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A convolutional neural network to detect scoliosis treatment
in radiographs

Claudio Vergari1 · Wafa Skalli1 · Laurent Gajny1

Abstract
Purpose The aim of this work is to propose a classification algorithm to automatically detect treatment for scoliosis (brace, 
implant or no treatment) in postero-anterior radiographs. Such automatic labelling of radiographs could represent a step 
towards global automatic radiological analysis.
Methods Seven hundred and ninety-six frontal radiographies of adolescents were collected (84 patients wearing a brace, 
325 with a spinal implant and 387 reference images with no treatment). The dataset was augmented to a total of 2096 
images. A classification model was built, composed by a forward convolutional neural network (CNN) followed by a 
discriminant analysis; the output was a probability for a given image to contain a brace, a spinal implant or none. The model 
was validated with a stratified tenfold cross-validation procedure. Performance was estimated by calculating the average 
accuracy. Results 98.3% of the radiographs were correctly classified as either reference, brace or implant, excluding 2.0% 
unclassified images. 99.7% of brace radiographs were correctly detected, while most of the errors occurred in the reference 
group (i.e. 2.1% of reference images were wrongly classified).
Conclusion The proposed classification model, the originality of which is the coupling of a CNN with discriminant analysis, 
can be used to automatically label radiographs for the presence of scoliosis treatment. This information is usually missing 
from DICOM metadata, so such method could facilitate the use of large databases. Furthermore, the same model 
architecture could potentially be applied for other radiograph classifications, such as sex and presence of scoliotic 
deformity.
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Introduction

Adolescent idiopathic scoliosis (AIS) is a deformity of the
spine which can lead, if left untreated, to respiratory or
locomotor impairment and, more in general, to a decreased
quality of life. It affects 1–4% of the population, and 42%
of patients require treatment by brace, which is the most
effective non-operative approach in mild to moderate spinal
curves [1]. The aim of bracing is to stop the progression of
the deformity, and its long-term effect on the deformed spine
is related to its immediate correction [2]. Therefore, in-brace
radiographs of the patient are often acquired to evaluate such
correction on the three-dimensional deformity of the patient.
There is still no consensus on which types of braces are more
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effective, or more adapted to correct certain topologies of
deformities. This results in a vast variety of brace models, all
characterized by different correction mechanisms and radio-
logical appearance (Fig. 1).

This lack of consensus is due to the fact that bracing is only
effective in slowing down the progression in about 70% of
the cases [3]; surgical intervention is necessary for 18–68%
of patients, since their deformity progresses further [4]. The
aim of surgery is to straighten and de-rotate the spine, while
respecting the physiological curves of the spine in the sagittal
plane, and this is usually obtained by fusing those vertebral
levels more affected by the deformity. Again, radiological
examination is necessary to evaluate the result of the surgery,
not only considering the fused spinal segment, but also the
compensation mechanisms actuated by the patient to find a
new balance.

Several imaging analysis methods are being developed
for research and clinical use [5]. Machine learning-based
methods were described in the literature to detect or seg-
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Fig. 1 Example of frontal
radiographies of scoliotic
patients, patients wearing a
brace and patients with a spinal
implant. Radiographies could
include superimposed text,
radiation covers, jewellery or
clothes radiopaque features. The
* symbol indicates an image
where the bottom was padded
by mirroring the bottom portion
of the image

cal axis [12]. Besides, applications of machine learning are
not limited to radiographs but also extend to computerized
tomography [13] and magnetic resonance imaging [14, 15].

ment anatomical landmarks [2, 3, 6, 7], the full geometry 
of the spine [8, 9] or specific geometrical parameters, such 
as Cobb angle [10], lumbar lordosis [11] and sagittal verti-



However, to the best of our knowledge, no work has
been done to automatically detect scoliosis treatment (brace,
implant or lack thereof) in postero-anterior radiographs. This
information is of value either to develop automatic radio-
graphic analysis tools, but it is usually not available in
radiographs’ DICOM metadata. Therefore, images showing
a patient in-brace or after fusion surgery must be manually
labelled for further use in image analysis. This can be time-
consuming and a potential source of user error which could
be limited with automatic labelling through image analysis.
In this work, we proposed a classification algorithm based
on a CNN to detect scoliosis treatment in postero-anterior
radiographs.

Methods

Data

Seven hundred and ninety-six frontal radiographies of ado-
lescents were collected from previous studies. They were
extracted from biplanar radiographs obtained thanks to the
EOS system (EOS Imaging, Paris, France). These included
84patientswearing a brace, 325with a spinal implant and387
reference images with no treatment; examples are provided
in Fig. 1. Patients were scanned while in free-standing posi-
tion [16]. Images were reduced to a common size of 400×
160 pixels: first, the image was resized to reach the target
width, then its lower part was cropped when necessary or,
if the resulting image was too short, the bottom was padded
by mirroring the bottom portion of the image. Finally, image
contrast was improved by stretching the greyscale (imposing
1% top and bottom pixel values to be saturated).

The whole dataset was augmented, first by flipping all
images. Then, the brace group was further augmented by
adding a random vertical translation (between 20 and 60 pix-
els), enlargement and cropping, and adding noise. Table 1
reports the final dataset size.

Model

The model is composed by a forward CNN, the output of
which is further processed by discriminant analysis; the full
model is schematized in Fig. 2. The CNN’s architecture was
inspired by LeNet-5 [17]; the network is composed by three
series of convolution, batch normalization and max-pooling
layers. The output is fed through a dropout layer [18], a rec-
tified linear unit and then flattened to three values, indicating
the input’s similarity to each of the three groups. A discrim-
inant analysis was further performed on this output, which
allowed assigning three probabilities to the input image, each
representing the probability that it belongs to one of the three
groups. The imagewas thus assigned to the group represented

by the highest probability, unless its valuewas lower than 0.9;
in that case, the image was considered as “not classified”.

Training was performed by feeding the network batches
of 32 images at each iteration. Furthermore, the network was
trained in two stages: in the first 25 epochs, only two-thirds
of the data were fed to the network, and the full training
dataset was used in the following 20 epochs. This signifi-
cantly reduced overfitting. No improvement was observed
after total 45 epochs.

The model was implemented in MATLAB 2017b (The
MathWorks, Natick, USA) using the MatConvNet toolbox
[19].

Validation

The model’s parameters (filters’ size and number, layer
depths, etc.) were optimized by trial and error in a first phase,
in which the dataset was split into a training set (50% of the
data), validation (25%) and test set (25%), each containing
the same ratio of radiographs from the three groups. Candi-
date architectures (including the final one) were eventually
validated with a stratified tenfold cross-validation procedure,
with the group ratios reported inTable 1. The datasetwas split
into ten sets of similar size, each containing the same ratio
of radiographs from the three groups. Patients were assigned
to the training or validation set before augmentation, so that
augmented radiographs of the same patients could not belong
to both groups. Then, the model was run ten times, each time
using one of the subsets for testing and the rest of the data for
training. Overall performance was estimated by calculating
the average accuracy (and 90% confidence intervals).

Results

Table 1 reports the classifier’s performance, while Table 2
shows a confusion matrix. Overall, 96.5 of the radiographs
were correctly classified as either reference, brace or implant.
However, among the remaining images, 2.0% were unclas-
sified; if these are excluded, 98.3% could be considered
correctly classified. In particular, 99.7% brace radiographs
were correctly classified, while most of the errors were in the
reference group (i.e. 2.1% of reference images were wrongly
classified).

Discussion

In this work, a classifier was developed to detect orthotic
or surgical treatment in radiographs of scoliotic patients. A
deep learning framework was adopted to tackle the issue
of large variability of braces/instrumentations appearances
and similarities with other common objects (buttons, bras,



Table 1 Dataset size and
distribution followed by the
results of the classifier model

Reference Brace Implant Overall

Original dataset 387 84 325 796

Dataset after augmentation 774 672 650 2096

Tenfold cross-validation

Training 698 608 586 1892

Validation 76 64 64 204

Correct classification (90%
CI)

97.9% (93.7–97.9) 97.3 (87.5–97.3) 99.7 (98.1–99.7) 98.3 (94.1–98.3)

Wrong classification (90%
CI)

2.1% (0–4.2) 2.7% (0–9.8) 0.3% (0–1.6) 1.7 (0–4.2)

Not classified (90% CI) 4.1% (0.7–12.6) 1.7 (0–5.8) 0.2 (0–0.8) 2.0 (0–6.1)

Correct and wrong accuracies are given as percentages of the total classified values, while not classified are
percentages of the total dataset

Fig. 2 Architecture of the model developed. The model takes a 400×160 pixel grayscale image, which is processed through a convolutional neural
network alternating convolutional, batch normalization and max-pooling layers. The networks outputs through a dropout layer and a rectified linear
unit, and the result is further processed by discriminant analysis. This yields a probability for the image to belong to any of the three group; if the
highest probability is lower than 0.9, the image is considered as “not classified”

Table 2 Confusion matrix

Detection Ground truth

Reference Brace Implant

Reference 730 (94.3%) 18 (2.6%) 0

Brace 15 (1.9%) 643 (95.7%) 2 (0.3%)

Implant 0 0 647 (99.5%)

Not classified 29 (3.7%) 11 (1.6%) 1 (0.2%)

image size reduction. The additional discriminant analysis
allowed improving the separation between the classes in
the results space, yielding a global better accuracy. Indeed,
with linear discriminant analysis, accuracy was higher for all
groups, and overall accuracy improved from 96.9 to 98.3%.

2.0% of the dataset was flagged as “unclassified”; these
radiographs should be checked manually for proper classifi-
cation. Nevertheless, 1.7% wrong classifications remained,
most of them concentrated in the reference group. One-third
of these images (7 out of 19) contained foreign objects, such
as superimposed text or radiopaque markers (Fig. 3), while
the other did not show any peculiarity. It is possible that
removing such images might have improved the results, but
the model would have lost in generality. Instead, the model
can be considered robust to the presence of small image anno-
tations, jewellery, etc., within the limits reported in Table 1.

Themain limitation of this study is the large data augmen-
tation that was performed, due to difficulties in acquiring
large annotated datasets of patient radiographs. In particu-
lar, the brace group was augmented 8×; this could have led
to an overestimation of the classification accuracy (which

Correct and wrong detections are given as percentages of the total clas-
sified values, while not classified are percentages of the total dataset

metallic objects) that can challenge classical machine learn-
ing approaches. The model was composed by a 13-layer 
deep CNN, the output of which was further processed by 
discriminant analysis. Preliminary tests showed that increas-
ing the network complexity (more layers, larger filters, etc.) 
only lead to overfitting, while decreasing its complexity did 
not reach good accuracy. On the other hand, complexity was 
increased relative to LeNet-5 by adding a set of layers (con-
volution + normalization + max pooling) to obtain a slower



Fig. 3 Examples of incorrectly classified radiographs. Seven out of nineteen of the radiographs that were not correctly classified contained foreign
objects, such as superimposed text or radiopaque buttons or jewellery (arrows). One of these images (*) also needed a very large portion of padding

was 99.7%), although the tenfold cross-validation method
should reduce such overestimation. Image flipping is some-
times not performedonmedical images since it could result in
non-physiological anatomical features; however, this dataset
contained both antero-posterior and postero-anterior radio-
graphs, so horizontal image flipping generated images which
could be expected in clinical routine. The same applies for
the other data augmentation methods, which generate real-
istic radiographs: translation, enlarging, noise addition. The
latter holds a particular interest since the current tendency is
to reduce the radiation dose when imaging young scoliotic
patients [20], resulting in higher noise content.

All images were acquired with the patient in free-standing
position [16]. This is the most adopted position in radiologi-
cal examination of scoliosis because the arms do not hide the
spine neither in frontal radiographs nor in lateral ones, and
the ribcage remains fairly visible in both views. Indeed, for
a three-dimensional assessment of scoliosis, biplanar radio-
graphs are acquired when possible, since they allow 3D
reconstruction of the bony structures [21, 22]. It is possible
that feeding radiographs with patients in different position
(such as in lateral bending [23]) could alter the results. Nev-
ertheless, the sample can be considered heterogeneous since
the radiographs were acquired from five different hospitals
in a time span of about 8 years.

In conclusion, the proposed classification model could
help automatic labelling radiographs for scoliosis treatment.
The samemodel architecture could potentially be applied for
other radiograph classifications, such as sex and presence of
scoliotic deformity. This work opens the door to automatic
medical images pre-labelling, and it is a fundamental first

step towards a global automatic radiologic analysis frame-
work.
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