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Obstructive sleep apnea syndrome (OSAS) is associated with postural dysfunction

characterized by abnormal spinal curvature and disturbance of balance and walking,

whose pathophysiology is poorly understood. We hypothesized that it may be the result

of a pathological interaction between postural and ventilatory functions. Twelve patients

with OSAS (4 women, age 53 years [51–63] (median [quartiles]), apnea hypopnea index

31/h [24–41]) were compared with 12 healthy matched controls. Low dose biplanar

X-rays (EOS® system) were acquired and personalized three-dimensional models

of the spine and pelvis were reconstructed. We also estimated posturo-respiratory

coupling by measurement of respiratory emergence, obtaining synchronized center

of pressure data from a stabilometric platform and ventilation data recorded by an

optico-electronic system of movement analysis. Compared with controls, OSAS patients,

had cervical hyperextension with anterior projection of the head (angle OD-C7 12◦

[8; 14] vs. 5◦ [4; 8]; p = 0.002), and thoracic hyperkyphosis (angle T1–T12 65◦ [51;

71] vs. 49◦ [42; 59]; p = 0.039). Along the mediolateral axis: (1) center of pressure

displacement was greater in OSAS patients, whose balance was poorer (19.2mm

[14.2; 31.5] vs. 8.5 [1.4; 17.8]; p = 0.008); (2) respiratory emergence was greater

in OSAS patients, who showed increased postural disturbance of respiratory origin

(19.2% [9.9; 24.0] vs. 8.1% [6.4; 10.4]; p = 0.028). These results are evidence for the

centrally-mediated and primarily respiratory origin of the postural dysfunction in OSAS.

It is characterized by an hyperextension of the cervical spine with a compensatory

hyperkyphosis, and an alteration in posturo-respiratory coupling, apparently secondary

to upper airway instability.

Keywords: obstructive sleep apnea syndrome, biplanar X-ray, personalized 3D models of the spine, posturo-

respiratory coupling, respiratory emergence, cervical spine hyperextension, head forward, hyperkyphosis
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INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is characterized by
instability of upper airways, which leads to their intermittent
obstruction during sleep (1, 2). The frequency of obstructive
respiratory events, as well as the intermittent hypoxia and
fragmented sleep that results (1, 2), are strongly correlated with
excessive daytime sleepiness, an increased risk of accidents, and
the development of cardiovascular, metabolic and neurocognitive
co-morbidity. Ventilation with continuous positive airway
pressure (CPAP) remains the mainstay of treatment in moderate
to severe OSAS, preventing obstructive respiratory events (3),
reducing daytime sleepiness (4), the risk of accidents (5) and
increased cardiovascular risk (6–8).

Recently, a specific postural dysfunction has been reported to
be a feature of OSAS. Reported series describe abnormal spinal
curvature, with cervical hyperextension and anterior projection
of the head (9–11), disturbances of balance (12, 13), and walking
(12, 14, 15), and an increased risk of falls (16). These difficulties
with balance and walking improve significantly after treatment
with CPAP is instituted, suggesting that they are specifically
related to OSAS (12, 14). It would seem that there is also a
causal link between OSAS and anterior projection of the head.
Patients with known OSAS generally acquire this in childhood,
and it worsens during growth if OSAS remains untreated (9),
and is notably more marked if OSAS is severe (11). Despite
this, no study has correlated the anatomical postural anomalies
and disturbances of balance, nor is the pathophysiology of
this postural dysfunction well-understood. In particular, its
association with intermittent hypoxia and altered sleep quality,
the principal factors that lead to co-morbidity, remains purely
theoretical. Indeed, though changes in stabilometric parameters
have been correlated with sleep deprivation (17) or to profound
hypoxia (18), which is not typically observed in studies of OSAS
patients (12, 13). Additionally, the intermittent hypoxia and
altered sleep quality do not explain the hyperextension of the
cervical spine and the forward projection of the head (9–11).
The cervical hyperextension most often found in adolescents
and young adults who present with a reduction in the posterior
pharyngeal space (10), are evidence of a relationship between the
angle of the head, the mechanical properties of the upper airways,
and ventilation. Should cervical flexion induce an increase
in upper airway resistance (19), hyperextension increases the
pharyngeal diameter (20), flow rate in the upper airway, and its
stability when awake (21), and thus facilitates ventilation in the
healthy subject (21), and in patients in whom oral ventilation
predominates (22). In OSAS patients the upper airways resist
the flow of air (23), and cervical hyperextension with anterior
projection of the head seems to facilitate ventilation (20),
representing a postural adaptation to pathology of respiratory
origin. In this context, we hypothesized in this study that postural
dysfunction of OSAS is the result of a pathological interaction
between postural function and ventilatory function that causes
both problems of static posture and disturbances of balance.

Both these functions are in fact physiologically linked.
Anatomically, both rely on the integrity of the same
musculoskeletal structures: the spine, thoracic cage, and

trunk musculature. It has been shown that spinal curvatures are
severely constrained by extreme variations in pulmonary volume
(24). Additionally, normal ventilation cyclically perturbs balance.
Spinal curvature varies during the ventilatory cycle because of
change in the orientation of the costo-vertebral joints (25). This
“postural disturbance” caused by ventilation is manifested in
stabilometric recordings as minimal oscillations of the center
of pressure whose ventilatory origin is suggested by their
disappearance on breath-holding/apnea (26), and an increase in
voluntary (27), or hypercapnic (28) ventilation. The end result
is that the cyclical constraint imposed on the thoracic spine by
normal breathing continually changes the head to pelvis vertical
axis, requiring the body to compensate (29) at the neck and pelvis
(24) to maintain normal postural balance. Each ventilatory cycle
triggers spinal and pelvic contractions to compensate for this
postural disturbance (30–32) and is evidence for the existence
of a posturo-respiratory coupling that is in play across all joints
from head to foot when standing. This coupling is centrally
controlled (31, 33) and may be affected by cortical lesions such
as those following a cerebro-vascular accident. In patients with
such lesions, disturbances of balance are correlated with an
increase in postural dysfunction of ventilatory origin (34).

In the context of the pathological posturo-respiratory
interaction which is central to the hypothesis of our study, we
would expect to detect alterations of spinal alignment which
may interfere with the maintenance of vertical balance (29,
35), an increase in postural dysfunction of ventilatory origin,
and/or reduced effectiveness in the mechanisms that counter this
disturbance (31). In order to explore this, we studied posturo-
respiratory coupling in a group of OSAS patients and matched
controls (27), using stabilometric recordings and non-invasive
monitoring of ventilation using a motion capture system. Spinal
curvature, head posture, and pelvic orientation in the erect
position were also captured, modeling postural alignment via
the acquisition of biplanar radiography and individualized 3D
skeletal reconstructions (36).

MATERIALS AND METHODS

Inclusion Criteria
Patients

Patients with moderate to severe OSAS, with a diagnosis in
the 6 months prior to study entry based on symptoms and
polysomnography, without known postural dysfunction or other
respiratory pathology, were included. Patients treated with CPAP
or mandibular advancement device (MAD) had to stop their
treatment at least 1 week before the study procedures.

Control Group

Healthy non-snoring subjects with a low probability of OSAS
(scoring 0 on the Berlin questionnaire) (37), were included in the
control group.

Participants of both group had to have a normal respiratory
function as well as neurological and musculoskeletal
examination. No participant should have had a history of
falls in the 12 months prior to study entry.



Ethical approval for the study in both OSAS patients and
healthy subjects was obtained from the relevant bodies (the
Comité de Protection des Personnes (CPP) Ouest V on 28
June 2017 and the CPP Ile de France VI on 18 February
2015). The study was registered in the ISRCTN register
(Registration numbers ISRCTN70932171 for the OSAS patients,
ISRCTN56129394 for the healthy subjects). All participants were
informed of the nature of the study and gave written consent
to participate.

Study of Postural Alignment Using 3D
Biplanar Imaging
The EOS R© system (EOS R© Imaging, France) was used to
simultaneously acquire bi-planar (sagittal and coronal) images
of the entire skeleton (36, 38). Participants were placed in
a reference position with their hands on their cheeks while
breathing normally. Individual 3Dmodels were constructed from
the biplanar imaging, including the points OD, defined as the
uppermost point of the odontoid peg of the second cervical
vertebrae (C2), the spine of the third cervical vertebrae (C3)
to the sacrum (S1), and the pelvis, using established methods
(39, 40). The following values were then calculated: (1) 3D spinal
curvatures: cervical, between C3 and C7 (C3–C7 angle), thoracic,
between T1 and T12 (T1–T12 angle), lumbar, between L1 and S1
(L1–S1 angle), expressed in degrees; (2) pelvic variables (pelvic
incidence and pelvic tilt); (3) the angle between the vertical and
a line drawn from OD to the mid-point of a line intersecting the
femoral heads (OD-HA); (4) the angle between the vertical and
a line drawn from OD and the uppermost point of C7 (OD-C7)
(see Figure 1).

Study of Posturo-Respiratory Coupling
Acquisition and Measured Parameters

The simultaneous acquisition of ventilatory and stabilometric
profiles were performed by using an optico-electronic system of
movement analysis (Vicon with Nexus 2.5, Oxford, UK), which
was synchronized with a force platform (BP 4051040-2K, AMTI,
Watertown, USA). Sixty-five reflective markers were positioned
on each participant (41 on the thorax, four on the head, seven
on each leg, and three on each foot). The ventilatory profile,
the antero-posterior movement of the cervical spine, and the
antero-posterior rotation of the pelvis, knees, and ankles were
captured using 12 cameras positioned around the participant,
with an acquisition frequency of 100Hz. The participants stood
on a force platform that simultaneously measured the trajectory
of horizontal displacement of the pressure center (PC) projected
along the antero-posterior (AP, sagittal) and medio-lateral (ML,
coronal) axes, defined for each subject using six markers placed
on the feet, with an acquisition frequency of 100 Hz.

Experimental Protocol

Data was acquired with the subject in a relaxed upright position,
with both feet positioned on the force platform the width of the
pelvis apart, with the arms at the sides. Participants were asked
to maintain horizontal gaze by looking at a point located at eye
height on the wall opposite. After a period of familiarization
with this environment, recordings were obtained while breathing

FIGURE 1 | Analysis of postural alignment using 3D biplanar imaging. PT

pelvic tilt, PI pelvic incidence, OD superior tip of the odontoid process of C2,

OD-HA the angle between the vertical plane and the line through OD and the

midpoint of the line connecting the center of the two femoral heads, OD-C7 the

angle between the vertical plane and the line through OD and C7. C3–C7, 3D

cervical curvature; T1–T12, 3D thoracic curvature; L1–S1, 3D sacral curvature.

naturally in sequences lasting 1min for two visual conditions:
eyes open (EO) and eyes closed (EC) and two occlusal conditions:
occlusion (OC; with the mandible positioned by teeth contact),
and rest position (RP; with the mandible positioned by the
muscles without tooth contact). The different conditions were
presented in random order.

Parameters Analyzed
Respiratory frequency (RF), inspiratory time (Ti), expiratory
time (Te), and the cinematic angles of the cervical spine, pelvis,
knees, and ankles were calculated from the movement analysis.
The amplitude of displacement of the pressure center along
the AP (AP Range) and ML (ML Range) axes was calculated.
Using the time-synchronized data from the movement analysis
(ventilatory signals and the variation in cinematic angles of the
cervical spine, pelvis, knees, and ankles) and the stabilometric
analysis, posturo-respiratory coupling was then calculated using
the respiratory emergence (REm) method described by Hamaoui
et al. (27). The REm is defined as the ratio of the power
frequency extracted at a 0.08Hz frequency band centered on the
average ventilatory frequency of the pressure center displacement
signal. This variable, which may have values between 0 and
100, estimates the contribution of the ventilatory component
to the cinematically-observed movements, with higher values
indicating a greater contribution of the ventilatory component.
It is calculated from the displacement of the pressure center
along the AP and ML axes, and by anatomical segment
(cervical spine/pelvis/knees/ankles).



TABLE 1 | Baseline characteristics and pulmonary function tests.

OSAS Patients n = 12 Controls n = 12 p

BASELINE CHARACTERISTICS

Gender M/F 8/4 8/4 1

Age (years) 53 [51; 63] 50 [47; 60] 0.45

Height (m) 1.73 [1.65; 1.79] 1.74 [1.66; 1.76] 0.95

Weight (kg) 80 [73; 94] 76 [69; 79] 0.11

BMI (kg/m2 ) 27.8 [24.9; 30.5] 25.5 [23.7; 26.0] 0.07

Epworth 10 [8; 14] 6 [3; 8] 0.03

AHI (/h) 30 [21; 41] ND –

AI (/h) 13 [8; 19] ND –

Oxygen desaturation index (/h) 21 [12; 24] ND –

Time with oxygen saturation <90% (%) 8 [1; 17] ND –

PULMONARY FUNCTION TESTS (HELIUM DILUTION TEST)*

VC L (% predicted) 5.0 [3.4; 5.9] (120 [114; 126]) 5.0 [4.1; 5.5] (122 [116; 129]) 0.79

IC (% predicted) 3.8 [2.8; 4.2] (136 [119; 161]) 3.4 [2.8; 4.2] (133 [124; 139]) 0.98

ERV (% predicted) 0.9 [0.7; 1.5] (81 [50; 98]) 1.4 [1.2; 1.9] (116 [77; 136]) 0.10

FRC (% predicted) 2.9 [2.1; 3.6] (89 [80; 99]) 3.0 [3.0; 3.8] (101 [89; 111]) 0.37

RV (% predicted) 2.0 [1.7; 2.2] (97 [79; 103]) 1.8 [1.5; 2.0] (89 [78; 94]) 0.45

TLC (% predicted) 6.3 [5.0; 7.4] (106 [99; 111]) 7.0 [5.7; 7.4] (105 [103; 110]) 0.60

Data are expressed as medians with inter-quartile.

BMI, body mass index; VC, Vital Capacity; IC, Inspiratory Capacity; ERV, Expiratory Reserve Volume; FRC, Functional Residual Capacity; RV, Residual Volume; TLC, Total Lung Capacity;

AHI, apnea hypopnea index; AI, apnea index; ND, not done.

*Pulmonary function tests performed in all controls, and in 11/12 patients, helium dilution test performed in all controls, and 10/12 patients.

Statistical Analysis
As none of the parameters are normally distributed, results
are expressed as medians with inter-quartile intervals. The data
from both groups were compared using the Mann-Whitney test
for discontinuous data and by Fisher’s exact test for qualitative
variables. Postural alignment was also compared to corridors of
normality previously published (29).

RESULTS

Participants
Twelve patients with OSAS and twelve healthy subjects were
included. Participants in both groups were similar in age, gender,
and body mass index (BMI). Two of the OSAS patients had
received no treatment, and ten had been able to stop their
treatment with CPAP or MAD for 10 [8–11] days. Patient
characteristics and the results of the respiratory function testing
in both groups are presented in Table 1.

Postural Alignment
The overall alignment with respect to the vertical (OD-HA angle)
was similar in both groups: the head was almost exactly vertically
aligned above the pelvis in both groups (see Table 2). However,
the spinal curvatures differed significantly between patients and
controls. In OSAS patients, we observed a greater OD-C7 angle,
which represents evidence of upper cervical hyperextension
(Table 2). We also observed more marked thoracic kyphosis in
OSAS patients (Table 2), with six patients having values greater
out of the corridor of normality (superior to 63◦) (29), compared
with only one control (p = 0.069). Finally eight OSAS patients

TABLE 2 | Spinal and pelvic parameters derived from 3D reconstruction

parameters (EOS parameters).

OSAS Controls p

EOS PARAMETERS

C3–C7 (◦) 8 [−13; 11] −7 [−10; −4] 0.24

T1–T12 (◦) 65 [51; 71] 49 [42; 59] 0.039

L1–S1 (◦) −60 [−63; −52] −58 [−62; −47] 0.41

OD–HA (◦) 4 [1; 4] 3 [3; 5] 0.59

OD–C7 (◦) 12 [8; 14] 5 [4; 8] 0.002

Pelvic incidence (◦) 53 [43; 57] 55 [47; 62] 0.80

Pelvic tilt (◦) 15 [12; 24] 13 [11; 16] 0.41

Data are expressed as medians with inter-quartile.

OD-HA, angle between the vertical and the line that connects the most superior point

of the odontoid peg of the center of the bi-coxofemoral axis; OD-C7, angle between the

vertical and the line that connects the most superior point of the odontoid peg and the

seventh cervical vertebrae; SVA, Sagittal Vertical Axis; C3–C7, cervical curvature between

the third cervical vertebrae to the seventh; T1–T12, thoracic curvature between the first

thoracic vertebrae and the twelfth; L1S1, lumbar curvature between the first lumbar

vertebrae and sacrum.

had lower cervical kyphosis (C3–C7) compared with only one
control (p = 0.01). Figure 2 shows an example of postural
alignment in a patient, and in matched control subject.

Stabilometric and Ventilatory Parameters
The stabilometric profile of the patient and control groups
differed significantly in all conditions (Table 3). In the EO/RP
condition, we observed a significant difference in the amplitude
of displacement of the pressure center between the groups. The



FIGURE 2 | Spinal alignment obtained by 3D reconstruction (EOS) and stabilometric profile obtained from OSAS patient n◦7 (female, 53 years, 1 m59, 67 kg) control

subject n◦9 (female 48 years, 1 m62, 55 kg). In the OSAS patient compared to the controls: thoracic hyperkyphosis and cervical hyperextension is seen; center of

pressure displacements are lower in the antero-posterieur axis and greater in the medio-lateral axis. (A) Left: 3D spinal reconstructions. OSAS patient, blue (3D spinal

angles: C3–C7 = −27.2◦, T1–T12 = 77.4◦, L1–L5 = −44.8◦ ) Control subject, gray (3D spinal angles: C3–C7 = −1◦, T1–T12 = 38.5◦, L1–L5 = −46.3◦). Right:

sagittal projection of OD-HA and OD-C7 angles. The OD-HA (3D) angle is 3.1◦ in the OSAS patient and 2.9◦ in the control subject. (B) Enlarged view of the sagittal

projection of the OD-C7 angle, which is 8.3◦ in the OSAS patient and 3.4◦ in the control subject. (C) Center of pressure displacements. OSAS patient (blue) and

control subject (gray). The 95% confidence interval is represented by the dotted ellipses.

OSAS patients’ displacements were lower in the AP range, and
greater in the ML range (example in a patient, see Figure 2).
This difference was also observed in the three other experimental
conditions, though not significantly so in the EC/RP condition.
Both groups had similar ventilatory parameters (Ti, Te, RF) in all
experimental conditions (Table 3) and there was no significant
intra-group variation in the various experimental conditions.

Respiratory Emergence
We observed a significant increase in respiratory emergence,
and in consequence, posturo-respiratory coupling, represented
by greater displacement of the pressure center due to respiratory
movements, along themedio-lateral axis in the EO/RP conditions
in OSAS patients compared with controls (19.2% [9.9; 24.0] vs.
8.1% [6.4; 10.4]; p= 0.028), an increase that was also reproduced
in the three other conditions (Table 3). Analyzing by segment,
we noted significant differences between patients and controls
only in the conditions when the mandible was in a position of
occlusion (EO/OC and EC/OC). In OSAS patients respiratory
emergence was less at cervical level in the EO/OC condition
(8.6% [4.7; 15.7] vs. 18.1% [13.8; 28.2]; p = 0.015) and greater
at hip level in the EC/OC condition (11.7% [6.7; 21.9] vs. 22.1%
[16.0; 34.7]; p= 0.045) (Figure 3).

DISCUSSION

This study provides evidence that OSAS patients have specific
postural dysfunction, associating disturbances of balance and
postural anomalies, characterized by hyperextension of the upper

cervical spine, anterior projection of the head, and thoracic
hyperkyphosis. The increases in postural displacement due to
respiratory movements are evidence for the centrally-mediated
and primarily respiratory origin of this postural dysfunction.

Upper Airways and Spinal Alignment in
OSAS
There is a close physiological relationship between spinal
curvature and the stability of the upper airways because of
the direct anatomical support that the cervical spine provides
to the oropharynx. Cervical flexion increases the risk that the
upper airway will collapse, while cervical extension increases
its stability (19). This relationship is illustrated in certain
upper cervical pathologies such as the osteochondromas,
osteophyte formation, multi-focal lesions in rheumatoid arthritis
or posterior subluxation of C1. Should these cause cervical
flexion, and thereby exert pressure on the posterior wall of
the pharynx, they may be directly responsible for obstructive
respiratory events during sleep (41). The reductions observed
in the apnea/hypopnea index, or even complete resolution
of OSAS, that follows surgical restoration of normal cervical
alignment, attests to a causal relationship (42). Equally, prior
surgical procedures that achieved anterior access to the cervical
spine constitute an anatomical risk factor for OSAS (43),
because of the reduction in diameter of the upper airway which
they are apt to engender. In our OSAS patients we did not
observe cervical pathology causing flexion deformities that may
potentially cause upper airway instability. Rather, we saw upper
cervical hyperextension reflected in an increased OD-C7 angle.
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This adaptive posture has been previously described in OSAS (9).
It is adaptive to ventilatory need to the degree that it facilitates
awake ventilation, by improving the mechanical properties of the
upper airways in the healthy subject (21), in mouth-breathers
(22) and possibly in OSAS (20). Thus, the cervical hyperextension
probably allows the body to compensate for the increased
respiratory load when awake, induced by an alteration in the
mechanical properties of the upper airways as OSAS develops
(23, 44). Spontaneous correction of cervical hyperextensionwhen
awake OSAS patients are fitted with a mandibular advancement
device to widen and stabilize the upper airways constitutes
independent evidence for this hypothesis (45).

However, the upper cervical hyperextension and anterior
projection of the head are potentially problematic for the
maintenance of balance (35). We have already established
that, in OSAS patients, the head-pelvis alignment remains
close to the vertical, with a normal OD-HA angle (36),
however the compensation to maintain this alignment seems
different to that observe in the elderly (29). Indeed, we did
not observed in our patients any pelvic compensation (29).
Conversely we observed a compensatory thoracic hyperkyphosis
(24, 29). This compensation probably limits the disturbance
of balance secondary to pathological spinal alignment (35),
but may increase the risk of falls and others hyperkyphosis-
related comorbidities (46). Moreover, the change in head rotation
may theoretically cause disturbances of balance by perturbing
central processing of visual and vestibular afferents (47). In our
study the compensation for postural disturbance of ventilatory
origin during the mandibular occlusion condition observed in
OSAS patients is evidence for the recruitment of mandibular
proprioceptive afferents dedicated to the control of balance,
supporting this hypothesis. The role of mandibular afferents
is normally negligible in healthy subjects (48), and becomes
increasingly important in dysfunctions of visual or vestibular
control (49). The change in head position may equally also
interfere with central perception of vertical posture (50) or alter
cortico-cortical connections and the anticipatory adaptations of
postural control by the pre-motor cortex (47), which in both
conditions may lead to disturbances of balance.

Changes in Posturo-Respiratory Coupling
in OSAS
We have shown that there are significant differences between
the stabilometric profiles of OSAS patients and controls. These
results are coherent with previously published studies which
have provided evidence that OSAS patients have poorer balance
compared with a control population (12, 13). Additionally,
we have now shown that this increase in CP displacement
amplitude specifically concerns the ML axis. The control of CP
displacement along this axis is primarily cortical (51), and the
stabilometric data observed in the OSAS patients in our study
support the presence of a postural disturbance of central origin.
In this context, hypoxic cerebral lesions causing disturbances
of balance have been described in OSAS (52, 53) and cannot
be excluded in our patients, even in the absence of any known
past neurovascular problems. However, we have equally also



FIGURE 3 | Respiratory emergence on antero-posterior (AP) and mediolateral (ML) deplacement of the center of pressure, and variation of kinematic angle at the level

of the cervical spine, pelvis, knees, and angles, as function of vision and occlusion. OSAS patients (black), controls (gray). EO, eyes open; EC, eyes closed; OC,

mandible positioned by occlusion of the teeth; RP, mandible positioned by the muscles without occlusion. *p < 0.05; **p < 0.01; ***p < 0.001.

shown that the increase in CP amplitude along the ML axis is
associated with an increase in respiratory emergence along this
axis, suggesting a specifically respiratory origin for this postural
disturbance. Our results are evidence for a change in central
interaction between respiratory and postural functions (i.e.,
posturo-respiratory coupling) (27, 31, 33), and therefore suggest
a possible link with the waking respiratory cortical adaptation
previously reported in OSAS (54). The pre-inspiratory potentials
observed in the motor cortex and the supplementary motor area
during resting ventilation provide evidence for a pathological
adaptive increase in awake cortical respiratory drive (55), which
compensates for the intrinsic respiratory load linked to increased
upper airway resistance, be this physiological in dorsal decubitus
in the healthy subject (56), or linked to intrinsic loads in the
abnormal upper airways of the OSAS patient avoiding obstructive
events when awake (54). It has also been shown that respiratory
cortical adaptation is associated with increased consumption of
cognitive and attentional resources (57). In OSAS this may alter
postural balance by competing for cortical resources, as control

of balance and responses to inspiratory load are modulated in

the same cortical areas (47). Such a mechanism has also been

demonstrated when healthy subjects have had their inspiratory

load increased experimentally (58). The exacerbation of gait

abnormalities observed whenOSAS patients are asked to perform
a double task (e.g., performing a Stroop test whilst walking on a
treadmill) (12, 14), demonstrates the close relationship between
inspiratory load, locomotion, and cognition (58) and provides
independent support for this hypothesis.

Methodological Conditions and Study
Limitations
The limited number of participants and the inclusion of non-
obese patients mean that our results cannot be confidently
generalized to all patients with OSAS. We recognize that the
absence of polysomnographic data in the control group means
that we cannot formally exclude the absence of OSAS in controls.
However, our control subjects were completely asymptomatic.
None snored or complained of somnolence, and their Berlin
scores all equaled zero, a result whose negative predictive value
has been calculated to be 72% using data from the Hypnolaus
cohort (1, 59). However, we can reasonably consider this group
to be composed of healthy subjects. We also recognize that we
did not measure awake increase in upper airway resistance and
collapsibility in our patients, and the calculation between the
alteration of the mechanical properties of the upper airways and



postural dysfunction remains theoretical. Correction of posturo-
respiratory coupling and cervical hyperextension with a daytime
mandibular advancement device (60) could contribute further
evidence to complement this study.

CONCLUSION

This study provides evidence for abnormal spinal alignment and
disturbances of balance in OSAS patients, and calls for these to be
sought in clinical practice in order tomitigate their consequences.
The determination of posturo-respiratory coupling allows early
screening for postural dysfunction and to refine understanding
of its OSAS-related character. Finally, the potential correlation
between the specific postural dysfunction of OSAS, the changes in
the mechanical properties of the upper airways, and respiratory
cortical adaptation to waking and cognitive problems, mean that
correcting mechanical anomalies of the upper airways should
be considered.
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