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ABSTRACT 
The aim of this systematic review was to assess the accuracy and reliability of automatic 

landmarking for cephalometric analysis of 3D craniofacial images. We searched for 

studies that reported results of automatic landmarking and/or measurements of human 

head CT or CBCT scans in MEDLINE, EMBASE and Web of Science until march 2019. 

Two authors independently screened articles for eligibility. Risk of bias and applicability 

concerns for each included study were assessed using the QUADAS-2 tool. Eleven 

studies with test dataset sample sizes ranging from 18 to 77 images were included. They 

used knowledge-, atlas- or learning-based algorithms to landmark 2 to 33 points of 

cephalometric interest. Ten studies measured mean localization errors between 

manually- and automatically-detected landmarks. Depending on the studies and the 

landmarks, mean errors ranged from <0.50 mm to >5 mm. The two best-performing 

algorithms used a deep learning method and reported mean errors <2 mm for every 

landmark, approximating results of operator variability in manual landmarking. Risk of 

bias regarding patient selection and implementation of the reference standard were 

found, therefore the studies might have yielded overoptimistic results. The robustness of 

these algorithms needs to be more thoroughly tested in challenging clinical settings. 

PROSPERO registration number: CRD42019119637.

Accuracy and reliability of automatic three-dimensional cephalometric landmarking
Dot, Gautier1; Rafflenbeul, Frédéric2; Arbotto, M.1; Gajny, Laurent1; Rouch, Philippe1; Schouman, Thomas1 
1 Institut de Biomecanique Humaine Georges Charpak [IBHGC]
2 Université de Strasbourg [UNISTRA]



INTRODUCTION 

Cephalometric analysis (or cephalometry) is a standardized diagnostic and treatment 

evaluation method used daily by orthodontists and maxillofacial surgeons. The analysis 

is based on linear and angular measurements performed on radiographic images. The 

gold standard for this procedure is a manual detection and landmarking of meaningful 

anatomical structures on lateral or frontal skull radiographs called cephalograms1. This 

X-ray technique is a two-dimensional (2D) projection of three-dimensional (3D)

craniofacial structures, which leads to superimposition of bilateral structures and 

distortion of images, with enlargement in some areas and reduction in others2. 

To overcome the downsides of cephalograms, several authors have proposed 3D 

cephalometric analysis, based on 3D craniofacial images provided by computed 

tomography (CT) or cone beam computed tomography (CBCT) imaging techniques3,4. 

For now, there is no globally recognized 3D analysis or validated list of landmarks. Most 

of the proposed analyses have been 3D adaptations of previous 2D techniques, relying 

on landmarks localized on the bone surface of the skull3,4. These landmarks are then 

used to provide cephalometric results in the form of linear (Euclidian distance between 

two points), angular (angle between three points or two planes) and ratio (between two 

linear values) measurements. An example of a set of 3D landmarks localized on a skull 

model is shown in Fig. 1. It is suggested that 3D cephalometry could improve treatment 

outcomes for difficult cases (e.g. patients with craniofacial syndromes, major 

asymmetries/craniofacial anomalies or undergoing orthognathic surgery) when 

compared to traditional 2D cephalometry5–7. In vitro 3D craniofacial measurements are 

proven to be highly reliable, validating the possible use of CT or CBCT scans for 3D 

cephalometry8. 



Manual landmarking of 3D volumes requires time and a high level of expertise and 

experience9. Hassan et al. reported durations up to 14 minutes to place 22 landmarks10. 

Thorough training of the operators aims at reducing their identification errors in order to 

keep interobserver variation at a clinically acceptable level9. Reproducibility studies have 

shown that some landmarks are more reliable than others, with midsagittal plane 

landmarks usually showing greater reliability than bilateral landmarks11. Depending on 

the points and the studies, inter-operator variability ranges from less than 0.5 mm to 

more than 2 mm5,8,11. As a result, for the time being, this 3D technique is barely used in 

clinical settings and there is a lack of evidence as to which patients would benefit from 

it. 

Automatization of the 3D cephalometric landmarking process could greatly facilitate 

access to this diagnostic tool. It would save time and enable untrained clinicians to use 

3D cephalometry on a daily basis. Automatic 3D cephalometry could be more accurate 

than manual landmarking by learning to average out landmarking errors12. Various 

numerical methods have been proposed, including knowledge-based, atlas-based and 

learning-based algorithms13,14. The studies rely on different reporting methods, making it 

difficult to compare them. To our knowledge, neither a review of this research, nor an 

analytic comparison between results of different automatic 3D landmarking methods 

have been reported. 

The aim of this systematic review is to assess the current evidence on the accuracy and 

reliability of automatic landmarking in comparison to manual landmarking for 

cephalometric analysis of 3D craniofacial images (CT or CBCT scans). 

To this aim, our systematic review details the various techniques used and answers the 

following research questions: 



1) What is the accuracy of automatic 3D landmarking when compared to manual

landmarking?

2) How reliable are linear and angular measurements obtained through automatic

landmarking when compared to manual landmarking?

MATERIALS AND METHODS 

Protocol and registration 

This systematic review is reported based on the PRISMA extension for Diagnostic Test 

Accuracy (DTA) guidelines. In accordance with the guidelines, our protocol was 

registered with the International Prospective Register of Systematic Reviews 

(PROSPERO) on the 28th of January 2019 (registration number CRD42019119637). 

Eligibility criteria 

Studies were selected according to the criteria outlined below: 

- Study designs: we included in vitro and in vivo prospective and retrospective

studies (clinical trials, comparative studies, validation studies or evaluation

studies). We excluded book chapters, animal studies, case reports,

epidemiologic studies, narrative reviews and author opinion articles.

- Population: we included studies examining the general human population, with

no age limit.

- Index test: the index test of interest was automatic landmarking and/or

measurements of 3D cranio-facial CT or CBCT scans. Several skeletal or dental

landmarks with cephalometric interest needed to be localized in the maxillofacial

area. “Automatic” meant that the landmarking or the measurements were

performed by an algorithm, with minimal intervention by the operator (e.g.

reorientation of the volume or manual localization of a few landmarks to run the



procedure). Detailed definitions of landmarks and/or measurements needed to 

be provided, as well as detailed definition of the algorithm used. 

- Sample: for the index test, a sample size of at least 10 images needed to be

provided.

- Reference standard: manual landmarking of 3D craniofacial CT or CBCT scans.

- Timing: there was no restriction in the search period.

- Language: we included articles reported in English, French and German.

Information sources 

Our search was performed in the following databases: MEDLINE via Pubmed, EMBASE, 

Web of Science and Cochrane Central Register of Controlled Clinical Trials (CENTRAL). 

We searched the grey literature through OpenGrey database and Google Scholar, for 

which we considered the first 300 results for inclusion. To ensure literature saturation, 

we scanned the reference lists of included studies or relevant reviews identified through 

the search, and handsearched for studies citing included studies. No limit has been 

applied as to the date of publication, and our last search was performed on the 14th of 

March 2019. 

Search strategy 

The publications were searched electronically by one author, using controlled index 

terms and relevant specific free text words. After the MEDLINE strategy was finalized, it 

was adapted to the syntax and subject headings of the other databases (see 

Supplementary Table S1 for detailed search strategy). Duplicate articles were removed 

after importing the lists into a reference management software (Zotero v.5.0.62). 

Study selection 



Two reviewers independently screened the resulting collection of titles and abstracts. 

Studies that did not pertain to the review topic were excluded. When a title or abstract 

was considered to be relevant by only one of the reviewers, the publication was not 

excluded. The full texts of the remaining publications were then retrieved and reviewers 

independently assessed them to decide whether these met the inclusion criteria or not. 

Additional information was sought from study authors where necessary to resolve 

questions about eligibility. Disagreements between reviewers were solved through 

discussion and reasons for exclusion were recorded. When the same research team had 

published several articles on the refinement of an algorithm, the most recent paper was 

included. Neither of the reviewers were blinded to the journal titles, study authors or 

institutions. 

Data collection process 

One author extracted data into a standardized form subsequently checked by a second 

author. Disagreement was resolved through discussion. Additional information was 

sought from study authors where necessary, but articles were excluded whenever there 

were three or more unanswered requests. 

Risk of bias and applicability 

To evaluate the risk of bias and applicability of each study, information was collected 

using a tailored checklist based on the QUADAS-2 tool15 and recommendations from the 

Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy16 

(Supplementary Table S2). If there was insufficient detail reported in the study, the risk 

of bias was judged as “unclear”. These judgements were made independently by two 

review authors. Disagreements were resolved first by discussion and then by consulting 

a third author for arbitration. 



Diagnostic accuracy measures 

The diagnostic accuracy measures reported were the mean differences and standard 

deviations expressed in mm (Euclidean distances), in degrees (angles) or in ratios 

(proportional measurements) between the automatic and the manual methods. 

Synthesis of results 

A systematic narrative and qualitative synthesis was provided with information presented 

in the text and tables to summarize and explain the characteristics and findings of the 

included studies. The narrative synthesis explored the relationship and findings both 

within and between the included studies. A meta-analysis was not possible because of 

the heterogeneity of the methodologies used in the selected studies. 

Data availability 

All the data generated or analysed during this study is included in this published article 

(and its Supplementary Data file). 

RESULTS 

Study selection 

The flow chart of the selection process for inclusion of articles in this study is outlined in 

Fig. 2. A total of 654 manuscripts were selected for the screening phase (see 

Supplementary Table S1 for detailed results for each database) and 599 studies were 

excluded following abstract/title assessment. Following full-text review, a further 44 

papers were excluded and the reasons for it were recorded, leaving 11 studies as eligible 

for inclusion in the qualitative synthesis. Among them, 10 studies13,14,17–24 were related 

to our research question 1, and 1 study25 was related to our research question 2. No 

studies were included in a quantitative synthesis. 



Study characteristics 

All of the selected studies for the qualitative analysis were published in English between 

2014 and 2019 and were based on a retrospective selection of in vivo CBCT or CT scans. 

The sample size of the training dataset ranged from 24 to 201 images, and from 18 to 

77 images for the test dataset. 

None of the articles provided detailed descriptions of sample characteristics (e.g. gender, 

age, inclusion criteria, exclusion criteria, main craniofacial characteristics) nor provided 

calculation of the sample size. Four studies reported the use of a random method for 

population selection, but none reported the details of the randomization. A various 

number of skeletal and dental landmarks were localized, ranging from 2 to 33 points of 

cephalometric interest. 

Three main types of algorithms were used for the automatic 3D landmarking: knowledge-

based, atlas-based and learning-based methods. A synthesis of the principles, 

advantages and limitations of these algorithms is provided in Table 1. The computational 

power needed and running time of the algorithms was stated in only 2 studies21,24. For 

all studies, the reference standard used was manual landmarking. The reference 

landmarks were usually obtained by calculating the mean of landmarks provided by 

several observers. Summaries of the descriptive characteristics of the included articles 

are provided in Table 2 for research question 1 and Table 3 for research question 2. 

Risk of bias and applicability 

Using a tailored QUADAS-2 tool, three studies were assessed as being at overall low 

risk of bias13,23,25 and two were at low concern regarding applicability14,23. 



Regarding patient selection, 7 studies showed an unclear risk of bias17–22,24 and 8 showed 

applicability concerns13,17,19–22,24,25. This was mainly due to a lack of testing on random or 

consecutive patients and a lack of description of the population sample. Furthermore, 5 

studies were at unclear or high risk of bias regarding the implementation of the reference 

standard14,18,20,21,24. They lacked a proper reference standard, or failed to report inter and 

intra-operator reproducibility results. Risk of bias and applicability assessment is 

summarized in Fig. 3. 

Results of individual studies: research question 1 

For research question 1, the results were separated according to the method used for 

the automatization algorithm. 

Knowledge-based methods 

Knowledge-based methods use mathematical descriptions (e.g. peak, lowest point…) 

to localize the landmarks on the anatomical contours of the images. Two studies used 

this method. Detailed description of the algorithm and mathematical entities of the points 

were provided. 

A first study by Gupta et al.13 tested 20 landmarks adapted from 2D cephalometry on a 

dataset of 30 CBCT scans. The initialization of the algorithm was based on the automatic 

search of a “seed point” using a template matching method on a segmented part of the

images. A volume of interest (VOI) was defined around a point detected through distance 

vector from the “seed point”. Then, landmarks were detected on the contours identified 

on the anatomical structures of VOI. The overall mean error was 2.01 mm (standard 

deviation 1.23 mm). 



Neelapu et al.22 aimed at improving the results and robustness of the aforementioned 

method. After segmentation of the images, algorithm initialization was based on the 

automatic localization of the mid-sagittal plane using symmetry features of the skull. The 

image was then cropped into four quadrants and landmarks were detected on the 

anatomical contours. The algorithm showed slightly better results than the previous 

study, and was said to be more robust for deformed cases. The overall mean error was 

1.88 mm (standard deviation 1.10 mm) for the 20 landmarks. 

Atlas-based methods 

Atlas-based methods use an atlas of one or more reference images, with landmarks 

manually placed by experts. In order to localize landmarks on a new image, one of these 

reference images is automatically registered (fitted) on the test image and the landmarks 

are transferred. Two studies used this method. 

Shahidi et al.17 used 8 manually-annotated CBCT scans to generate the head atlas. The 

algorithm was tested with 14 landmarks on 20 CBCT scans. Depending on the age of 

the subject, one image of the atlas was automatically selected and fitted on the test 

image. The algorithm used feature and voxel similarity-based registration before scaling, 

rotation, and translation of the test image. The overall mean error was 3.40 mm. 

Codari et al.19 tested the automatic localization of 21 landmarks on 18 CBCT scans of 

healthy adult Caucasian women. One manually-annotated CBCT scan was used for the 

head atlas. After automatic segmentation of the test image using k-means clustering, the 

atlas image was automatically fitted on the test image, using first an affine (linear) 

intensity-based image registration technique and then an elastic (nonlinear) one. The 

overall mean error was 2.39 mm (standard deviation 1.73 mm). 



Learning-based methods 

Learning-based methods include various methods which rely on a training sample of 

images. Two sub-types can be described: statistical and machine learning methods. 

Statistical methods (active shape model and Elastic Bunch Graph Matching) correlate a 

shape with deformation modes, or a graph representation, extracted from the training 

images, with the test image. Machine learning methods (random forest and deep 

learning) use the training data in order to learn where to localize the landmarks without 

being explicitly programmed to perform this task. 

Montúfar et al.21 used a combination of learning-based and knowledge-based methods. 

First, 2 active shape models (ASM) were trained on digitally reconstructed 2D 

radiographs for a holistic automatic 2D landmark approximation. Then, the 3D 

coordinates of the points were computerized and segmentation of the images’ sub-

volumes was performed around the points. Finally, a knowledge-based method was 

used to localize the landmarks precisely on the anatomical contours. The ASM was 

trained on 24 CBCT scans, and the overall localization results were tested on the same 

set of images (leave-one-out test). The mean error was 2.51 mm (standard deviation 1.6

mm). In terms of processing time, Montúfar et al.’s21 method was compared to Gupta et 

al.13 and Codari et al.19. Reported processing times were 49, 126.25 and 2,892.2 

seconds, respectively. 

De Jong et al.20 used an Elastic Bunch Graph Matching-based (EBGM) method. The 

training dataset consisted of 39 CBCT scans which were manually segmented and 

landmarked once by one operator. A total of 33 landmarks were localized. The 

segmented skulls were projected on a 2D plane and a large set of features was derived 

from this data. EBGM method was used to search for a maximum correlation between 

the test image and a graph representation extracted from the training images. A leave-



one-out test was used to evaluate the algorithm, and 10 landmarks had a mean error 

inferior to 2 mm. 

Zhang et al.18 used a random forest method to automatically localize 15 landmarks on 

41 CBCT scans in a 5-fold cross validation test. The method was based on a regression 

voting strategy, using image segmentation to remove uninformative voxels. Then, a 

partially-joint model was used to localize landmarks separately based on the coherence 

of their positions. The training dataset consisted of 41 CBCT and 30 CT scans, which 

were labelled once by one experienced operator. The overall mean error of the automatic 

localization was 1.44 mm, with all the landmarks having a mean error inferior to 2 mm. 

Three studies used a deep learning method. O’Neil et al.24 used a shallow fully

convolutional neural network (FCN) and atlas location autocontext in order to localize 22 

landmarks in the head. Atlas location autocontext was described in this work as 

“iteratively feeding the coordinate in atlas space, according to the output of a model, to

a subsequent model”. Two of these 22 landmarks had a cephalometric interest. A total

of 170 CT scans were used for training, 31 for validation and 20 for testing. These images 

contained “pathology, inclusive of haemorrhage, tumours and age-related change”. The 

data was manually labelled once by two observers, but the mean localization of the 

manual points was not used. The overall mean error of the automatic localization for the 

two points was 2.45 mm (standard deviation 2.53 mm) for observer A and 3.49 mm 

(standard deviation 2.88 mm) for observer B. 

Zhang et al.14, in a second study, automatically localized 15 landmarks on 77 CBCT 

scans in a 5-fold cross validation test. Two fully convolutional neural networks (FCN-1 

and FCN-2) with a U-Net architecture were used. FCN-1 was used to learn the 

displacement maps for multiple landmarks in order to model the spatial context 



information in the whole image. Then, FCN-2 performed bone segmentation and 

landmark localization using both FCN-1 results and the original image as input. The 

training dataset consisted of 77 CBCT and 30 CT scans. The overall mean error of the 

automatic localization was 1.10 mm (standard deviation 0.71 mm). 

Torosdagli et al.23 used an adapted fully convolutional DenseNET network (also called 

Tiramisu network) for image segmentation, followed by an improved Zhang et al.14 U-

Net network to localize sparsely-spaced landmarks. Then, a long short-term memory 

(LSTM) network was used to localize mid-sagittal closely-spaced landmarks near the 

"Menton" point. The training dataset consisted of 50 CBCT scans of mandibles including 

subjects with “congenital deformities fading to extreme developmental variations” and 

artefacts. The algorithm was tested on the same dataset using a 5-fold cross validation 

test. Eight out of the 9 mandibular landmarks tested were localized with a mean error 

inferior to 0.5 mm. The 9th one, “Pogonion”, had a mean error of 1.55 mm.

We collected the detailed results of the mean errors and standard deviations for each 

cephalometric landmark. These mean errors were computed as mean distances (in mm) 

between the automatically-detected test landmarks and the manually-detected reference 

landmarks (the latter being the mean of several observers, except for Zhang et al.14,18, 

de Jong et al.20 and O’Neil et al.24). Table 4 provides detailed results for the 19 most

reported landmarks. The entire list of results can be found as Supplementary Table S3. 

Results of individual studies: research question 2 

For research question 2, the only study was performed by Gupta et al.25 following the 

same knowledge-based method as their other study. Linear, angular and ratio 



measurements were computerized using the manually-placed or automatically-placed 

landmarks. Then, the difference between the measurements was calculated as mean 

error. The unpaired t-test (95% level of significance) showed no statistically significant 

differences. For the linear measurements (Euclidian distance between two points), the 

highest error was 2.63 mm (mean standard deviation between 0.35 and 2.46 mm). For 

the angular measurements (angle between three points or two planes), the highest error 

was 2.12° (mean standard deviation between 0.46 and 2.40°). For the ratios 

(proportional measurements between two linear measurements), the highest error was 

0.03 (mean standard deviation between 0.01 and 0.03). 

DISCUSSION 

Our systematic review revealed that automatic landmarking of 3D craniofacial images is 

an active and current research field, as 5 out of 11 of our included studies were published 

in 2018 or 2019. Only one among the selected studies answered our research question 

2 about the reliability of linear and angular 3D measurements obtained through automatic 

landmarking. This is quite surprising considering that diagnostic value of cephalometric 

analysis rests on linear and angular measurements, not merely on landmarks. Although 

these measurements are based on landmarks, overall measurement errors cannot be 

deduced systematically from landmark localization errors. Depending on landmark 

coordinate values, the overall measurement error can be reduced or increased, thus 

modifying the clinical significance of the results8,11,25.  Therefore, there is a lack of 

evidence about the diagnostic accuracy of automatic 3D cephalometry26. 

Concerning our research question 1, the best localization results were obtained by two 

studies that used a deep learning method to automatically localize the landmarks14,23. 

More specifically, these two studies used fully convolutional neural network with a U-Net 



architecture. Similarly, two of the best performing algorithms for automatic 2D 

cephalometry used a machine learning-based algorithm12,27. 

These results need to be compared to those obtained through manual landmarking. 

Reproducibility studies of manual landmarking report variable results depending on the 

landmarks. Intra-operator results usually show mean differences smaller than 1 mm, and 

inter-operator variability ranges from less than 0.5 mm to more than 2 mm5,8,11. At the 

moment, there is no clear threshold for clinical significance of inter-observer variability. 

Depending on the authors, the limit could be 0.5 mm, 1 mm, 2 mm or even more9,11,25. 

This questions the use of manual landmarking as the reference standard to test 

automated landmarking, but for now there is no other choice than to consider landmark 

localization by the mean of experts as the gold standard12,13. A way to reduce uncertainty 

with this reference standard is to use the mean of manual landmarks obtained by several 

independent observers at different times. 

When compared to the aforementioned body of literature, the localization results of the 

automated methods are very promising. Nonetheless, most of the algorithms were tested 

on a small set of cephalometric points or localized unconventional landmarks, as showed 

in Table 4 and Supplementary Table S3. This jeopardize the clinical application of most 

of these methods, which cannot be used to perform a complete 3D cephalometric 

analysis. In the detailed point-by-point results of the two best performing studies, some 

points show larger standard deviations than others. It is particularly noticeable in the 

results of Zhang et al.14 for points “Gonion Left” and “Gonion Right”, and in the results of

Torosdagli et al.23 for points “Pogonion” and “Gnathion”. It is difficult to know what

explains this phenomenon without detailed directional results for the errors. These 

landmarks are localized on curved structures with no clear boundaries, which are also 

known to be difficult to localize precisely in manual landmarking11. 



The performance of the learning-based algorithms entirely depends on the quality, size 

and variability of their training datasets12. The robustness of these algorithms needs to 

be more thoroughly tested in challenging and actual clinical sets, and time cost of the 

methods should be considered. These tests should primarily focus on the main target 

population of 3D cephalometry, difficult cases (e.g. patients with craniofacial syndromes, 

major asymmetries/craniofacial anomalies or undergoing orthognathic surgery)5,6. As it 

has been done for automated 2D cephalometry, it would be interesting to gather a public 

and unbiased labelled set of images for the benchmarking of the algorithms28. It would 

allow the training and testing of the algorithms with a consistent evaluation method, thus 

helping the direct comparison between the results. In order to minimise the radiation 

dose of the patients, the algorithms should also be trained and tested on images acquired 

through low-dose protocols8,29. 

Several studies showed risk of bias or applicability concerns regarding patient selection 

and implementation of the reference standard, mainly because the risks were assessed 

as unclear. Insufficient data has been reported in the included studies, therefore it cannot 

be ruled out that patients might have inappropriately been excluded or that the manual 

landmarking step might have failed to correctly detect the reference landmarks15. 

Overall, some of the included studies might have yielded overoptimistic results. 

Interestingly, the study that provided the best results was also the only one that was 

assessed as being at overall low risk of bias and low concern regarding applicability23. 

However, it only focused on a set of mandibular landmarks and was validated on a rather 

small dataset. 

The studies could have reported their results in other forms. Only three studies reported 

the percentage of points successfully located within a radius of 1 mm, 2 mm and 3 mm 



from the reference point. This data is needed to compute successful detection rates of 

the algorithms28. Moreover, mean error might not be the most relevant result to assess 

distribution when error distributions are asymmetrical, as it is frequently the case with 

the algorithms used in the included studies. Median error and interquartile range should 

be used in that case19. Finally, the error results were given as Euclidian distances in all 

included studies, without referring to the x- y- z-axis. Detailed directional results are 

necessary to identify the points that are prone to error in one plane more than the others 

and thus are of different clinical significance1,9. 

Finally, the reliability of landmarking does not necessarily translate into meaningful 

implications and clinically relevant results11. The same limitation applies for now to 

manual 3D cephalometry5,8. More studies on diagnostic thinking efficacy and therapeutic 

efficacy26 of automatic 3D cephalometry are needed in order to know in which cases this 

technique is useful for diagnosis and treatment planning29. 
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 APPENDIX A. SUPPLEMENTARY DATA

 Supplementary data associated with this article (Supplementary Table S1 to S3) can be               

found in the supplementary data file.
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Table 1. Principles, advantages and limitations of the algorithms used in the included articles 

General 
Method

Specific 
Method

Principle Advantages Limitations

Knowledge-based 

1. Mathematical entities are associated with the

landmark locations (e.g. peak, lowest point…)

2. The landmarks are automatically localized on

each contour of the test image based on the 

definitions 

- Applies the concept of manual plotting 

based on pre-agreed definitions 

- Detection of contours is the vulnerable step

- Landmarks placed on curved structures are 

hard to localize 

- Robustness can be challenged with severely 

deformed cases 

Atlas-based 

1. A reference image atlas is created, with 

landmarks placed manually by experts 

2. One image of this atlas is automatically 

registered (fitted) on a test image 

3. The landmarks are transferred on the test image 

- Simple method with low amount of a priori 

information needed 

- Can be customized easily 

- Atlases have to be accurate and match

biological variations (for sex, age, ethnicity…)

- Highly dependent on registration technique 

which can be computationally expensive 

- Robustness can be challenged with severely 

deformed cases 

Learning-

based

Active shape 

model (ASM) 

1. The landmarks are placed manually by experts 

on the training sample images 

2. A statistical model (mean shape) is created by 

scaling, rotating and translating the training 

shapes so that they correspond as closely as 

possible 

3. The model is iteratively deformed to fit the test 

image and automatically localize the landmarks

- Well-described and thoroughly studied 

method 

- Low sensitivity to artifacts and noise in the

image 

- 2-dimensional technique

- Needs large training sample size to match

biological variations

- Needs accurate training data

- Robustness can be challenged with severely

deformed cases 

Elastic Bunch 

Graph 

Matching 

(EBGM) 

1. The landmarks are placed manually by experts 

on the training sample images 

2. A large set of 2D features is derived from the 

training data, using image filtering 

3. The landmarks are automatically detected on 

the test image based on a maximum correlation 

search between the test image and a graph 

representation extracted from the training 

images 

- Does not need a large training sample - 2-dimensional technique

- Needs accurate training data

- Sensitive to artifacts and noise in the image

Random forest 

1. The landmarks are placed manually by experts 

on the training sample images 

2. Visual features are chosen and a multitude of 

decision trees is constructed from the training

data 

3. All these decision trees are automatically 

combined to vote for the most probable position 

of the landmarks on the test image 

- Well-described and thoroughly studied 

method 

- Low sensitivity to artifacts and noise in the

image 

- Needs a large training sample size with

artifacts and anatomical variations 

- Robustness can be challenged with severely 

deformed cases 

Deep learning 

1. The landmarks are placed manually by experts 

on the training sample images 

2. A deep neural network is trained with the

sample data 

3. The landmarks are automatically detected on 

the test image 

- Can accommodate strong anatomical 

variations

- Low sensitivity to artifacts and noise in the

image 

- Highly dynamic research field

- Needs a very large training sample size with

artifacts and anatomical variations 

- Needs accurate training data

- Training phase is computationally expensive

- Downsampling of images might be needed,

which can increase uncertainty in results 

- Neural network parameters have to be 

determined empirically 



Table 2. Summary characteristics of included articles – Research question 1

Article Population and selection method 
Acquisition  

voxel size 

Number 

of 

landmar

ks 

tested 

Index test – Automatic 3D landmarking
Reference standard – Manual 

landmarking 

Main Results 

Total mean 

difference ± SD 

between index 

test and 

reference 

standard 

Algorithm 

used 

Training 

dataset 
Test dataset 

Observers 

Repetitions 

Intraobserver 

Interobserver 

results 

Shahidi 

et al. 

201417 

Random retrospective selection from 

private practice images, without 

“significant fractures or severe skeletal 

anomalies”

Age 10-43 

Unknown 14 Atlas-based method  n/a 20 CBCT scans 3 observers 

2 times 

Intraobserver – ICC 

= 0.89 

Interobserver - ICC 

+ 95% CI = 0.87 

[0.82-0.93] 

3.40 mm 

Gupta et 

al. 201513 

Random retrospective selection from 

postgraduate orthodontic clinic 

database “irrespective of age, gender 

and ethnicity” 

Isometric 0.25-

0.40 mm 

20 Knowledge-based 

method  

n/a 30 CBCT scans 3 observers 

1 time 

Interobserver – ICC 

> 0.9 

2.01 ± 1.23 mm 

Zhang et 

al. 

201618 

Retrospective selection 

Non-syndromic dentofacial deformity  

Skeletal Class II and Class III patients 

CBCT scans : 

isometric 0.4 mm 

CT scans: 0.488 × 

0.488 × 1.25 mm3 

15 Random forest-

based method 

41 CBCT scans 

30 CT scans 

41 CBCT scans 

(same as training 

- 5-fold cross 

validation) 

1 observer 

1 time  

n/a 1.44 mm 

Codari et 

al. 201719 

Retrospective selection from private 

practice database 

“Adult healthy Caucasian women”

Age 37-74 

Unknown 21 Atlas-based method  n/a 18 CBCT scans “Team of 

expert users”

1 time 

Interobserver – ICC 

= 0.98 

2.39 ± 1.73 mm 

Zhang et 

al. 201714 

Retrospective selection from private 

practice database 

Non-syndromic dentofacial deformities 

Even distribution between skeletal 

classes 

CBCT scans: 

isometric 0.3 or 

0.4 mm 

CT scan: 0.488 × 

0.488 × 1.25 mm3 

15 Deep learning-based 

method 

77 CBCT scans 

30 CT scans 

77 CBCT scans 

(same as training 

- 5-fold cross 

validation) 

2 observers 

(on different 

images) 

1 time 

n/a 1.10 ± 0.71 mm 

de Jong 

et al. 

201820 

Retrospective selection from 

orthodontic clinic database 

Non-syndromic cohort 

Age 16-54 

Slice thicknesses 

between 0.3 and 1 

mm 

33 Elastic Bunch Graph 

Matching-based 

(EBGM) method 

39 CBCT scans 39 CBCT scans 

(same as training 

- leave-one-out

test) 

1 observer 

1 time 

n/a Mean error <2 mm 

for 10 landmarks 

Montúfar 

et al. 

201821 

Random selection from public 

repository (Virtual Skeleton Database 

from the Medical Image Repository of 

the Swiss Institute for Computer 

Assisted Surgery) 

Isometric 0.4 mm 18 Active shape model 

(ASM) + Knowledge-

based method on 

subvolumes 

24 CBCT scans 24 CBCT scans 

(same as training 

- leave-one-out

test) 

2 observers 

2 times 

Intraobserver: “12 

of 18 landmarks 

reproducible within 

a 1.0-mm standard 

deviation”

2.51 ± 1.6 mm 

Neelapu 

et al. 

201822 

Retrospective selection from 

postgraduate orthodontic clinic 

database “irrespective of age, gender 

and ethnicity” 

Isometric 0.25-

0.40 mm 

20 Knowledge-based 

method  

n/a 30 CBCT scans 3 observers 

1 time 

Interobserver – ICC 

> 0.9 

1.88 ± 1.10 mm 

Torosda

gli et al. 

201923 

Retrospective selection from hospital 

database, including “congenital 

deformities fading to extreme 

developmental variations in CMF 

bones” and artifacts 

Isometric 0.29 or 

0.377 mm 

(before 

resampling) 

9a  Deep learning-based 

method 

50 CBCT scans 50 CBCT scans 

(same as training 

- 5-fold cross 

validation) 

3 observers 

2 times for 2 

observers 

1 time for 1 

observer 

Interobserver – ICC 

= 0.92 

Mean error ≤0.5 

mm for 8 

landmarks 

O’Neil et 

al. 201924 

Retrospective selection from hospital 

database, containing “pathology, 

inclusive of haemorrhage, tumours and 

age-related change” 

“Range of 

resolutions and 

slice thicknesses" 

2b  Deep learning-based 

method 

170 CT scans 

for training 

31 CT scans for 

validation 

20 CT scans 2 observers 

1 time 

Interobserver – 

mean=2.20mm / 

median=1.48mm 

Observer A: 

2.45 ± 2.53 mm 

Observer B: 

3.49 ± 2.88 mm 

CT, computed tomography; CBCT, cone-beam computed tomography; ICC, intraclass correlation coefficient 

a Only mandibular landmarks   b Only 2 out of the 22 studied landmarks had cephalometric interest  



Table 3. Summary characteristics of included articles – Research question 2

Article 

Population and 

selection 

method 

Acquisition  

voxel size 

Number of 

measurements 

tested 

Index test – Automatic 3D landmarking
Reference standard – Manual 

landmarking 
Main Results 

Deviations of measurements 
Algorithm 

used 

Training 

dataset 

Test 

dataset 

Observers 

Repetitions 

Intraobserver 

Interobserver 

results 

Gupta 

et al. 

201625 

Random 

selection from 

postgraduate 

orthodontic 

clinic database 

“irrespective of 

age, gender 

and ethnicity” 

Isometric 

0.25-0.40 

mm 

28 linear 

16 angular 

7 ratios 

Knowledg

e-based 

method  

n/a 30 

CBCT 

scans 

3 observers 

1 time 

Interobserver – 

ICC > 0.9 

- Linear measurements – highest 

error 2.63mm; mean standard 

deviation between 0.35 and 2.46 

mm 

- Angular measurements – 

highest error 2.12°; mean 

standard deviation between 0.46 

and 2.40° 

- Ratios – highest error 0.03;

mean standard deviation 

between 0.01 and 0.03 

CBCT, cone-beam computed tomography; ICC, intraclass correlation coefficient 



Table 4. Mean localization errors ± standard deviations (in mm) for the 19 most reported landmarks 

Shahidi 

et al. 

201417 

Gupta et al. 

201513 

Zhang et al. 

201618a 

Codari et 

al. 201719a 

Zhang et 

al. 

201714a,b 

De Jong 

et al.  

2018.20 

Montúfar et 

al.  201821 

Neelapu et 

al. 201822 

Torosdagli 

et al. 

201923a,c 

O’Neil et al. 

201924a 

Anterior Nasal Spine (ANS) 3.12 ± 

0.80 

1.42 ± 0.73 2.58 ± 1.50 5.6 ± 8.1 1.72 ± 0.91 1.03 ± 0.62 Observer A: 2.57 

± 3.37 

Observer B 2.84 ± 

3.49 

Condylar Left (CdL) 3.20 ± 2.49 3.78 ± 2.77 0.34 ± 0.60 

Condylar Right (CdR) 2.38 ± 1.71 3.34 ± 2.47 0.08 ± 0.24 

Frontozygomatic Left (FzL) 1.47 ± 0.86 2.84 ± 2.36 2.0 ± 1.2 

Frontozygomatic Right 

(FzR) 

1.60 ± 0.71 2.54 ± 1.76 1.5 ± 1.1 

Gnathion (Gn) 3.77 ± 

2.69 

1.62 ± 0.62 2.10 ± 1.06 1.64 ± 0.68 0.49 ± 1.42 

Gonion Left (GoL) 2.04 ± 1.47 1.59 ± 0.88 3.92 ± 2.38 1.51 ± 

1.00 

2.6 ± 2.0 2.33 ± 1.62 2.02 ± 1.09 

Gonion Right (GoR) 2.47 ± 1.37 1.61 ± 1.11 3.20 ± 1.96 1.79 ± 

0.65 

4.8 ± 5.7 2.45 ± 1.76 2.10 ± 1.18 

Lateral Zygomatic Left 

(LatzL) 

2.80 ± 1.63 2.1 ± 1.1 1.74 ± 1.01 

Lateral Zygomatic Right 

(LatzR) 

2.83 ± 2.05 1.7 ± 1.0 1.48 ± 1.05 

Menton (Me) 3.59 ± 

1.79 

1.21 ± 0.58 1.02 ± 0.73 1.76 ± 0.83 0.81 ± 

0.71 

2.28 ± 1.15 1.57 ± 0.54 0.04 ± 0.12 

Nasion (N) 3.20 ± 

1.64 

1.17 ± 0.49 1.62 ± 0.82 3.19 ± 3.33 0.96 ± 

0.69 

3.0 ± 2.5 2.14 ± 1.04 0.95 ± 0.69 Observer A: 2.35 

± 1.48 

Observer B: 4.04 

± 2.10 

Orbitale Left (OrL) 1.78 ± 1.36 1.55 ± 0.70 1.74 ± 1.08 1.08 ± 

0.53 

1.9 ± 2.5 3.12 ± 2.70 

Orbitale Right (OrR) 2.37 ± 2.23 1.58 ± 0.85 1.69 ± 1.28 0.97 ± 

0.56 

3.7 ± 3.4 3.46 ± 2.13 

Pogonion (Pog) 3.00 ± 

1.02 

1.53 ± 0.79 1.03 ± 0.53 2.88 ± 1.52 0.93 ± 

0.47 

4.6 ± 8.4 2.59 ± 0.98 1.77 ± 0.96 1.55 ± 1.98 

Point A 3.11 ± 

0.74 

1.73 ± 0.80 1,80 ± 0,86 1.46 ± 0.75 1.91 ± 0.94 

Point B 3.86 ± 

1.41 

2.08 ± 1.09 2,66 ± 1,33 2.53 ± 0.56 1.78 ± 0.91 0.34 ± 0.72 

Posterior Nasal Spine (PNS) 3.60 ± 

1.35 

2.08 ± 1.29 1.64 ± 1.18 2.17 ± 1.27 1.60 ± 1.15 

Sella (S) 3.45 ± 

1.82 

1.52 ± 0.75 1.44 ± 0.73 2.67 ± 2.05 2.19 ± 0.91 

a Unpublished data shared by the authors b Results for “JSD” method c Results for “max pool without dropout” method 



CAPTIONS TO ILLUSTRATIONS 

Fig. 1. Example of 3D landmarks localized on a skull model, lateral right and frontal 

views (dotted points show approximate projections of intra-cranial landmarks) 

Fig. 2. Flow chart of data searches using PRISMA guidelines 

Fig. 3. Bias and applicability assessment of included studies using tailored QUADAS-2 

tool 



FIGURE 1 

Example of 3D landmarks localized on a skull model, lateral right and frontal views 

(dotted points show approximate projections of intra-cranial landmarks)  

Figure(s)





FIGURE 2 

Flow chart of data searches using PRISMA guidelines 





FIGURE 3 

Bias and applicability assessment of included studies using tailored QUADAS-2 tool 






