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Coupling of inverse method and cuckoo
search algorithm for multiobjective
optimization design of an axial flow pump

Mohamed Abdessamed Ait Chikh1 , Idir Belaidi1,
Sofiane Khelladi2, Abderrachid Hamrani3 and Farid Bakir2

Abstract

This work describes the application of a multiobjective cuckoo search method for turbomachinery design optimization of

an axial pump. Maximization of the total efficiency and minimization of the required net positive suction head of the pump

are the two objective functions considered for the optimization problem. The optimization process is carried out on a

range of imposed volumetric flow rates, with taking into account at each discretized radius between the hub and tip of

the rotor: the profile camber, rotor wall thickness, angular deviation, and the solidity, regarded as geometrical constraints

and nominal flow rate as mechanical constraint. Two strategies are proposed in order to solve the problem. In the first

one, three forms of mono-objective model with two variables, total efficiency and net positive suction head, are con-

sidered. In the second one, a multiobjective model with nondominated sorting scheme is adopted. A comparative

evaluation of results obtained from the proposed approach with those of a reference machine and genetic algorithm

allowed us to validate the present work.

Keywords

Axial flow pump design, multiobjective optimization, cuckoo search, nondominated sorting cuckoo search

Introduction

Classical methods used for turbomachinery design are
generally based on empirical correlations that make
very difficult to achieve the global optimal design.
In recent years, thanks to the development of compu-
tational methods, a lower dependency on experimen-
tal correlations is observed.

As with most complex design problems, there are
multiple performance metrics that one might seek to
enhance and optimize in turbomachinery design.
Considering the multi-objectivity of the optimization
problem is more than necessary, and above all,
unavoidable.

Usually, Pareto front1 and aggregation approach2

are the two main techniques employed for solving
multiobjective optimization problem. In the Pareto
front, a set of all optimal solutions, extracted from
conflicting objectives, are represented in a surface or
a curve known as a ‘‘front.’’ Thus, this front helps
us to understand the nature of trade-offs that needs
to be made in order to select a good decision/solution.
The second technique consists of aggregating the
‘‘multiobjective’’ problem into a single function.

Each objective function represents the desired per-
formance to be maximized or minimized.

Numerous works have been carried out in the
general framework of design optimization of high per-
formance turbomachines. One of the first research
works in this field addressed the design of an axial
flow compressor stage with the objective of minimiz-
ing the aerodynamic losses and the weight of the
stage, while maximizing the compressor stall margin.
The pitchline analysis and the throughflow calculation
techniques with the Davidon–Fletcher–Powell mini-
mization method are employed in the formulation of
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the multivariable single objective function.3,4 Another
work5 combines a geometry parameterization scheme
with a CFD simulation and a multiobjective tabu
search optimization algorithm, in order to improve
the performance of turbomachinery blades design.
In Benini6 an approach was developed for transonic
compressor multiobjective design optimization and
applied to the three-dimensional NASA rotor 37
shape. Maximizing the isentropic efficiency of the
rotor and its pressure ratio, using a constraint on the
mass flow rate, was the two objectives of the multi-
objective evolutionary optimization problem.
Thereafter, several works have been published and
these include CFD known to be expensive methods
of design. Also, the coupling of the nondominated sort-
ing genetic algorithm (NSGAII) or multiobjective gen-
etic algorithms (MOGAs) with CFD for the
multiobjective optimization of the 3D inverse design,
is discussed in reference to the work of Samad and
Kim7 and Bonaiuti and Zangeneh.8 The same opti-
mization techniques, coupled with design of experi-
ments (DoEs)9,10 and back propagation neural
network11,12 schemes were used.

We may also mention some recent works: In
Chenxing and Qian,13 a model based on orthogonal
DoEs and neural network, for predicting the centrifu-
gal fan performance parameters, is used, and a MOGA
for optimization of total pressure and efficiency of the
fan, and the best combination of impeller structural
parameters. In Meng et al.,14 the approach of weighted
grey relational analysis combined with response surface
methodology (RSM) is used to optimize the centrifugal
fan impeller parameters. Simulation models are based
on Box–Behnken design method. In Stadler et al.,15 an
inverse aeroacoustic design methodology of axial fans
driven by a genetic algorithm is proposed. The multi-
objective problem includes: the sound pressure fre-
quency spectrum for the minimization of noise,
aerodynamic efficiency, and pressure head; simulation
model is based on a meshless lattice-Boltzmann solver.
In Yang and Xiao,16 a multiobjective optimization
strategy has been used for pump–turbine impellers
design. A RSM model with a multiobjective evolution-
ary GA is applied to find a Pareto front for the final
trade-off selection. In Huang et al.,17 the NSGAII was
improved by crowding distance dynamic technique and
coupled with a neural network and 3D inverse design
method in order to optimize the efficiency and head of
mixed flow pump with keeping the meridional section
fixed during the optimizations process.

In the light of the numerous and varied consulted
works, the difficulty of ensuring the overall optimum
remains a problem posed and topical. Moreover, des-
pite the existence of numerous and efficient meta-
heuristic methods, of bio- or socio-inspired type, the
application of genetic algorithms in the different
approaches remains preponderant. Bio- and socio-
inspired methods remain poorly known in engineering
applications.

This work contains three main contributions: first,
a new approach of axial flow pump optimization
design based on inverse design and nondominated
sorting cuckoo search (CS); second, a new form of
multiobjective optimization using single function;
finally, a comparative study between nondominated
sorting cuckoo search (NSCS) and NSGAII in turbo-
machinery design.

In this paper we propose a multiobjective optimiza-
tion approach of a mono-rotor pump defined by a set
of decision variables of geometrical and mechanical
types, in order to minimize the net positive suction
head (NPSHC) and maximize the total nominal effi-
ciency over a range of the volumetric flow rate, com-
pared with a reference pump. Thus, we have
implemented two approaches: the first one is based
on a single objective function, using the standard CS
algorithm, with the penalty method.18 The second
approach deals with the problem of multiobjective
optimization based on Pareto front and ‘‘nondomi-
nated sorting cuckoo search,’’ coupled with an inverse
design approach, taking into account a very high
number of geometric constraints that are solved by
the feasible and nonfeasible method.19

The two proposed approaches were assessed by
studying two cases, the first one takes into consider-
ation eight decision variables, namely: initial volumet-
ric flow rate, internal and external radius at the
entrance and the exit of the rotor, the diffusion
factor at the hub and the tip of the blade, and the
number of blades. The value of the rotational speed
considered in this first case is that of the reference
machine. In the second case, six variables were con-
sidered, including the rotational speed, the external
radius at the entrance and the exit of the rotor, the
diffusion factor at the hub and the tip of the rotor, the
number of blades. In the latter case, the initial volume
flow rate and internal radius are that of the reference
machine. The results of NSCS were compared to
those of NSGAII. Finally, in both cases we used
forced vortex.

Design model of an axial pump

As presented in Ait Chikh et al.,20 two methods are
commonly used for designing turbomachines: the
inverse method for the design of new machine, and
the direct method for analyzing the performance of an
existing machine.

Inverse design approach

By applying the Euler theorem, and from the data,
such as rotational speed, head (manometric height),
volumetric flow rate, hub and tip radius at the
entrance and exit of turbomachine, and the diffusion
factors at tip and hub of the blade, and the number of
blades of the rotor, the velocity triangles (Figure 1)
for a selected type of vortex are calculated for each



section of the radial discretization between the shroud
and the hub of the rotor (Figure 2). The tangential
velocity Cu2ðrÞ is chosen by the user, depending on the
available vortex model, for the forced vortex
Cu2ðrÞ ¼ rK and K ¼ gH=ð!�HððR

2
i þ R2

eÞ=2Þ
2
Þ, with

!, g, and gH are the angular velocity, gravity acceler-
ation, and hydraulic efficiency, respectively. The geo-
metrical characteristics of the rotor can be obtained
by solving the inverse problem 1D, with an estimated
gH of 70%. The shape most suited to the velocity tri-
angles is defined. To define the overall geometry of the
pump blades, at each radius between the hub and the
tip, some geometrical parameters should be defined:
the chord, camber, stagger angle, and the maximum
thickness of the profile. Using the normalized data of
a NACA65, the geometry of the blade can be defined.
The camber, incidence, and solidity are determined by
using empirical correlation of the cited type profile.

Performance analysis

Performance analysis is a key step in the optimization
process. It is based on the notion of the individual’s

fitness obtained from an analysis of the performances
of an existing machine at a given range of volumetric
flow rates in order to determine the nominal point,
and then the characteristics of the machine in off-
design. The real fluid effects are taken into account,
such as pressure drops in the boundary layers near the
wall (hub, shroud) and loss laws (incidence, friction,
flow leakage, etc.) were used, see Robert et al.21,22 for
more details concerning the chosen approach. In add-
ition, the slack distance (distance between the hub
of the rotor and the shroud) is estimated equal to
5.0e-4m.

Proposed design optimization approach

Formulation of the multiobjective optimization
problem

We briefly recall the general mathematical formula-
tion of the problem of mono-objective optimization
and multiobjective optimization:

1. Single objective cases:

min f Xð Þ

Subject to gjðXÞ40, j ¼ 1, 2, . . . J

hkðXÞ ¼ 0 k ¼ 1, 2, . . .K

minðXÞ4X4maxðXÞ

X ¼ ½x1, x2, . . . xn�

2. Multiobjective cases:

min fiðXÞ, i ¼ 1, 2, . . .M

Subject to gjðXÞ40, j ¼ 1, 2, . . . J

hkðXÞ ¼ 0 k ¼ 1, 2, . . .K

minðXÞ4X4maxðXÞ

X ¼ ½x1, x2, . . . xn�

Figure 2. Geometrical parameters of an axial flow

turbomachine.

Figure 1. Velocity triangles of the axial flow pump.



where M is the total number of objective functions,
knowing thatM52, gjðxÞ and hkðxÞ are the constraint
functions of the inequality and the equality to be
respected, with a total number J, K, respectively. In
multiobjective problem, the solution is not unique,
but a set of different nondominated solutions that
form the optimal Pareto front. In the case of the mini-
mization of all objective functions, the notion of dom-
inance is written as follows

� a dominates b�, a � b

,
8i 2 1, 2, 3, . . . , nf

� �
, fiðaÞ4fiðbÞ

9j 2 1,2,3,. . . , nf
� �

, fjðaÞ5 fjðbÞ

(
ð1Þ

Objective functions

Consideration of a single function bi-objective: In our
study, we will focus on the optimization of the overall
efficiency as well as on the NPSHC cavitation criter-
ion at the nominal point (Figure 3). These two object-
ives are combined and taken into account in a single
global objective function F to be maximized or mini-
mized, so as to maximize the function f1 (efficiency),
and to minimize f2 (NPSHC) simultaneously.
Knowing that the two main objectives considered
functions are not on the same scale, a normalization
procedure will be carried out.

Taking into account three different forms of object-
ive functions F: We propose in this framework three
forms of objective functions F. In form 1, the object-
ive function F will be expressed as follows23

maxF f 1, f 2ð Þ ¼ � f 1=maxð f 1Þ � ð1��Þ f 2=minð f 2Þ

f 1 ¼ �ðQvnomÞ, f 2 ¼ NPSHCðQvnomÞ

ð2Þ

Knowing that max ð f 1Þ and min ð f 2Þ are the max-
imum and minimum efficiency and NPSHC values at
the operating point (nominal), respectively. These are
obtained by a single-objective optimization of each of
them separately. With a is a weighting factor equal to
0.5, giving the same level of targeting.

Form 2 will be based on the normalization of two
objectives combined with a weighting factor of 0.524

A ¼ ½ f1�maxð f 1Þ=ðminð f 1Þ �maxð f 1ÞÞ� ð3Þ

B ¼ ½ f 2�minð f 2Þ=ðmaxð f 2Þ �minð f 2ÞÞ� ð4Þ

maxF f 1, f 2ð Þ ¼ �ðAÞ � ð1��ÞðBÞ ð5Þ

In form 3, the objective is to minimize the
Euclidean distance between the ideal point and the
point of the solution provided by the used algorithm;
the ideal point is the theoretical point which contains
the two best optimized objectives separately, in our
case it is max( f1) and min( f2).

With this form of objective function (equation (6)),
we seek to bring the solution as close as possible to the
ideal point. This approach is used in our work as a
decision criterion in choosing one solution on the
optimal Pareto front. In this technique, the normal-
ization of objectives is primordial, where the object-
ives are normalized in interval of [0, 1], and the ideal
point will have the coordinates (0, 0). Our goal will be
to minimize the Euclidean distance between the ideal
point and the solutions proposed by the CS algorithm
(Figure 4)

minF f 1, f 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
ð6Þ

Consideration of a multiobjective function: In this
section, we consider the same objectives taken into
account previously (efficiency and NPSHC).
Contrary to the first strategy, the processing of the
latter will be done separately

min f1 ¼ ��ðQvnomÞ, min f2 ¼ NPSHCðQvnomÞ

ð7Þ

Decision variables

Each set of decision variables defines a solution or
individual in a population, i.e. a given geometric con-
figuration of a turbomachine design. During the opti-
mization procedure, all the variables are of the real
type, with the exception of the number of rotor blades
which is considered to be an integer. The variables
taken into account are given in Table 1.

Depending on the case, if some of these parameters
are constant, they do not belong to the set of decision
variables considered.

Considered constraints and handling techniques

The design of the turbomachines is done under
conditions that must meet the requirements of the
specification or the physical problem considered.
These constraints can be classified in our study into
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three categories20:

1. Side constraints: The geometric optimization of the
turbomachines requires the determination of the
design space which consists of the min and max
values of each variable. These adopted constraints
are listed in the section of cases study.

2. Geometric constraints: The geometrical parameters
of the profiles that describe the blade, namely:
the chord, the stagger angle, the camber and the
profile thickness, constitute the geometrical con-
straints to be respected. For empirical reasons
related only to the NACA65 profile (flow stability,
loss minimization, etc.), the camber was limited to
a maximum value of 2.7. This constraint is
expressed in each section as follows

Cr
z10 � 2:740 ð8Þ

3. The same applies for the solidity at the entrance
and the exit of the rotor

�r1 � 1:540 and �r2 � 1:540 ð9Þ

4. A rotor thickness constraint which represents the
axial distance between the entrance and the exit
(the projections of the chords on the longitudinal
axis) has been added for the reasons of space
requirements of the machine. The latter must not
exceed a certain value called max rotor thick-
nesses. This constraint is represented mathematic-
ally as follows

lr cos �rð Þ � thmax40 r ¼ 1, 2, . . . ,Nrd ð10Þ

5. Knowing that l and � represent the chord and the
stagger angle at each section r, respectively. thmax

is the maximum allowable thickness of the rotor
and Nrd is the number of discretized sections, in
this study, it is fixed as 20.

6. Furthermore, taking into account the stochastic
effect of the optimization algorithms employed,
the hub radius at the entrance of the rotor may
have values greater than the hub radius at the exit.
A constraint on these two radii must be added in
order to avoid instability and disruption of
the flow

R1
i � R2

i40 ð11Þ

7. To ensure geometric relevance and to avoid any
kind of inadequate shape of the optimized rotor
blade, a constraint on the flow angles must be
respected. The inlet blade angle must be greater
than the exit blade angle on all radially discretized
sections between the hub and tip of the rotor. This
constraint is given by

�r1 � �
r
2 4 0 ð12Þ

8. 3. Mechanical constraint: By designing the maxi-
mization of efficiency as an optimization objective,
the design leads us to a very low nominal flow rate;

Figure 4. Proposed objective function in form 3.

Table 1. Decision variables considered.

Variable

notation Variable description

Qv Initial theoretical volumetric flow rate

N Rotational speed

R1
i The hub radius at the entrance of the rotor

R1
e The tip radius at the entrance of the rotor

R2
e The hub radius at the exit of the rotor

R2
e The tip radius at the exit of the rotor

Di Diffusion factor at the hub

De Diffusion factor at the tip

Z Number of rotor blades



for this, a minimum value of the nominal flow
must be imposed as the lower limit to be respected.
This constraint is given by

Qvnom �cQv50 ð13Þ

With cQv is the minimum volumetric nominal
flow allowed.

One of the simplest methods (used in this paper)
for constraint handling is the penalization of individ-
uals that reside in the area of infeasible solutions with
a constant penalty.18 The evaluation of the penalty
function is based on the sum of the constraints vio-
lated. The penalty function for a maximization prob-
lem with m constraints is written as follows

fp ¼ FðXÞ �
Xm
i¼1

Ci�i

where
�i ¼ 1, if constraint i is violated

�i ¼ 0, if constraint i is satisfied

� �
ð14Þ

With fp is the objective function penalized, F is the
objective function not penalized, and Ci is the penalty
constant.

In the case of a multiobjective optimization problem,
K. Deb19 shows that the choice of the penalty factor is
not an easy task. In the case of minimization of multi-
objective functions, for low penalty factor values (0.01,
0.1, 0.5, and 1) Pareto front resides on the infeasible
area. With a penalty factor of 10, the pseudo-front is
very close to the exact Pareto front; with a value of 100,
the solutions distribution is not well spreaded as those
with the previous penalty factor value.

A different approach was proposed,25 which con-
sists of using the so-called constrained-domination.
The basic concept underlying this approach is
straightforward: a solution a is said to constrained-
dominate a solution b if any of the following condi-
tions is true:

1. Solution a is feasible and solution b is not.
2. Solutions a and b are both infeasible, but a has a

smaller overall constraint violation.
3. Solutions a and b are both feasible and a domin-

ates b.

Bio-inspired algorithms for solving
optimization problems

CS algorithm (basic version)

During the last decade, the newly developed nature-
inspired algorithms have attracted much attention of
researchers and have also been widely applied to opti-
mization problems. Among these algorithms that
proved its effectiveness, we will mention: the CS, it
is mainly based on the parasitism of the cuckoo in

the brood phase. Some types of this bird lay their
eggs in a nest of other individuals instead of building
a nest. This idea has been coupled with Levy flight26,27

that represents the behavior of some birds and fruit
flies, mathematically called random walk, with a
length of step taken from the distribution of Levy
according to natural inspired.28 By analogy, the host
nest represents an individual and the eggs are repre-
sented by the decision variables.

The CS algorithm is principally based on three phases:

1. The get nest phase: each cuckoo lays one egg at
a time in a randomly chosen nest (equations (15)
to (21))

x
ðtþ1Þ
i ¼ x

ðtÞ
i þ �� Le0vyð�Þ ð15Þ

� ¼ �0 � ðbest� x
ðtÞ
i Þ ð16Þ

�0 � ðbest� x
ðtÞ
i Þ � Le0vyð�Þ 	 0:01

�

vj j
1
�

�
best� x

ðtÞ
i

�
ð17Þ

� 	 Nð0, �2�Þ ð18Þ

v 	 Nð0, �2v Þ ð19Þ

�� ¼
�ð1þ �Þ sinð�	=2Þð Þ

�½ð1þ �Þ=2� � �� 2ð��1Þ=2ð Þ

	 
1
�

ð20Þ

�
 ¼ 1 ð21Þ

where l is the normal distribution of an average of 0
and a variance of �2�, and 
 is the normal distribution
of an average of 0 and a variance of 1.
2. The best nest phase: after the comparison

between the new and old individual, the best nest
with good quality eggs will be chosen for the next
generation.

3. The empty nest phase: with a probability of pa, the
egg laid by the cuckoo can be discovered by the
host bird. In this case, the host bird can dump
the egg or abandon completely the nest and con-
struct another. The phase of changing the nest for
the aim of finding a new solution with biased/
selective random walks26 is given as follows (equa-
tions (22) and (23)).

Two solutions xp, xq are randomly selected, and a
new nest from these two solutions is then looked for,
therefore

stepsize ¼ rand� ðxtp � xtqÞ ð22Þ

new xti ¼ xti þ stepsize ð23Þ



NSCS algorithm

After proving to be efficient and fast and cost-effective
for solving single-objective problems, the CS meta-
heuristic optimization algorithm has been extended
to the multiobjective version by Yang and Deb.29

This version has been used to solve various problems;
for further information and a more in-depth analysis
of the diverse applications, the reader may refer to
Wang et al.,30 Rani et al.,31 and Fister et al.32 The
NSCS was developed by He et al.33

According to Deb et al.,25 each solution must be
compared to the entire population, in order to deter-
mine if it is dominated by another solution. Then, a
sorting by fronts is done in the following order: the
first front contains the solutions that are nondomi-
nated by other solutions. The second front is con-
structed by the set of solutions dominated only by
the individuals of the first front. The third front is
composed by the set of solutions that are dominated
by the first and the second fronts, and so on, until all
individuals of the population will be sorted and clas-
sified. At the front, the classification of solutions by
the dominance does not ensure a uniform density,
which is one of the disadvantages of the aggregation
scheme method. For this reason, another technique
called the crowding distance (Figure 5) is adopted to
evaluate the local aggregation. The principle of this
technique consists of classifying the solutions of the
same front according to their objectives. The two
extreme points (Min, Max) take an infinite distance.
The crowding distance of the intermediate points is
then computed as the ratio between the distance
of the two neighborhood objectives and the distance
of the two extremes. The crowding distance is written
as the following equation

Cj ¼
XNobj

i¼1

F jþ1
i � F j�1

i

ðF j
i Þmax � ðF

j
i Þmin

ð24Þ

In fact, the main idea of crowding distance calcu-
lation is to find the Euclidean distance between the
solutions (individuals) in a front to obtain uniform
distribution solution points, which makes solutions
that have a greater distance more favored. On each
of the resultant fronts, solutions are ranked according
to their distances in descending order, such as

a � b, arank 5 brankf or ððarank ¼ brankÞ

and ðadistance 4 bdistanceÞÞg
ð25Þ

Now we briefly describe the optimization pro-
cessing procedure using the NSCS algorithm,
which is almost similar to the NSAGII algorithm.25

A population P of size N is generated
randomly. Another population Q of the same size
will be constructed from the first one according to
the ‘‘get nest’’ and ‘‘empty nest’’ phases. Then,
a population R with size of 2N will be generated
by combination of P and Q, whose individuals are
classified according to the notion of the dominance
constraint according to expression (25). After that,
the individuals of the same front are sorted by the
crowding distance (equation (24)). Finally, the new
population P of size N is generated containing the
individuals that have a good front’s rank with a
greater distance.

In order to examine the quality of the optimum
front obtained by the optimization algorithms, par-
ticular measurement techniques are employed25,34,35

and they are also used in NSCS33:

1. Index of convergence Ic: represents the average
normal distance between the obtained Pareto
front (all the points) and exact Pareto front. The
normal distance of a solution is the closest one to
the true Pareto front.

2. Index of diversity Id: it is used to measure the dis-
tribution level of the points on the Pareto front

Figure 5. Pareto front and crowding distance.



according to the following equation

Id ¼
1

M

XM
k¼1

fkðz
max
k Þ � fkðz

min
k Þ

f max
k � f min

k

ð26Þ

3. With M is the number of objective functions; z max
k

and zmin
k are the maximum and minimum values of

the kth objective, respectively; f max
k and f min

k are
the coordinates of objectives k in the two extremes
of the front.

4. Uniformity index Iu: it measures the uniformity of
the solutions distribution on the front, expressed
by the variance of the Euclidean distances
(crowding distance)

Iu ¼ Var½DN� ð27Þ

Where

DN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

fkðaÞ � fkðbÞ

f max
k � f min

k

vuut ð28Þ

For a good performance, Ic and Iu should be close
to 0 and Id should be close to 1.

Test functions for implementing optimization
algorithms

To prove the effectiveness of the used algorithms, three
benchmark functions were tested for both types of
optimization problems, i.e. single objective and multi-
objective, for the first one: the Rosenbrock’s function
(Fun 1)36 is written as follows

f ðxÞ ¼
XN�1
i¼1

100ðxiþ1 � x2i Þ
2
þ ð1� xiÞ

2
� �

ð29Þ

where N is the number of variables, and �54xi45.
The global minimum of this function is f(x)¼ 0 at the
solution of x ¼ ð1, 1 . . . 1Þ.

The second function is known as sphere function
(Fun 2) and is given by

f ðxÞ ¼
XN
i¼1

x2i ð30Þ

with �1004xi4100, its global minimum resides in
x ¼ ð0, 0 . . . 0Þ, and f(x)¼ 0.

The last function for single objective test is Schwefel’s
function (Fun 3)37; it is a multi-modal function whose
global minimal f(x)¼ 0 at x ¼ ð420:9687, 420:9687, . . . ,
420:9687Þ according to the following form

f ðxÞ ¼ 418:982887274338N�
XN
i¼1

xi sinð
ffiffiffiffiffiffiffi
xij j

p
Þ ð31Þ

where �5004xi4500.
For multiobjective: Schaffer’s function (SCH)38

was chosen as first function test and it is written as

Minimize ¼
f1 xð Þ ¼ x2

f2 xð Þ ¼ x� 2ð Þ
2
�1034x4103

�
ð32Þ

The second one is so-called FON39 and can be pre-
sented as follows

Minimize ¼

f1 xð Þ ¼ 1� exp �
Pn
i¼1

xi �
1ffiffiffi
N
p

 �2	 

f2 xð Þ ¼ 1� exp �

Pn
i¼1

xi þ
1ffiffiffi
N
p

 �2	 

8>>><>>>:
� 44xi44, 14i4N

ð33Þ

The last function is a constraint example
(CONSTR)19

Minimize ¼
f1 x1, x2ð Þ ¼ x1

f2 x1, x2ð Þ ¼ 1þx2
x1

(

subject to
g1 x1, x2ð Þ ¼ x2 þ 9x156

g1 x1, x2ð Þ ¼ �x2 þ 9x151

�
0:14x141, 04x245

ð34Þ

The employed GA is based on real coded with
a binary crossover and polynomial mutation.40

For the reproduction operation, the binary tourna-
ment selection was chosen. For all functions N¼ 3,
and the program’s execution was repeated for 50
runs with 100,000 function evaluations for each run.
Since the comparison between CS and Ga was stu-
died,27 the goal of this test is not the comparison,
but for giving more credibility to the implementing
algorithms and support subsequent conclusions.
From Figure 6 and Tables 2 and 3, we can note a
very acceptable and close result between the methods
with a little superiority of CS.

Cases study: Optimization of mono-rotor
pump design

Technical specifications: The following technical spe-
cifications are based on the data of the adopted ref-
erence pump and are summarized in Table 4. Other
specifications that are directly related to the design
must be laid down and kept constant during all the
optimization steps and for the two cases of the study
(Tables 5 and 6).

Development of objective functions and pseudo-code

implemented. Single bi-objective function: The CS algo-
rithm, like all metaheuristic algorithms, requires



several evaluations of objective function to determine
the optimal solution. Consequently, a stopping criter-
ion limiting the maximum number of iterations to
300, with a population size of 100, and a probability

of 0.25 of abandonment and nest change is imposed.
Many runs are repeated for choosing the best solu-
tion. The pseudo-code of Algorithm 1 illustrates the
incorporating strategy of the CS algorithm within the
inverse design. As mentioned in the previous sections,
for the first case, the decision variables and their side
constraints are summarized in Table 6. According to
the mono-objective optimization carried out previ-
ously (Figure 7(a) to (d)), form 1 of the global object-
ive function for this first case becomes

max F ¼ f1=0:7384� f2=1:5600 ð35Þ

For form 2

A1 ¼ ðf1�0:7383Þ=ð0:7067� 0:7383Þ ð36Þ

B1 ¼ ðf2�1:5600Þ=ð2:1671� 1:5600Þ ð37Þ

min F ¼ �A1 þ ð1��ÞB1 ð38Þ
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Figure 6. Comparison between the true Pareto front, NSCS,

and NSGAII. (a) SCH, (b) FON, and (c) CONSTR. NSCS:

nondominated sorting cuckoo search; NSGAII: nondominated

sorting genetic algorithm.

Table 3. Comparison of CS with GA in multiobjective optimization.

Function

CS GA

Ic Id Iu Ic Id Iu

SCH 0.008 1.0000 0.0059 0.0078 0.9996 0.0060

FON 0.0012 0.9999 0.0035 0.0023 1.0006 0.0038

CONSTR 0.0054 0.9998 0.0057 0.0056 1.0012 0.0060

CS: cuckoo search; GA: genetic algorithm.

Table 2. Comparison of CS with GA in single-objective optimization.

Function

CS GA

Min Max Mean Std Min Max Mean Std

Fun 1 0 0 0 0 8.1282e-09 0.0107 3.7512e-04 0.0017

Fun 2 0 0 0 0 0 0 0 0

Fun 3 5.712536e-09 5.712536e-09 5.712536e-09 0 5.712536e-09 5.712536e-09 5.712536e-09 0

CS: cuckoo search; GA: genetic algorithm.

Table 4. Specifications of the reference pump.

Parameters Axial pump

H ðmÞ 1

Q ðm3=hÞ 472.5

N (r/min) 840

Q min ðm3=hÞ 180

Q max ðm3=hÞ 1800



and for form 3

min F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

q
ð39Þ

In the second case, during the optimization, the
volumetric flow rate and the hub radius are fixed as
those of the reference machine, and the decision vari-
ables are taken from Table 6.

According to the mono-objective optimization car-
ried out (Figure 7(a) to (d)), form 1 of the global
objective function becomes in this second case

max F ¼ f1=0:71209� f2=1:56842 ð40Þ

for form 2

A2 ¼ f1 � 0:712ð Þ= 0:7075� 0:712ð Þ ð41Þ

B2 ¼ f2 � 1:568ð Þ= 1:687� 1:568ð Þ ð42Þ

min F ¼ �A2 þ ð1��ÞB2 ð43Þ

And for form 3

min F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 þ B2
2

q
ð44Þ

Multiobjective functions: The proposed optimiza-
tion approach consists of minimizing the objective
functions f1 and f2 simultaneously, with the goal of
maximizing the efficiency and minimizing the NPSHC
at the nominal point, such that

f1 ¼ ��ðQvnomÞ and f2 ¼ NPSHCðQvnomÞ ð45Þ

The variable specifications employed in the two
cases above remain the same for this case.

The pseudo-code Algorithm 2 describes the inverse
design of an axial pump with NSCS.

There is no unique optimal solution but rather, a set
of solutions forming an optimal Pareto front. Since
only one point should be chosen, we consider the opti-
mum, which is the closest solution to the ideal point41

that it is the optimal solution of each objective function
from a mono-objective. In other words, this point rep-
resents the two best optimas in the Pareto front. On the
other hand, the nadir point is the intersection of the
two furthest positions from the solutions of the opti-
mum front. Several researches have tackled the chal-
lenge reaching this point by optimizing each objective
individually.42–44 The ideal/nadir points are used in this
work for the normalization of the objectives. Thus,
each objective function is replaced by a normalized
function24,45 (equation (46)), in order to find the near-
est ideal point solution, based on the minimal
Euclidean distance

04
fiðxÞ � zUi
zNi � zUi

41, 8i ¼ 1, . . . , k ð46Þ

Table 6. Side constraint and specifications of the two cases.

Objective maxð�nomÞ=minðNPSHCnomÞ

Case 1 2

N (r/min) [840.00] [400.00, 1000.00]

Qvðm
3=hÞ [180.00, 1800.00] [472.5]

R1
i ðmÞ [0.03, 0.100] [0.04]

R1
eðmÞ [0.105, 0.150] [0.105, 0.150]

R2
i ðmÞ [0.03, 0.100] [0.04]

R2
eðmÞ [0.105, 0.150] [0.105, 0.150]

Di [0.3, 0.7] [0.3, 0.7]

De [0.3, 0.7] [0.3, 0.7]

Z [3, 10] [3, 10]

Table 5. Theoretical specifications.

Theoretical parameters Axial flow pump

Vortex Forced

Density of fluid (kg=m3) 1000

Clearance (m) 5.0e-4

Roughness of rotor (m) 2.0e-5

Number of volumetric flow rate 30

Number of section 25

Radial equilibrium Simplified

Maximum blade thickness 0.012



With zUi : the ideal point component and zNi : the
nadir point component.

Results and discussion

Case one

In the first case, considered variables are represented
in Table 6, and the rest of the variables are the same as
the reference pump.

Evolution of the objective functions and variation of
the optimal Pareto front as a function of population
size: In the case of form 1 of the objective function,
Figure 8(a) shows the monotonic evolution of both
objective functions, maximizing the efficiency and
minimizing the NPSHC. This is not the case for the
other forms (shown in Figure 8(b) and (c)), where the
efficiency and NPSHC curves follow a nonmonotonic
pattern, characterized by a peak at the beginning of
the iterative process. We note that from the 50th iter-
ation, the improvement of fitness is negligible com-
pared to the first 50 iterations.

Figure 9(a) shows the variation of the Pareto front
for various population sizes. First, we can observe
that all front curves came closer from each other.
Second, because of its uniformity, the front related
to the 600 individual cases is chosen as a benchmark
example. With 600 individuals and at 100 iterations,
the front begins to take the shape of the optimal front
and the next iterations are for improving the precision
and the distribution points (Figure 9(b)). Figure 9(c)
confirms that the optimal front contains only the non-
dominated solutions. The far points represent the
fronts of the first iterations. In Figure 9(d), the uni-
formity and diversity of the front curves are explicitly
highlighted. We also find that the reference point is
very far from this optimal front, thus exceeding the
nadir point. Figure 9(e) illustrates the distribution of
the optimized performance of the machine considered
on the optimal Pareto front:

. In the case of a single objective function of form 1,
NPSHC is more preponderant compared to the
total efficiency; the value of the weighting coeffi-
cient � ¼ 0:5 is not respected. The Pareto front
constructed by this objective function has a high

0 50 100 150 200 250 300

20

30

40

50

60

70

80

Iteration

E
ffi

ci
en

cy
 (

%
)

Case 1
Case 2

0 50 100 150 200 250 300
1.5

1.75

2

2.25

2.5

Iteration

N
P

S
H

C
 (

m
)

Case 1
Case 2

100 200 300 400 500 600 700 800 900
0

10
20
30
40
50
60
70
80

Volumetric flow rate m3/h

E
ffi

ci
en

cy
 (

%
)

Case 1
Case 2

100 200 300 400 500 600 700
1.25

1.5

1.75

2

Volumetric flow rate m3/h

N
P

S
H

C
 (

m
)

Case 1
Case 2

(a) (b)

(d)(c)

Figure 7. Optimization of two objectives separately. (a) Evolution of total efficiency with iteration, (b) evolution of the

NPSHC with iteration, (c) evolution of total efficiency with volumetric flow rate, and (d) evolution of the NPSHC with volumetric

flow rate.



0.7 0.71 0.72 0.73 0.74
1.4

1.6

1.8

2

2.2

Efficiency

N
P

S
H

C
(m

)

n=100
n=300
n=600
n=900

0.73 0.731 0.732 0.733 0.734
1.85

1.9

1.95

2

0.71 0.7105 0.711 0.7115 0.712 0.7125 0.713
1.58

1.6

1.62

1.64

0.7 0.71 0.72 0.73 0.74 0.75
1.5

2

2.5

N
P

S
H

C
(m

)

10
20
30
40
50
100
150
200
250
300

0.64 0.66 0.68 0.7 0.72 0.74
1.5

2

2.5

3

3.5

N
P

S
H

C
(m

)

Dominated solutions
Nondominated solutions

Efficiency
0.62 0.64 0.66 0.68 0.7 0.72 0.74

1.4

1.6

1.8

2

2.2

2.4

2.6

Efficiency

N
P

S
H

C
(m

)

Pareto front
Ideal point
Nadir point
Reference

0.705 0.715 0.725 0.735 0.745 0.755 0.765
1.4

1.6

1.8

2

2.2

Efficiency

N
P

S
H

C
(m

)

Pareto front
Ideal point
Nadir point
NSCS
CS−form 1
CS−form 2
CS−form 3

0.7 0.71 0.72 0.73 0.74
1.4

1.6

1.8

2

2.2

N
P

S
H

C
(m

)

NSCS
NSGA II

(a) (b)

(d)(c)

(e) (f)

Figure 9. Pareto front and optimized points: case 1. (a) Evolution of the optimal front with population size, (b) evolution of the

optimal Pareto front during the loop (n¼ 600), (c) nondominated solution versus dominated solutions (overall iterations with

n¼ 600), (d) comparison of reference machine and optimal front (n¼ 600), (e) comparison of overall optimal solution with Pareto

front of population size n¼ 600, Id¼ 1.0137, Iu¼ 1.8890e-04, and (f) NSCS versus NSGAII with a population of 600 individuals.

CS: cuckoo search; NPSHC: net positive suction head; NSCS: nondominated sorting cuckoo search; NSGAII: nondominated sorting

genetic algorithm.

0 50 100 150 200 250 300
−1

0

1

2

3

Iteration

F
itn

es
s

F
Efficiency
NPSHC

0 50 100 150 200 250 300
−4

−2

0

2

4

Iteration

F
itn

es
s

F
Efficiency
NPSHC

0 50 100 150 200 250 300
0

2

4

6

Iteration

F
itn

es
s

F
Efficiency
NPSHC

(a) (b)

(c)

Figure 8. Evolution of global objective function with iteration: case 1. (a) Form 1, (b) form 2, and (c) form 3. NPSHC: net positive

suction head.



probability to be poorly distributed with a reduced
diversity. Therefore, a lower �� value in this case
can considerably increase the computational time.

. In the case of form 2 of the objective function, the
adopted approach shows a better ability to con-
struct an optimal front than the previous form.

. In the case of form 3, the aim is to minimize the dis-
tance between the solution provided by the cuckoo
algorithm and the ideal point. The obtained solution
is approximately identical to the solution chosen in
the NSCS approach that shows that it is effective
providing satisfactory measurements of the diversity
and uniformity indices.

Although the NSGAII provides good results in
benchmark test functions, it is not the case with opti-
mization of the axial flow pump design. Figure 9(f)
shows its inability to provide an optimal front. On the
contrary, NSCS is proven to be more effective conver-
gence in terms of uniformity or diversity. NSGAII for
this kind of problem, with a large decision variables
and constraints, may need more evaluations and
adjustment of the control parameters which remains
undesirable in optimization domain.

Configurations of the optimal machines: Table 7
shows the overall results. For bi-objective optimiza-
tion, taking into account a single objective function,
we observe that:

. In form 1, the efficiency and NPSHC are improved
by 12.63 and 36.48%, respectively.

. In form 2, the efficiency and NPSHC are improved
by 16.03 and 24.35%, respectively.

. In form 3, the efficiency and NPSHC are improved
by 15.42 and 27.26% respectively. We find that
adopting this form gives identical results to the
NSCS-based approach (15.42 and 27.26%).

The decision variables for all optimized pump
designs are based on hub radius values at the lower
limit of the search interval. On the other hand, for tip
radius, it was preferable to choose values at the upper
limit of the search space. In other words, the opti-
mized pump designs have very low hub/tip ratios.
For the diffusion factor, the solutions obtained look
like a constant vortex, with high values at the hub and
on the tip of the blade, despite the choice of a forced
vortex in accordance with the reference machine that
has a factor of reduced diffusion at the hub of the
blade. Furthermore, because of the limitation of the
operating flow range, corresponding to a height H of
1m, the volumetric flow rates are close to the refer-
ence one. The number of blades converged to 3 in all
the scenarios studied.

The geometry of the reference and optimized pump
(with NSCS) is presented in Figure 10. We clearly
distinguish two points of comparison: the first one is
the hub/tip ratio, the reference rotor (Figure 10(a))
has greater value compared to the optimized one

(Figure 10(b)); the second one is the axial rotor thick-
ness (constraint in Equation (10)) which it is respected
in the optimized pump.

Evolution of machines’ performances as a function of
volumetric flow rate: The evolution of the perform-
ances of the optimized pumps is presented in
Figure 11. Figure 11(a) highlights the improvement
of the efficiency in relation to the optimized machines’
design. We note that in addition of the higher effi-
ciency and lower NPSHC, in cases of objective func-
tions of form 2, 3 and NSCS, there is an improvement
of the results by including a wider range of operations
for high efficiency where the flow rate varies between
180 and 690m3/h. The results obtained for the height
H (not considered as an objective function) are shown
in Figure 11(b), which indicate an increase over the
entire range of variations relative to the reference
machine. It is also observed that the difference
between the nominal points of the optimized pumps
is not very obvious.

Figure 11(c) and (d) represents the variation of
NPSH and NPSHC, respectively. We clearly observe
that the results obtained from form 1 of objective
function favor the NPSHC comparatively with
objective functions of the form 2 and 3. The difference
between the optimized pumps and the reference pump
is quite clear. In addition, all resulting pump

Figure 10. Case 1: reference rotor CAD versus optimal

rotor CAD (NSCS). (a) Reference rotor CAD and (b) optimal

rotor CAD.
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designs have higher suction capacity than the ref-
erence machine, except the one optimized by the
form 1, which exhibits identical variation of
the NPSH.

In Figure 11(e) and (f), where the shaft power and
torque are considered, we observe that the optimized
pumps consume more energy than the reference one,
with a consumption gap of about 12%. We also
observe the existence of an intersection point between
the optimized pumps located approximately in the
vicinity of the nominal point. Finally, based on
the results shown in Figure 11, we can conclude that
the objective function for the minimization of the dis-
tance between the optimal solution and the ideal point
gives the same results compared to the solution
chosen from the optimal Pareto front, and the per-
formance curves confirm this fact very clearly.

Case two

In this case, the flow rate and the hub radius are con-
sidered as constants, while the rotational speed, the
tip radius, the diffusion factors, and the number of
blade rotors are taken as decision variables.

Evolution of the objective functions and variation of
the optimal front of Pareto according to the population
size: Figure 12 shows the evolution of the objective
function and their fitness as a function of the number
of iterations. In comparison with case 1, the conver-
gence in case 2 requires greater number of iterations.
This can be explained by the fact that in this case
we consider a large range of rotational speed.
Figure 13(a) shows that from certain population size
(600 individuals) the Pareto front reaches its optimal

shape, which is also due to the increased rotational
speed constraint side. In Figure 13(b), we notice a
large difference between the reference pump and opti-
mized pumps at the Pareto front. Figure 13(c)
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indicates that the solution obtained by the CS
approach of form 1 does not belong to the Pareto
front. The two solutions closest to the ideal point
are not really confused but rather adjacent. The opti-
mization process would need more iterations to
improve the convergence. Concerning form 2 of the
objective function, the solution obtained is very close
to the Pareto front, and therefore remains acceptable.

It is also seen, in Figure 13(c), that in this case, the
index of diversity and uniformity for the obtained
front have a lower quality compared to the first
case. This may be justified by the large side constraint
of rotational speed used in this case. Same remarks of
the first case have been deducted for the reference and
optimized rotor that are shown in Figures 14(a) and
14(b), respectively.

Configurations of the optimal machines obtained:
Table 8 shows the results of improvement made on
efficiency and NPSHC at the nominal point. We
observe:

. In the case of objective function form 1, perform-
ances were improved by 12.449 and 36.48%,
respectively.

. In the case of form 2, the improvement of
these two performances is 12.87 and 35.76%,
respectively.

. In the case of form 3 and NSCS, the nominal effi-
ciency was improved by 12.94 and 12.95%, respect-
ively, while the nominal NPSHC was improved by
35.27% in both cases.

We also find in case 2 that all optimal tip radius
tend to higher limit values, the diffusion factors
resemble a free vortex, while we obtain an identical
number of blades rotor for all optimized pumps.

Evolution of machines’ performances as a function of
volumetric flow rate: In Figure 15, the performances of
the machine according to the volumetric flow rate are
presented. We observe a great convergence rate for
the values of the performance with the optimized
machines, exception is made to the solutions not
belonging to the optimal Pareto front (objective func-
tion form 1). As in case 1, the optimized pumps have a
high value of nominal efficiency with a large operating
range (Figure 15(a)). We obtained that the hydraulic
heads of the optimized pumps are higher than the
reference values (Figure 15(b)). For the NPSH and
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Figure 15. Case 2: performances. (a) Evolution of total efficiency, (b) evolution of the head, (c) evolution of the NPSH, (d) evolution

of the NPSHC, (e) evolution of the power, and (f) evolution of the torque. CS: cuckoo search; NPSHC: net positive suction head;

NSCS: nondominated sorting cuckoo search.



NPSHC shown in Figure 15(c) and (d), respectively,
we observe that, for the entire flow rate range, the
optimized machines have smaller required suction
capacities than the reference values with an obvious
discrepancy, whereas for the NPSH, the difference
between the curves is not evident over the entire
range of the flow rate. Finally, at the nominal point,
Figure 15(e) and (f) shows clearly that the energy
absorbed by the three similar optimized machines is
greater than the values of reference machine by
around 15.4 and 19.77% by machine of form 1.

Conclusion

In this work, a multiobjective design optimization of
the mono-rotor axial flow pump was presented using
two approaches: the CS algorithms and the nondomi-
nated sorting CS, coupled with the inverse design. The
targeted performances to be improved at the nominal
point are the total efficiency and the required NPSHC.
Two cases were studied, while taking into account the
high number of constraints. The first case studied has
eight variables: the initial theoretical flow rate, hub
and tip radius at the inlet and outlet of the rotor,

the diffusion factors at the hub and tip of the
rotor, and the number of rotor blades. In the
second case, the hub radius values at the inlet and
outlet of the rotor and the initial theoretical flow rate
have fixed values. The following variables will be
kept as variables: rotation speed, tip radius, diffusion
factors, and the number of rotor blades. In the bi-
objective approach with the standard CS version,
three forms of objective functions have been used.
The results obtained allow us to draw the following
conclusions:

1. All pump configurations optimized with the
above mentioned approaches show a great
improvement on the efficiency and the NPSHC
compared to the reference pump. As for the
other performances, at the nominal point, almost
all the optimized pumps have values extremely
close to each other. We draw the attention of the
observer on the power absorbed; these pumps
absorb more power compared to the reference.
Finally, the performance of optimized machines
has an extended range of operations compared
to the reference machine.

Table 7. Optimization results: case 1.

Case 1 Reference pump

CS

NSCSForm 1 Form 2 Form 3

gnom (%) 62.94 70.89 73.031 72.645 72.64

NPSHCnomðmÞ 2.472 1.574 1.870 1.798 1.798

Qvðm
3=hÞ 472.5 454.374 482.968 469.4472 469.886

R1
i ðmÞ 0.04 0.0302 0.0300 0.0300 0.0301

R1
eðmÞ 0.125 0.15 0.1500 0.1500 0.1500

R2
i ðmÞ 0.04 0.0313 0.0300 0.0300 0.0301

R2
eðmÞ 0.125 0.1492 0.1499 0.1498 0.15

Di 0.3 0.6963 0.6952 0.6987 0.6833

De 0.5 0.4313 0.5395 0.5095 0.5073

Z 6 3 3 3 3

CS: cuckoo search; NPSHC: net positive suction head; NSCS: nondominated sorting cuckoo search.

Table 8. Optimization results: case 2.

Case 2 Reference pump

CS

NSCSForm 1 Form 2 Form 3

gnom (%) 62.94 70.7757 71.0431 71.086 71.093

NPSHCnomðmÞ 2.472 1.570 1.5879 1.600 1.600

N (r/min) 840.00 891 883 884 884

R1
eðmÞ 0.125 0.15 0.15 0.15 0.15

R2
eðmÞ 0.125 0.1499 0.1489 0.1489 0.1489

Di 0.3 0.6778 0.6182 0.5026 0.5050

De 0.5 0.3332 0.3573 0.5026 0.3584

Z 6 3 3 3 3

CS: cuckoo search; NPSHC: net positive suction head; NSCS: nondominated sorting cuckoo search.



2. The objective function according to form 3 which
tends to draw the solution toward the ideal point
shows its efficiency and can be used as a conver-
gence test of the Pareto front. The standardization
technique in forms 2 and 3 gives better results than
those of form 1.

3. Compared to the standard CS and GA, in the case
of the multiobjective optimization of turboma-
chines with a large number of constraints and rela-
tively large side constraints, the NSCS with its
diversity and uniformity indexes proves its rigor
and precision.

4. The configuration chosen in case 1 is favorable for
the optimization of the efficiency, while the one
used in the second case is favorable for the opti-
mization of the NPSHC.

5. Compared to the reference pump the total nom-
inal efficiency and the NPSHC were improved by
15.42 and 27.26%, respectively (case 1, form 3 and
NSCS, Table 7).

As part of the extension of this work, other object-
ive functions can be added by formulating a problem
of three or more objectives, for which other algo-
rithms can be tested and compared with NSCS like
NSGAIII, NSTLBO, and NSPSO.
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