = 83 mm and gap width H = 47
mm is filled with a liquid metal (Galinstan).The flow is driven by
the Lorentz force due to a traveling magnetic field (TMF) on each
side of the experiment, created by 16 Neodymium magnets placed
on independently rotating discs.

the disc i . The flow is electromagnetically driven by the Lo-
rentz force due to these traveling magnetic fields (TMF) and
their related induced electrical currents. The frequencies of
the discs f1 and f2 can be changed independently. This leads
to the definition of 4 dimensionless control parameters for
the experiment : F = ( f1− f2)/( f1 + f2) controls the asym-
metry of the forcing provided by the top and bottom discs
and Re = [( f1 + f2)/2]H2/ν is the Reynolds number based
on the mean frequency of the discs. In addition, one can de-
fine the magnetic Prandtl number Pm = νµ0σ , which is of
order Pm ∼ 10−6 for Galinstan, and the dimensionless ma-
gnetic field of the magnets which is represented by the Hart-
man number Ha2 = B2

0σH/(kρν), where B0 is the magnetic
field measured in the midplane of the channel and k is the
wave number. For the experiments reported here, Ha=90. The
velocity field is measured through Ultrasound Doppler Velo-
cimetry (UDV) using three probes located in three different
horizontal planes z = 0 (midplane) and z =±11mm.

When the two traveling magnetic fields imposed at top and
bottom endcaps rotate in the same direction, a strong azimu-
thal Lorentz force drives the flow in the same direction than
the discs, and the device therefore acts as an induction pump.
In that case, the velocity of the flow increases with both the
magnitude of the applied field and the rotation rate of the
discs. Note however that the fluid velocity is always smaller
than the speed of the discs, and can be much smaller if the ma-
gnetic field is expelled outside the channel at large magnetic
Reynolds number, Rm = RePm [22, 23].

We focus here on the configuration in which the two discs
are counter-rotating. A strong shear flow develops in the chan-
nel, due to the opposing Lorentz forces generated at the top
and bottom boundaries by the corresponding traveling magne-
tic fields. Fig. 2 shows the bifurcation of the most probable
velocities measured by UDV in the midplane of the channel,

FIGURE 2: Most probable velocities measured in the midplane as a
function of F , for Re = 7,1 · 103. The two vertical dashed lines in-
dicate the region of bistability between positive and negative flow
velocity. Upper-left inset : time series of the velocity in the bistable
regime. Lower-right inset : bimodality of the PDF related to the bis-
tability of the flow.

as a function of the asymmetry parameter F . Red squares (res-
pectively blue circles) indicate positive (resp. negative) mean
velocity, meaning that the fluid in the midplane moves in the
same direction than the upper (resp. lower) disc. Close to
F = 0, a bistability between this two states is observed. The
upper-left inset shows a typical time series of the velocity field
in this regime (here for F=0) : the instantaneous velocity is
strongly fluctuating and exhibits chaotic reversals of its pola-
rity, the fluid following alternatively one disc or the other. As
a consequence, the corresponding probability density function
(PDF) shows a bimodal structure (lower-right inset), charac-
terized by two maxima in the PDF. The two vertical dotted
lines delimitate the region for which such a bistability bet-
ween positive and negative velocity is observed (characterized
by bimodal PDFs). Note that the bifurcation diagram should
be symmetrical with respect to F = 0 exactly, for which none
of the two states is favored by the forcing. In practice, the
curve is slightly shifted to positive values (symmetrical PDFs
obtained for F ∼ 0.05 for this Reynolds number), which may
be due to some imperfections in the experimental setup. Simi-
lar reversals of the velocity field have been described in von
Karman swirling flows, in which the shear layer generated by
two counter rotating bladed discs can undergo chaotic jumps
from the midplane [8]. UDV measurements above and below
the midplane indicate that a similar large scale dynamics of
the central shear layer occurs in the present experiment.

We first study the evolution of the statistical properties of
the velocity field in the bistable regime, for F ∼ 0. In Fig.3,
we report the frequency power spectra extracted from time se-
ries V (t) measured by UDV in the midplane, for different va-
lues of the Reynolds number. First note that all power spectra
show a f−

5
3 direct cascade of energy from the injection scale

f0 ∼ U
H , where U is the mean velocity of the flow (measured

close to each disc) and d is the gap of the channel. We fo-
cus here on the behavior of the spectra at frequency below the
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FIGURE 3: Frequency power spectra S( f ) of the velocity V (t) for
different Reynolds numbers (Re = 4,7 · 103 ; Re = 1,6 · 104 and
Re = 3,6 ·104 from bottom to top). For clarity, the spectra have been
multiplied by 1, 10 and 1000. Note the − 5

3 slope at high frequency,
and the occurence of 1/ f α noise at low frequency. Inset : exponent
α as a function of Re.

injection scale f0. We first observe that they strongly depend
on the Reynolds number : at the lowest Re, the spectrum is
flat for f � f0, but as Re is increased beyond a critical value
Rec ∼ 104, the system shows a build up of the energy towards
low frequency, such that 1/ f α noise is observed for large Rey-
nolds numbers. The inset of Fig.3 shows the dependence of α

on Re, and suggests that it rapidly converges to values slightly
larger than α = 1 in the limit of large Re. We emphasize that
the spectra below the injection scale f0 are not related to any
turbulent cascade process since the frequencies are too low to
correspond to any spatial scale within the fluid container. In
particular, the 1/ f spectra observed here in the bulk flow are
not similar to the 1/ f spectra observed in turbulent boundary
layers that trace back to 1/k spectra through the Taylor hypo-
thesis [24].

Since these results have been obtained for F ∼ 0, all the po-
wer spectra shown in Fig.3 are related to time series exhibiting
chaotic reversals between two symmetrical states. These ran-
dom reversals can be characterized by the distribution P(τ)
of the waiting time (WT) τ between two successive transi-
tions, as shown in Fig. 4 for Re = 7,1 · 104. We observe that
the waiting times are distributed according to a power law
P(τ) ∼ τ−β , in contrast to the exponential distribution gene-
rally observed in the case of a memoryless system. The pre-
sence of such power-law PDF therefore suggests a more com-
plex non-Poissonian physics underlying the occurence of po-
larity changes. Note that similarly to α , the exponent of the
power law depends on Re, and slowly tends to β = 2 as Re is
increased to large values.

The exponents of the power spectra and of the WT distri-
bution also strongly depend on the asymmetry of the magne-
tic forcing, controlled by the value of F . In Fig. 5, we report
the probability density function (PDF) of the velocity field in

FIGURE 4: Distribution of the waiting time P(τ) between two suc-
cessive reversals of the flow for Re = 7,1 ·104. For sufficiently large
Re, the distribution follows a power law τ−β . Inset : β as a function
of Re.

FIGURE 5: Probability density function of the velocity field for dif-
ferent values of the asymmetry F of the forcing. Note the transi-
tion from a Gaussian distribution at large |F | to bimodal behavior for
F ∼ 0.

the midplane, for various values of F and a fixed value of the
Reynolds number Re = 6.104. When F has large negative or
positive values, the system is in a non-reversing regime with
negative (respectively positive) mean velocity, and the fluid
follows the bottom (respectively the top) disc with a gaussian
distribution of the velocity fluctuations. For values of F close
to 0, the distribution is either bimodal and roughly symmetri-
cal with respect to zero (for instance F = 0.09), or asymme-
trical with a non-gaussian tail (for instance F = 0.14).

Interestingly, this asymmetry in the forcing clearly controls
the value of the exponent of the power spectrum at low fre-
quency, as shown by Fig.6. For strongly asymmetric forcing
(F =−0.21 and F =−0.14), the spectrum is flat, with f 0 be-
havior on several decades for f < f0. As the flows starts to
randomly explore the other polarity, α increases, even when
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FIGURE 6: : Frequency power spectra S( f ) of the velocity V (t) for
different values of the asymmetry parameter F . For clarity, the spec-
tra have been multiplied by 10 for each increment of F . Inset shows
the exponent α as a function of F .

the corresponding PDF is not bimodal (see F = 0). The ex-
ponent α reaches its maximum value α = 1.1 for symmetrical
PDFs of the velocity, and then decreases again with F as the
flows come back to a non-reversing state.

In fact, it has been shown [16, 25] that in the presence of
a heavy-tailed distribution similar to the one shown in Fig.4,
the exponent α of the power spectrum and the exponent β

of the WT distribution are related : in the case of a symme-
tric process (meaning that the two states have similar transi-
tion probability), one expects the relation α +β = 3, whereas
β −α = 1 is predicted in a non-symmetric process (e.g. for
random bursts). It has been shown in [26] that one predic-
tion or the other can be observed in different experiments : for
instance, pressure fluctuations in 3D turbulence [27] follow
β −α = 1 scaling, whereas α + β = 3 is observed for ran-
dom reversals of a large scale flow generated by Kolmogorov
forcing [26].

We show here that both regimes can be observed in the
same experiment and for the same measured quantity, de-
pending only on the asymmetry parameter F and the Rey-
nolds number : Fig 7 reports most of our experimental runs
(obtained for various values of F and Re) in the parameter
space {α,β}, in which the dashed line indicates the regime
β −α = 1 and the solid line indicates α + β = 3. For each
point, we have computed the skewness of the PDFs of the ve-
locity θ = 〈[(V (t)− µ)/σ)]3〉, where σ and µ are respecti-
vely the standard deviation and the mean. When the probabi-
lity density function of the flow exhibits a roughtly bimodal
distribution (θ < 0.1, blue circles), most of the points tend to
collapse on the line α +β = 3, while asymmetrical reversals
(θ > 0.1, red squares) lie along β −α = 1, valid for bursting
processes only. While these results show that the asymmetry
of the forcing controls the type of 1/f noise (i.e. the value of
the sum or the difference of the exponents) which is observed,

what controls exactly the values of the exponents remains un-
clear.

It is also important to note that Fig.7 reports results obtai-
ned only for sufficiently large Reynolds numbers (in practice
Re ≥ 5 ·104) and F not too large (keeping only non-gaussian
distributions).

FIGURE 7: α as a function of β for various values of F and Re.
The dashed line indicates the regime β −α = 1, while the solid line
corresponds to β +α = 3. The skewness θ of the PDFs determines
in which regime the system lies (θ < 0.1 for blue circles, θ > 0.1 for
red squares).

The problem we studied experimentally is related to the
general question of the low frequency behavior of the turbu-
lent velocity spectrum. As seen in Fig. 3, the power increases
at low frequency as the Reynolds number is increased. This
could be somewhat surprising since the phenomenology of
three-dimensional turbulence predicts an increase of the iner-
tial range toward the small spatial scales. The increase of po-
wer at low frequency results from the instability of the shear
layer that develops on the turbulent background. We therefore
showed that the low frequency behavior of turbulent flows is
strongly related to the dynamics of coherent structures, here
the shear layer, and confirmed observations made in several
other flow configurations [26]. As shown in another context,
large scale instabilities of turbulent flows can be modeled by
keeping only large scale modes that obey the truncated Euler
equation (TEE) [28]. Numerical simulations of TEE have dis-
played 1/ f spectra [29]. Numerical simulations of this type of
models are presently studied in the case of a turbulent shear
layer. We emphasize that this process for generating 1/f noise
involves a large number of degrees of freedom with many
triads in nonlinear interaction and therefore strongly differs
from low dimensional dissipative dynamical systems. Our ex-
perimental results also show that although the power law ex-
ponents α and β only slightly change with Re, they stron-
gly depends on the asymmetry parameter. This second obser-
vation is interesting, because the continuous transition from
α +β = 3 to β −α = 1 generated as the equatorial symmetry
of the flow is broken shows that both regimes can be observed
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within the same system. In other words, some features of 1/ f
noise can be directly related to the asymmetry of the system.
It would be interesting to see if this relation can be used to
understand some systems from the characteristics of their 1/ f
fluctuations. For instance, the study of the exponents α and β

from 1/ f fluctuations of the solar wind or the luminosity of
some stars may help probing their symmetry properties, less
accessible from observations. From a fundamental viewpoint,
it could be argued that we have replaced the problem of fin-
ding a mechanism for 1/ f noise by the problem of providing
an explanation for the power law PDF of waiting times. Ho-
wever, this could be a useful step since a generic mechanism
has been proposed for the later [30]. Finally, we can unders-
tand the particular role played by the value α = 1 that is com-
mon to the symmetric and asymmetric cases (see Fig.7). With
symmetric forcing, we expect α = 1 to be selected by small
asymmetric perturbations.
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