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Abstract 

When manufacturing flexible devices, it is quite common that localized necking appears due 

to the low ductility of the metal sheets used. To delay the inception of such localized necking, 

several industrial companies have proposed a promising technical solution based on the 

bonding of elastomer substrates to the metal sheets used in the manufacturing processes. In 

this context, the comprehensive numerical understanding of the impact of such substrate 

coating on the improvement of the ductility of elastomer-supported metal layers still remains 

a challenging goal. To achieve this goal, the bifurcation approach as well as the Marciniak 

and Kuczynski model are used to predict the occurrence of localized necking. The mechanical 

behavior of the metal layer is modeled by a non-associated anisotropic plasticity model. The 

adoption of non-associated plastic flow rule allows separating the description of the plastic 

potential from that of the yield function, which is essential to accurately model strong plastic 

anisotropy characterizing cold-rolled sheets. As to the elastomer substrate, its mechanical 

behavior is described by a neo-Hookean law. The paper presents a variety of numerical results 

relating to the prediction of plastic strain localization in both freestanding and elastomer-

coated metal layers. The effects of the non-associativity of the plastic flow rule for the metal 

layer and the addition of an elastomer substrate on the predictions of localized necking are 

especially underlined. It is shown that the ductility limits predicted by the non-associated 

elasto-plastic model are lower than their counterparts determined by an associated plasticity 

model. It is also proven that adhering an elastomer layer to the metal layer can substantially 

delay the initiation of plastic strain localization. 

                                                           
 Email address of the corresponding author: Mohamed.BenBettaieb@ensam.eu (M. Ben Bettaieb) 
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1. Introduction 

Sheet metal forming operations are usually restricted by the initiation of plastic strain 

localization because of the low ductility of the utilized sheets. This kind of plastic instability 

marks the ultimate deformation that formed sheet metals can sustain, since localized necking 

is usually closely followed by material failure. To enhance the ductility of metallic parts and 

components, several industrial actors have developed a technological solution based on 

perfectly joining elastomer substrates to the original freestanding metal sheets. This solution 

proved to be effective, as it substantially improves ductility as discussed by Alaca et al. 

(2002) and increases energy absorption as revealed by Xue and Hutchinson (2007). The 

ductility characteristics of metal/polymer line structures formed by depositing Au/Cr lines on 

a semiflexible polyimide substrate, pyromellitic dianhydride-oxydianiline (PMDA-ODA), 

have been experimentally investigated by Chiu et al. (1994) using a stretch deformation 

technique. The role of strain hardening for the deformation of thin Cu films has been 

quantitatively investigated by Hommel and Kraft (2001) by conducting specialized tensile 

testing allowing the simultaneous characterization of the film stress and the dislocation 

density as a function of plastic strain. More recently, Alaca et al. (2002) have studied the 

failure by debonding of 400 nm Al thin films on 152 µm-thick polyimide substrates in 

uniaxial tension experiments and have demonstrated the effect of substrate layer on the delay 

of failure in this case. Due to its effectiveness, this strategy has been widely used to design a 

number of flexible electronic devices, such as stretchable interconnects for elastic electronic 

surfaces (Lacour et al., 2005), multifunctional capacitive sensors for stretchable electronic 

skins (Cotton et al., 2009), chromium thin films bonded to polymer substrates (Cordill et al., 

2010), and elastically stretchable metal conductors (Graudejus et al., 2012). However, 

necking instabilities in substrate-supported metal layers under arbitrary biaxial loading states 

remain poorly analyzed and understood from the experimental point of view. Indeed, the most 

commonly conducted experiments for such metal/substrate bilayers are uniaxial tensile tests. 

Furthermore, structural instabilities (due to the wrinkling of the elastomer layer and the 

interfacial delamination between the two layers) cannot be avoided during biaxial loading 

experiments. These phenomena have a significant influence on the ductility limit of the 

bilayer. Hence, quantitative correlation between the necking limit strain and both the material 
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properties and geometric characteristics of the bilayer is difficult to be clearly established 

from experimental investigations, as it remains challenging to discriminate the effects of 

material and structural instabilities on the ductility limit of the bilayer. To address this issue, 

several theoretical and numerical approaches have been developed in the literature to 

accurately establish the correlation between the mechanical and geometric properties of both 

layers and the ductility limit of the bilayer. Note that the formability limit for substrate-

supported metal layers has been first numerically predicted by Jia and Li (2013) using the 

concept of forming limit diagrams (FLDs). In the latter investigation, the mechanical behavior 

of the metal and elastomer layers has been modeled, respectively, by the rate-independent 

deformation theory of plasticity and a neo-Hookean model, while the ductility limit has been 

predicted by the Rice bifurcation approach (Rice, 1976). The impact of fixing an elastomer 

substrate on the enhancement of the predicted limit strains has been clearly shown in Jia and 

Li (2013). The developments of Jia and Li (2013) have been enlarged in Ben Bettaieb and 

Abed-Meraim (2015) by extending the study to two new frameworks: (i) an associated flow 

theory of plasticity, as an alternative for modeling the mechanical behavior of the metal layer, 

and (ii) the initial imperfection approach of Marciniak and Kuczynski (1967), as an additional 

criterion to predict plastic strain localization. The positive effect of the elastomer substrate on 

the ductility of the bilayer, initially highlighted in Jia and Li (2013), has been confirmed in 

Ben Bettaieb and Abed-Meraim (2015) for both constitutive theories. Subsequently, the 

influence of the mechanical behavior of the metal layer on the ductility of the bilayer has been 

thoroughly studied in several contributions. For instance, the effects of kinematic hardening 

or strain rate sensitivity on the occurrence of localized necking in substrate-supported metal 

layers have been analyzed in Ben Bettaieb and Abed-Meraim (2017a, b), respectively. In the 

previous investigations, the mechanical behavior of the metal layer has been restricted to 

isotropic plasticity. However, it is well recognized that the mechanical behavior of metal 

sheets is highly anisotropic. It has been revealed in several contributions, based on 

phenomenological approaches (Barlat, 1987) or multiscale analyses (Akpama et al., 2017), 

that such plastic anisotropy has a substantial impact on the occurrence of localized necking, 

especially for strain paths near equibiaxial tension state. In the earlier scientific literature, 

several plastic yield functions have been set up to describe plastic anisotropy. The majority of 

anisotropic yield functions are based on the Associated Flow Rule (AFR), which assumes that 

the yield function and the plastic potential are the same. Following the AFR concept, various 

yield functions have been developed in the literature such as: Hill (Hill, 1948), Karafillis and 

Boyce (Karafillis and Boyce, 1993), Barlat (Barlat et al., 2003), Bron and Besson (Bron and 
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Besson, 2004), Banabic (Banabic et al., 2005) yield functions. In the last decades, several 

attempts have been dedicated to improving the modeling of initial plastic anisotropy and its 

evolution by developing more advanced constitutive frameworks. As a consequence, non-

associated flow rule (NAFR) models have been suggested as alternatives to classical AFR 

models. The NAFR concept relies on the idea of dissociation between the plastic potential and 

the yield criterion. This dissociation allows overcoming the limitations of the classical AFR 

models, and thus to ensure more accurate modeling of the plastic flow. One of the most 

important benefits of using NAFR models, instead of classical AFR ones, is the extra freedom 

afforded by considering separate plastic potential and yield locus. Such a separation allows 

reproducing elaborate material behavior using simple mathematical formulations, as 

suggested by Yoon et al. (2007), or by the combination of two different functions, as 

proposed by Paulino and Yoon (2015) who have combined the Hill and the Yld2000-2d 

(Barlat et al., 2003) functions and Stoughton (2002) who has proposed a non-associated flow 

rule in which the plastic potential (resp. the yield surface) is defined by the Hill criterion 

based on the measured r-values (resp. yield stresses). The interest in adopting NAFR models, 

compared to the classical AFR ones, in the modeling of some forming processes has been 

highlighted by several authors. In this field, Yoon et al. (2000) have used a NAFR models, 

based on an asymmetric nonquadratic yield function, to predict the cup profile during the 

drawing of a circular blank. This later investigation has been extended by Yoon et al. (2010) 

to predict earing profiles for strongly textured aluminum sheets. More recently, Paulino and 

Yoon (2015) have used a NAFR model to accurately model the mechanical behavior during 

cup drawing process. In the current investigation, a NAFR framework is used to model the 

metal layer mechanical behavior, where both the yield function and plastic potential are 

modeled by the Yld2000-2d anisotropic criterion. The parameters adopted for the yield 

function are fitted using the directional yield stresses for uniaxial loading corresponding to 

every 15° from rolling to transverse direction (  ,  ,  ,  ,  ,  ,  ) in addition 

to the equibiaxial yield stress ( b ). As to the parameters adopted for the plastic potential 

function, they are optimized by using r -values for uniaxial tension tests in different 

orientations ( 0r , 15r , 30r , 45r , 60r , 75r , 90r ) as well as for equibiaxial loading ( br ). The use of 

the non-associated version of the Yld2000-2d anisotropic model is motivated by its high 

flexibility and the availability of the corresponding anisotropy parameters in the literature. In 

this field, one can quote Safaei et al. (2014a, b) who have identified the anisotropy parameters 

of a NAFR, based on the Yld2000-2d model, for the 2090-T3 aluminum alloy. More recently, 
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Hippke et al. (2017) have identified the anisotropy parameters for AA5042 and AA6016 

aluminum alloys. As to the elastomer layer, its mechanical behavior is modeled by the well-

known neo-Hookean law. The resulting mechanical model for the substrate-supported metal 

layer is coupled with the bifurcation theory and the imperfection approach of Marciniak and 

Kuczynski to predict the ductility limit of the bilayer. The application of these necking criteria 

requires the integration of the constitutive model and the determination of the relevant tangent 

modulus for each layer. To this end, an implicit integration scheme is established to solve the 

constitutive equations of the NAFR model (Safaei et al., 2015). It should be noted that very 

few works in the literature have used the associated version of the Yld2000-2d anisotropic 

criterion in conjunction with the imperfection approach of Marciniak and Kuczynski to 

predict the ductility limit. In this area, one can cite Butuc et al. (2011) who have used the 

Yld2000-2d criterion to predict the formability limit in DC06 steel sheets or Ozturk et al. 

(2014) who have applied this anisotropic function to predict the ductility limit in DP600 

advanced high strength steel sheets. However, it is the first time that the non-associated 

version is coupled with the above-mentioned localized necking criterion. Hence, the effect of 

the non-associativity of the flow rule on the predicted ductility limits for both the freestanding 

metal layer and the bilayer will be specifically analyzed. Also, the beneficial impact of the 

elastomer substrate coating on the ductility of bilayer components is once again confirmed in 

the current investigation. 

The layout of the remaining part of the paper is as follows: 

• Section 2 is dedicated to the presentation of the constitutive frameworks selected to 

model the behavior of the elastomer and metal layers, as well as the adopted necking 

criteria. 

• Section 3 presents the numerical algorithms established for the FLD predictions based on 

both localized necking criteria. 

• A variety of numerical predictions and results are provided in Section 4, where the impact 

of both the anisotropy parameters and the addition of an elastomer layer on the ductility 

limit is extensively discussed and commented. 
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Notations, conventions and abbreviations 

The derivations presented in this paper are carried out using classic conventions. Note that the 

assorted notations can be combined. Additional notations will be clarified as needed, 

following related equations. 

 

 

 

2. Theoretical modeling 

2.1. Necking criteria 

2.1.1. Loading and boundary conditions 

To predict the onset of strain localization, biaxial loading is applied to the metal/elastomer 

bilayer, where the strain rate components 11 , 22  and 12  are set to 1,   and 0, respectively. 

The strain-path ratio   is taken to range between 1 2/  and 1. Both layers are assumed to be 

Vectorial and tensorial fields are designated by bold letters and symbols 

Scalar variables and parameters are represented by thin letters and symbols 

  time derivative of   

1  inverse of tensor   

T
 transpose of tensor   

  tensor product of two vectors 

  tensor product of two second-order tensors 

  simple contraction or contraction on one index 

    double contraction or contraction on two indices 

  Euclidian norm of   

E
 quantity   associated with the elastomer layer 

M
 quantity   associated with the metal layer 

B
 quantity   associated with behavior in the band 

S
 quantity   associated with behavior in the safe zone 

̂  the in-plane counterpart of  , equal to 
1

2

 
 
 

 if   is a vector and to 
11 12

21 22

  
 
  

 if   is a 

second-order tensor, etc… 

I2 second-order identity tensor 

AFR  associated flow rule 

NAFR  non-associated flow rule  
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very thin (Fig. 1). Furthermore, they are assumed to remain perfectly bonded during the 

loading. As a consequence, the in-plane components of the deformation gradient f M  within 

the metal layer (subscript ‘M’ refers to the metal layer) remain equal to their counterparts f E  

within the elastomer layer, and therefore similar equalities hold for the in-plane components 

of the velocity gradient g , which is equal to 1.f f   

 

11 11

11 11 22 22 12 12

11 11 11 22 22 11 12 12

e , e , 0,

, , 0.

     

     

M E M E  M E

M E M E M E

f f f f f f

g g g g  g g

  

  
 (1) 

where 11  is the integral of 11  over the time history. 

On the other hand, the plane-stress condition is applied to each layer, as commonly adopted 

for the determination of the formability limit of thin sheets (Hutchinson et al., 1978). Under 

this condition, the out-of-plane components of the Cauchy stress tensors E  and M  are 

equal to zero: 

 13 13 23 23 33 33, 0.      E M E M E M       (2) 

Equalities (2)1 imply that 

 
13 13 31 31 23 23 32 32

13 13 31 31 23 23 32 32

,

.

        

        

E M E M E M E M

E M E M E M E M

f f f f f f f f

g g g g g g g g
 (3) 

However, condition (2)2 suggests that the 33 component of f  and g  differs from one layer to 

another: 

 33 33 33 33.  M E M Ef f g g  (4) 

The initial state of the bilayer is assumed to be free from stress. Hence, the plane-stress 

conditions (2) may be reworked out with regard to the out-of-plane components of the 

nominal stress rate tensors nE  and nM :  

 13 13 31 31 23 23 32 32 33 33          E M E M E M E M E Mn n n n n n n n n n  (5) 

 

Fig. 1. Schematic representation of the bilayer. 



-8- 

 

2.1.2. Bifurcation theory 

According to the bifurcation approach (see, e.g., Rice, 1976), strain localization occurs when 

the determinant of the acoustic tensor corresponding to the bilayer vanishes 

  ˆdet . . 0,  (6) 

where  is the in-plane unit vector normal to the localization band equal to  cos sin   , 

and ˆ  is the in-plane tangent modulus of the bilayer given by the average relation 

  

ˆ ˆ
ˆ ,






E E M M

E M

h h

h h
 (7) 

in which ˆE  and ˆM  are the in-plane tangent moduli of the elastomer and metal layer, 

respectively. In Eq. (7), Eh  and Mh  refer to the current thicknesses of the layers, which are 

defined as functions of their initial counterparts E
Ih  and M

Ih  as 

 33 33, . E E E M M M
I Ih f h h f h  (8) 

The expressions of ˆE  and ˆM  used to compute ˆ  will be detailed in Sections 2.2 and 2.3, 

respectively. 

2.1.3. Initial imperfection approach 

The initial imperfection approach (briefly called M–K analysis hereafter) can be applied to 

predict the incipience of localized necking in the bilayer (Fig. 2). As will be detailed in 

Section 2.2., the mechanical behavior of the elastomer layer is assumed to be purely elastic. 

Consequently, this layer is immune from necking instability (as will be demonstrated in Fig. 

7). Hence, to accurately model this problem, it is more convenient to introduce the initial 

geometric imperfection in the metal layer and not in the elastomer layer. The introduction of 

this imperfection will ultimately trigger the initiation and development of localized necking in 

the whole bilayer. Note that this choice of introducing the initial imperfection in the metal 

layer has already been followed and discussed earlier by Xue and Hutchinson (2007, 2008). 
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Fig. 2. Schematic representation of the M–K analysis applied to the bilayer. 

To clearly develop the main relations of the M–K model, the following notations are adopted: 

 M B

Ih  and M B
h : initial and current thickness, respectively, of the metal layer inside the 

band. 

 M S

Ih  and M S
h : initial and current thickness, respectively, of the metal layer outside the 

band. 

 E B

Ih  and E B
h : initial and current thickness, respectively, of the elastomer layer inside 

the band. 

 E S

Ih  and E S
h : initial and current thickness, respectively, of the elastomer layer outside 

the band. 

Exploiting these notations, the initial geometric imperfection ratio 0  can be defined as 

 0 1 
M B

I

M S

I

h

h
 . (9) 

The M–K approach is defined by the following four sets of equations: 

 The equalities between the in-plane velocity gradient tensors in the metal layer and 

those in the elastomer layer 

 ˆ ˆ ˆ ˆ ˆ ˆ, .g g g g g g   M B E B B M S E S S  (10) 

These equalities hold due to the perfect adherence between the two layers. 

 The kinematic compatibility condition between the safe zone (outside the band) and the 

band, which can be mathematically formulated as 
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 ˆ ˆ .g g c  B S  (11) 

where c  denotes the in-plane jump vector. 

 The equilibrium relation along the interface between the safe zone and the band 

    ˆ ˆ ˆ ˆ. . . n  n  n  n  M S M S E S E S M B M B E B E Bh h h h  (12) 

 The constitutive model of the metal and the elastomer layer, restricted to the plane 

dimension, outside and inside the band: 

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: , : , : , : .n g n g n g n g   M S M S S E S E S S M B M B B E B E B B
 (13) 

The insertion of relations (13) into the equilibrium equation (12) leads to the following 

expression: 

    ˆ ˆ ˆ ˆˆ ˆ. : . : .  g   g  M S M S E S E S S M B M B E B E B Bh h h h  (14) 

In other words, Eq. (14) is equivalent to 

 . .g g
BS S Bˆ ˆˆ ˆ: : ,  (15) 

where ˆS
 and ˆ B

 are defined as follows: 

 ˆ ˆ ˆ ˆ ˆ ˆ, .       S M S M S E S E S B M B M B E B E Bh h h h  (16) 

The jump vector c  can be determined by the combination of equations (11) and (15): 

     
1

ˆ ˆ ˆ. : .c g


   B S B S  (17) 

From Eqs. (12) and (17), it is easy to show that strain localization starts when the magnitude 

of the jump vector c  reaches a sufficiently high value, which suggests that the components of 

the velocity gradient within the band ĝ
B  become very high as compared to those within the 

safe zone ĝ
S . In this case, plastic deformation localizes much more quickly in the 

imperfection zone than in the safe zone. An obvious consequence from Eq. (17) is that the 

magnitude of vector c  will be very large when ˆ . B  approaches singularity 

  ˆdet . 0c   B . (18) 

Comparing Eq. (18) with the bifurcation criterion defined by Eq. (6), it is expectable that the 

formability limits predicted by the initial imperfection approach tend to their counterparts 
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obtained by the bifurcation theory when the initial imperfection ratio 0  tends towards zero. 

This statement will be checked in Section 4 on the basis of several numerical predictions. 

2.2. Elastomer layer 

For the sake of simplicity, exponent ‘E’ referring to the elastomer layer is omitted in the 

different mechanical variables (for instance,  , ˆ ) used in this section, with the implicit 

understanding that these variables are expressed within this layer. The elastomer layer is taken 

to be incompressible. Hence, the component 33 of the deformation gradient is given by 

 
  111

33

11 22

1
e
 

 f
f f

 
.  (19) 

The mechanical behavior of the elastomer substrate is described by a neo-Hookean model, 

which is defined by the following relation (Hunter, 1979): 

 2

2 ,I v p   (20) 

where p  is a pressure, 2I  is the second-order identity tensor,   is the shear modulus, and v  

is the left Cauchy–Green tensor related to the deformation gradient f  by 

 2 . .v f f T  (21) 

The combination of the plane-stress condition (2)2 and the incompressibility condition (19) 

requires that p  takes the form 

 
  111

e .
 

 p
 

  (22) 

For the elastomer layer, the in-plane tangent modulus ˆ  needed for computing the bilayer 

tangent modulus through Eq. (7) is determined as follows (Xue and Hutchinson, 2008): 

    2 1 2
ˆ ˆ ˆ ˆ ,I C C        (23) 

where  is a fourth-order tensor. The non-zero components of  are given by (Hunter, 

1979) 

 

11 11 22 22 11 22

11 22 11 22

2 2 ( ) 2 2 ( )

1111 2222

2 ( ) 2 2

1122 1212

e e , e e ,

e , e e  .
2

   

 

        
   

    
 

ε ε ε ε ε ε

ε ε ε ε

μ μ

μ
μ

 (24) 

In Eq. (23), 1C  and 2C  are fourth-order tensors reflecting the impact of convective terms on 

the elastomer tangent modulus and given in index forms as follows: 
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    1 2

1 1
, , , : , .

2 2
    

ijkl ik lj il kj ijkl lj ik kj il
i j k l C C         (25) 

2.3. Metal layer 

All of the mechanical variables and parameters used and computed in this section correspond 

to the metal layer. To be brief in the subsequent developments, systematic reference ‘M’ to 

the metal layer is omitted. The mechanical behavior of the metal layer is assumed to be elasto-

plastic. To develop the constitutive equations pertaining to the metal layer, the spatial velocity 

gradient g , equal to 1.f f  , is additively decomposed into its symmetric and skew-symmetric 

parts, denoted d  and w , respectively 

 g d w    (26) 

The strain rate d  is itself split into its elastic part de  and plastic part d p  

 d d d  e p
 (27) 

The stress rate is given by the following hypoelastic law relating the time derivative of the 

Cauchy stress tensor   to the elastic strain rate de : 

 :C d e e  (28) 

where Ce  denotes the fourth-order elasticity tensor defined by two material parameters: the 

Young modulus E and the Poisson ratio  (since elasticity is assumed here to be isotropic). 

In the context of the adopted NAFR framework, the plastic strain rate d p  is given by the 

following relation: 

 ,d





p
p f


  (29) 

where   is the plastic multiplier, and pf  is the plastic potential, which is defined by the 

Yld2000-2d anisotropic model (Barlat et al., 2003) 

 1 2 2 1 1 2, ,       
p pp a aap p p p p p p pX X X X X X   (30) 

where coefficient pa  is an exponent describing the degree of sharpness of the plastic potential 

surface. As to 1, 2
pX  and 1, 2

pX , they represent the principal values of two linear transformations 

applied to the stress deviator, which are denoted S p  and S p , respectively 
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 ,S L S L    p p p p   (31) 

The non-zero components of matrices Lp  and Lp  are given as follows: 

 

11
11 3

12
112

21221

722 22

66
66

2 0 0 2 2 8 2 0

1 0 0 1 4 4 4 0
1 1

,0 1 0 4 4 4 1 0
3 9

0 2 0 2 8 2 2 0

0 0 3 0 0 0 0 9

 
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The principal values of the transformed stress deviator S p , denoted by 1
pX  and 2

pX , are 

expressed as follows: 
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2
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,
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  
    

 

  
    

 

p p p p

p p

p p p p

p p

S S S S
X S

S S S S
X S

 (33) 

Similar expressions apply for 1
pX  and 2

pX . 

The plastic flow is determined by the Kuhn–Tucker constraints 

 0 0 0,      y isoF f F    (34) 

where yf  and iso  denote the yield function and the yield stress, respectively. As the flow 

rule is non-associated, the yield function yf  is different from the plastic potential pf . In the 

current contribution, yf  has the same form as pf , defined by Eqs. (30)-(33), but the 

corresponding yield parameters 1 8,..., ,y y ya   are different from the potential parameters 

1 8,..., ,p p pa  , since these two sets of parameters are fitted using different sets of experimental 

results. Further details on the identification of these parameters will be given in Section 4. The 

Kuhn–Tucker constraints (34) are supplemented by the expression of the yield stress iso . In 

the current investigation, the Hockett–Sherby hardening model is used to express iso  as a 

function of the equivalent plastic strain p
eq  by the following relation (Hippke et al., 2017): 

    e ,


 
qp

eqm iso p
eq A Β 


   (35) 

where A , Β , m , and q  are hardening parameters. The equivalent plastic strain rate p
eq  is 

determined from the plastic work equivalence principle 
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 .
d

d


   
p

y p p p
eq eq y

f
f

 


  (36) 

Using Eq. (29), Eq. (36) can be transformed as 

 .







p

p
eq y

f

f
 




 (37) 

Since pf  is a first-order homogenous function, the application of Euler’s theorem allows the 

following relation to be derived: 

 .

 


p
pf

f
  (38) 

Hence, Eq. (37) can be reformulated as 

 .





 

p

p
p

eq y y

f

f

f f
  




 (39) 

It must be recalled that in the particular case of associated flow rule, p yf f  and p
eq  . 

The constitutive framework described by Eqs. (26)-(39) is complemented here by the 

derivation of the elasto-plastic tangent modulus Cep , defined as 

  : : : .C d C d d C d C g     e e e p ep ep  (40) 

In what follows, we provide some details on the computation of Cep  for the case of the NAFR 

model. When the behavior is elasto-plastic, the Kuhn–Tucker constraints can be equivalently 

formulated as 

 : 0.
 

    
 

y iso
y iso p

eqp
eq

f
F f


 




  (41) 

Using Eq. (29), Eq. (40) can be reformulated as 

 : .C d C d
 

     

p
e e e f


  (42) 

The substitution of Eqs. (39) and (42) into Eq. (41) allows us to derive the following equation: 

 : : 0,C d
   

         

y p iso p
y iso e

p y
eq

f f f
F f

f


  

   (43) 

which is equivalent to 
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e e

p y
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f f f f
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


    (44) 

Hence,   can be determined from (44) as 
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.

: :

C d

C
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   

    

y
e
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p y
eq
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f f f

f








 

 (45) 

Substituting expression (45) of   into Eq. (42) allows us to obtain the following expression 

for  : 
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: .

: :

C C
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p y
e e

e e e

y p iso p
e

p y
eq

f f

f f f

f





 


 

 (46) 

The comparison between Eq. (40) and Eq. (46) allows identifying the elasto-plastic tangent 

modulus Cep  
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 (47) 

Once determined, the elasto-plastic tangent modulus Cep  corresponding to the metal layer is 

used to determine the expression of the tangent modulus , which relates the velocity 

gradient to the nominal stress rate tensor (see, e.g., Haddag et al., 2009) 

    2 1 2 ,C I C C    ep     (48) 

where 1C  and 2C  have expressions similar to Eq. (25). 

The in-plane tangent modulus ˆ  is deduced from  by using the following plane-stress 

transformation: 

 
33 33

3333

, , , ,1 2 :   
αβ γδ

αβγδ αβγδ
α β γ δ ˆ .  (49) 

 

 



-16- 

 

3. Numerical and algorithmic aspects 

3.1. Bifurcation theory 

In the context of bifurcation theory, the bilayer remains homogeneous during the deformation 

and is loaded following the in-plane biaxial stretching and boundary conditions described in 

Section 2.1. The algorithm developed for the prediction of the formability limits within the 

bifurcation approach is based on two embedded loops: 

 For each strain-path ratio   ranging between 1 2 /  and 1 (with   ): 

 For each time step 
1

[ , ]
n n

t t  (with 
1
 

n n
t t t ), the incremental algorithm detailed 

in Section 3.3 is applied to solve the constitutive equations in the two layers and 

then to determine the in-plane analytical tangent modulus ˆ  of the bilayer. To 

apply the bifurcation criterion, the orientation   giving the minimum value for 

 ˆdet . .  over the interval  0 ,90   is searched. If this minimum value is 

negative, localized necking is predicted and the computation is stopped. As long as 

the conditions for localized necking are not met yet, the different mechanical 

variables are updated and the computation is continued for the next time increment. 

3.2. Initial imperfection approach 

When the M–K approach is employed, the homogeneous zone of the bilayer is submitted to 

the same in-plane biaxial loading and boundary conditions as those prescribed for the whole 

bilayer in Section 2.1. In this case, the algorithm for the determination of the formability 

limits is mainly based on three embedded loops: 

 For 1 2  /  to 1  (with   ). 

o For 0  varying between 0  and 90  (with 0   ). 

- For each time increment 
1

[ , ]
n n

t t  (with 
1
 

n n
t t t ), follow the algorithm 

described in Section 3.3 to integrate the equations corresponding to the 

initial imperfection approach. The application of this incremental integration 

scheme is interrupted when the following threshold is reached: 

 
33 33

0/ M B M Sg g  . (50) 
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The strain component 11 11M S E S  , obtained when the criterion (50) is satisfied, is 

considered to be the critical strain 11 *  corresponding to the current band 

inclination   and strain-path ratio  . 

The necking limit strain 11

L  corresponds to the minimum of the critical strains 11 *  

over all of the possible angles 0 . 

The different necking algorithms, presented in Sections 3.1 and 3.2, are implemented in the 

computing environment Mathematica. 

3.3. Incremental algorithms  

The aim of the current section is to describe the incremental algorithms used to integrate over 

a time increment 
1

[ , ]
n n

t t  the different equations that govern the coupling between the 

constitutive framework defined in Sections 2.2 and 2.3 and the localized necking criteria 

presented in Section 3. 

3.3.1. Bifurcation theory 

At 
1n

t , the current in-plane deformation gradient f̂  is updated as follows: 

 
0

. .
0

ˆ ˆf f
 

  
 

n

t

t t

e

e




 (51) 

The updated value of f̂  is used in conjunction with the constitutive relations of Section 2.2 to 

determine the Cauchy stress tensor E  and the in-plane tangent modulus ˆ E  in the elastomer 

layer (without the use of any iterative scheme). 

As to the metal layer, the set of incremental equations to be solved are: 

 The plane-stress condition in the metal layer 

 
33

0M . (52) 

The incremental unknown corresponding to this equation is 33
M . 

 The incremental form of Eq. (29) 

 .


 


p M
p M M

M

f



 (53) 
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The incremental unknowns corresponding to these equations are the components of 

 p M . Under the plane-stress condition, and considering the incompressibility of 

plastic strain in the metal layer,  p M  can be expressed as follows: 

 

 

11 12

12 22

11 22

0

0 .

0 0

 
 

   
   

p M p M

p M p Mp M

p M p M

 

 

 

  (54) 

 The Kuhn–Tucker constraints given by Eq. (34) 

 0 0 0,      M yM isoM M M MF f F    (55) 

where MF  depends on yMf  and iso M , which are in turn dependent on M  and 

p M
eq , respectively. Taking into account Eq. (39), p M

eq  can be determined once 

M  is known. Hence, the unique incremental unknown corresponding to condition 

(55) is M . The incremental constraints (55) can be equivalently expressed as a 

single equality using the Fischer–Burmeister formulation (Fischer, 1992) 

      
2 2

0.    M M M M MF F    (56) 

Hence, the governing equations for the metal layer reduce to five scalar equations: Eq. (52) 

(one scalar equation), Eq. (53) (three scalar equations) and Eq. (56) (one scalar equation). To 

solve these equations, five scalar incremental unknowns need to be determined: 33
M , 11

p M , 

12
p M , 22

p M , M . The numerical problem for the metal layer is summarized in a set Y  of 

five scalar equations defined as follows: 

 1 5 33 11 12 22

11 12 22

, , , , .

   
       

   

p M p M p M
p M p M p MM M M M M M

M M M

f f f
Y        

    (57) 

The corresponding incremental unknowns are stored in a vector X  

  33 11 12 22, .X       p M p M p MM M M      (58) 

In summary, the incremental algorithm amounts to solving the following non-linear vector 

equation: 

   .Y X 0M M

 (59) 

This vector equation is implicitly solved using the predefined function ‘FindRoot’ of 

Mathematica. This function is based on an optimized implementation of the Newton–Raphson 

algorithm. Once the non-linear system (59) is solved, the various mechanical variables are 

updated at 
1n

t  and the analytical tangent modulus ˆM  is computed. Finally, the bilayer 



-19- 

 

tangent modulus ˆ  is computed by the average relation (7). Once ˆ  is computed, 

 ˆdet . .  is calculated for all possible band orientations, and the occurrence of 

localized necking is checked. 

3.3.2. Initial imperfection approach 

When the initial imperfection model is used, the constitutive equations of the elastomer layer 

are easily solved as explained in Section 3.3.1. As to the metal layer, the set of constitutive 

equations, very similar to the one formulated in Eq. (57), has to be developed for both zones 

    , .Y X 0 Y X 0 M S M S M B M B

 (60) 

Equation (17) is added to Eq. (60) to obtain a complete set of incremental equations defining 

the initial imperfection model. The unknowns to be determined from Eq. (17) are the two 

components of c . After having merged Eq. (17) with Eq. (60), one obtains the following 

global form of incremental equations: 

   ,Y X 0  (61) 

where 
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 (62) 

and the set of unknown vectors is defined as follows: 

 

 

 

 

1 5 1 5 33 11 12 22

6 10 1 5 33 11 12 22

11 12 1 2 1 2

, ,

, ,

, .

 

 

 

       

       

 

p M S p M S p M SM S M S M S

p M B p M B p M BM B M B M B

MK

X X

X X

X X c c

    

      (63) 

The above-described equations (i.e., twelve scalar incremental equations) are strongly non-

linear. To solve this set of equations, an iterative scheme, analogous to the one introduced in 

Section 3.3.1, shall be used. Once the different variables are updated at 
1n

t , the occurrence of 

localized necking is checked by criterion (50). 
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4. Prediction results 

4.1. Freestanding metal layer 

Numerical predictions are carried out in this section for the AA6016 aluminum alloy. To 

investigate the effect of the non-associativity degree on the prediction of the onset of localized 

necking, another aluminum alloy (AA5042) is studied in Appendix A. The parameters 

corresponding to the Yld2000-2d yield and potential functions for both alloys have been 

identified in Hippke et al. (2017). Eight experimental results are required to identify the 

anisotropy parameters of each function: 

 The yield locus: four stress ratios in four loading directions and the corresponding four 

r-values, which are assumed to be equal to 1.0. 

 The potential function: four r-values in four loading directions and the corresponding 

four stress ratios, which are assumed to be equal to 1.0. 

For comparison purposes, the AFR parameters have been additionally identified, on the basis 

of stress-ratios and r-values obtained by uniaxial tension tests along 0°, 45°, 90° from the 

rolling direction and equibiaxial tension state. The identified parameters are displayed in Tab. 

1. 

Tab. 1. Anisotropy parameters corresponding to the AA6016 aluminum alloy for both plastic flow 

rules (from Hippke et al., 2017). 

The initial yield and potential loci of the AA6016 aluminum alloy are shown in Fig. 3 (a). To 

evaluate the non-associativity degree of this alloy, we introduce the non-associativity angle   

defined as the angle between / pf   and / yf  . This angle is determined as follows: 
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f f
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f f

 
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

 

 

 
 

 

 (64) 

When the plasticity model is associated, vectors V p
  and V y

  become identical and hence the 

angle   is equal to 0. We have used the NAFR parameters provided in Tab. 1 to plot in Fig. 3 

  a 1 2 3 4 5 6 7 8 

Yield yf  (NAFR) 6        

Potential pf  (NAFR) 4.5        

AFR 4.5        
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(b) the evolution of  , determined at the onset of bifurcation, versus the negative strain-path 

ratios  . 
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 (a) (b) 

Fig. 3. Effect of the anisotropy parameters for the AA6016 aluminum alloy on: (a) the yield and 

potential loci; (b) the non-associativity angle  . 

The Young modulus and the Poisson ratio of the metal layer are set to 70 GPa and 0.35, 

respectively. The Hockett–Sherby hardening parameters corresponding to the AA6016 

aluminum alloy have been identified by Hippke et al. (2017), as reported in Tab. 2. 

Tab. 2. Isotropic hardening parameters for the AA6016 aluminum alloy (from Hippke et al., 2017). 

A (MPa) B (MPa) m q 

352.355 228.655 5.62 0.865 

The forming limit diagrams for a freestanding metal layer made of AA6016 aluminum alloy 

are shown in Fig. 4, as determined by the bifurcation theory. For both plasticity models 

(namely AFR and NAFR), bifurcation cannot be predicted in the range of positive strain-path 

ratios ( 0 ). Hence, only the left-hand side of the FLD is presented in Fig. 4. A first 

comment is that while the localization limit strains determined by the NAFR model coincide 

with those predicted by the AFR model for the plane-strain tension state ( 0 ), the former 

are always lower than the latter for the other strain paths ( 0 )This result can be explained 

by the destabilizing effect induced by the non-associativity of the plastic flow. Indeed, such 

non-associativity affects the values of the components of the elasto-plastic tangent modulus 
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Cep  (see, Eq. (49)), which becomes non-symmetric and, as a consequence, influences the 

acoustic tensor used in the bifurcation analysis. The difference between the formability limits 

predicted by both plasticity models is likely to be correlated to the value of the non-

associativity angle   plotted in Fig. 3 (b): the difference between the predicted limit strains 

increases with the angle  . It must be pointed out that, despite the adoption of the NAFR 

model, limit strains cannot be predicted by the bifurcation theory for the positive strain-path 

ratios. This result may be explained by the low degree of non-associativity observed for the 

AA6016 alloy (as demonstrated in Fig. 3 (b), the yield and potential loci are rather close in 

shape). To reach bifurcation in the range of positive strain-path ratios, different anisotropy 

parameters resulting in a higher non-associativity degree should be used (see Appendix A). 
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Fig. 4. Forming limit diagrams for the AA6016 metal layer predicted by the bifurcation theory. 

The influence of the initial imperfection ratio 0  on the shape and the level of the FLDs 

predicted by the M–K analysis is highlighted in Fig. 5 for both plasticity models. It is clear 

from this figure that even a small amount of geometric imperfection 0  substantially 

decreases the limit strains for localization, especially in the range of positive strain-path 

ratios. Another noteworthy observation is that the limit strains determined by the bifurcation 

analysis set an upper limit to those predicted by the M–K approach. Indeed, this figure shows 

that the FLDs predicted by the M–K analysis tend towards the FLD predicted by bifurcation 

analysis when 0  tends to zero. In other terms, the impact of an initial imperfection is 

essentially to move the FLD downwards. This result is expectable taking into account the 

similitude of the theoretical formulations of the two approaches (bifurcation and M–K), as 
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shown in Eq. (17). This result has previously been shown for associated plasticity models 

(see, for instance, Ben Bettaieb et al., 2015), and it is extended and confirmed here for a non-

associated plastic flow rule. Fig. 5 (c) shows that the ductility limits predicted by the coupling 

between the initial imperfection approach and the associated flow rule (AFR) model are 

higher than those yielded by the non-associated flow rule (NAFR) model. This result confirms 

the predictions determined by the bifurcation theory (Fig. 4). 
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(c) 

Fig. 5. Impact of the amount of initial geometric imperfection 0  on the shape and the location of the 

FLDs: (a) AFR; (b) NAFR; (c) AFR versus NAFR with MK analysis. 
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4.2. Metal/elastomer bilayer 

In this subsection, we carefully analyze the effect of the elastomer layer on the ductility limits 

of substrate-supported metal layers. For comparison purposes, we consider two combinations 

of constitutive models: a metal layer modeled by the AFR bonded to a neo-Hookean 

elastomer substrate, and a metal layer modeled by the NAFR bonded to a neo-Hookean 

elastomer substrate. In the following results and discussions, the above-defined 

metal/elastomer bilayers will be briefly called AFR/NH and NAFR/NH, respectively. The 

material parameters corresponding to the metal layer are the same as those presented in 

Section 4.1. For the elastomer layer, however, the shear modulus   is set to 22 MPa, which 

corresponds to the shear modulus for polyurea (Amirkhizi et al., 2006). 

The influence of the elastomer layer and its initial thickness E

Ih , relative to that of the metal 

layer M

Ih , on the ductility limits predicted by the bifurcation theory is shown in Fig. 6. When 

E

Ih  is set to 0, we obviously recover the bifurcation predictions for a freestanding metal layer 

(Fig. 4). It is shown that for both combinations (namely AFR/NH and NAFR/NH), the 

addition of an elastomer substrate allows moving the FLD monotonically upwards, hence 

improving the formability of the resulting bilayer. This result demonstrates the major practical 

benefit of the use of elastomer substrates, as the latter allow delaying the necking limit of 

functional parts and components. 
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Fig. 6. Impact of the initial thickness ratio /E M
I Ih h  on the shape and the location of the FLDs 

predicted by the bifurcation theory: (a) AFR/NH combination; (b) NAFR/NH combination. 
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To better illustrate the improvement in terms of formability when an elastomer layer is 

bonded to the metal layer, the determinant of the acoustic tensor of the elastomer layer 

ˆ ˆ. . E E  is determined from the expression of the elastomer tangent modulus given 

by Eqs. (23)–(25): 

 
        

       

11 1111

11 11 11 11 11 11

2
2 1 2 32 4

4 3 2 2 2 2 2 2 4 4

ˆ ˆdet det . 3 3
9

2 3 3

  

 

    

   

E E e e e cos

e e e cos sin e e sin

   

        




  

 (65) 

By analyzing the different terms of Eq. (65), one can easily observe that the determinant of 

ˆE  remains always strictly positive and hence, localized necking can never occur in the 

elastomer layer alone. Furthermore, Eq. (65) reveals that  ˆdet E  is proportional to 2  (  

being the shear modulus of the elastomer layer). To graphically illustrate Eq. (65), the 

determinant of ˆE  is plotted for two particular strain-path ratios (    and  ) as a 

function of the band orientation   and the major strain 11  in Figs. 7 (a) and (b). On the other 

hand, the determinant of the acoustic tensor associated with the metal layer ˆM  can be 

negative for strain-path ratios    and  , and for some combinations of   and 11 , as 

revealed by Fig. 7 (c) and (d) implying that localized necking in the metal layer is reached for 

these strain paths. For the strain-path ratio   , the determinant of the acoustic tensor ˆM  

is positive for 11 0.4   , regardless the value of the band inclination  , as shown in Fig. 7 

(e). Consequently, bifurcation cannot occur in this strain range. In fact, bifurcation is reached 

for a very high value of 11 , not presented in this figure. Note that the associated flow rule 

(AFR) has been used to model the mechanical behavior of the metal layer for the predictions 

presented in Fig. 7. As expected, for the strain-path ratio   , the bifurcation angle 

inclination is around 40° and this inclination is equal to 0° for ratio    Unfortunately, it is 

not possible to provide an analytical expression for the determinant of ˆM , as the constitutive 

equations corresponding to the metal layer are formulated in an incremental form (unlike the 

constitutive equations of the elastomer layer, which are formulated in a total form). 

As the acoustic tensor of the bilayer ˆ  can be derived from the acoustic tensor of each layer 

by the following averaging rule: 

 

ˆ ˆ
ˆ ,






E E M M

E M

h h

h h
 (66) 
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one can conclude that the addition of an elastomer layer allows increasing the determinant of 

the bilayer acoustic tensor ˆ , and thus delaying the occurrence of localized necking in the 

resulting substrate-supported metal layer. 

 

 (a) (b) 

 

 (c) (d) 

  

 (e) 
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Fig. 7. Evolution of the cubic root of the determinant of the acoustic tensor of each layer: (a) 

 3 ˆdet E  for 0.5  ; (b)  3 ˆdet E  for 0  (plane-strain tensile state); (c)  3 ˆdet M  for 

0.5  ; (d)  3 ˆdet M  for plane-strain tensile state ( 0 ); (e)  3 ˆdet M  for 0.1 . 

The positive impact of coating an elastomer substrate on the improvement of the formability 

of substrate-supported metal layers is confirmed by the results of Fig. 8, where the Marciniak 

and Kuczynski approach is adopted as localized necking criterion. The occurrence of plastic 

strain localization may be prevented by perfectly bonding a sufficiently thick and stiff 

elastomer substrate to the metal layer. 
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 (a) (b) 

Fig. 8. Impact of the initial thickness ratio /E M
I Ih h  on the shape and the location of the FLDs 

predicted by the Marciniak and Kuczynski approach: (a) AFR/NH combination; (b) NAFR/NH 

combination. 

5. Conclusions 

In the current paper, a comprehensive study is presented to carefully investigate the initiation 

of localized necking in metal/elastomer bilayers. In particular, the effects of considering a 

non-associated flow rule in the modeling of the metal layer and of coating an elastomer 

substrate are specifically highlighted. In this aim, several numerical tools have been 

developed to predict the onset of localized necking by both the bifurcation theory and the 

Marciniak and Kuczynski approach. These numerical developments are sufficiently general to 
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be employed for other and more elaborate behavior models for both the metal and the 

elastomer layer. From the presented predictions, key findings can be outlined hereafter: 

 The main trends for freestanding metal layers and bilayers demonstrate that the lowest 

limit strains are predicted when the mechanical behavior of the metal layer is modeled 

by the non-associated flow rule. This result is understandable considering the 

destabilizing effect induced by the non-associativity of the flow rule (reflected by the 

difference between the plastic potential and the yield function). 

 The limit strains determined by the bifurcation analysis can be viewed as an upper limit 

to the FLDs given by the imperfection approach. This result holds for both constitutive 

frameworks used to model the mechanical behavior of the metal layer (AFR and 

NAFR). The gap between the FLDs predicted by the Marciniak and Kuczynski 

approach and that yielded by the bifurcation theory reduces and tends to vanish as the 

initial imperfection ratio decreases. This trend, well established for associated flow rule 

models (see, Ben Bettaieb and Abed-Meraim, 2015), is confirmed here for the adopted 

NAFR. Considering the similarity in the mathematical formulations of the two 

localization criteria, this trend is quite expectable: the initial imperfection approach 

reduces to the bifurcation analysis if the amount of initial imperfection is set to zero. 

Indeed, as demonstrated by Eq. (18), the onset of localized necking is predicted by the 

initial imperfection approach when the acoustic tensor associated with the band 

becomes singular.  

 Bonding an elastomer substrate to a metal layer substantially enhances the formability 

of the metal/elastomer bilayer. This observation is shown to be valid whatever the 

magnitude of the initial geometric imperfection and whatever the flow rule selected to 

model the plastic behavior of the metal layer. 

The numerical tools developed in the present investigation are able to qualitatively and 

accurately analyze the sensitivity of the ductility of substrate-supported metal layers to the 

different relevant material and geometric parameters (shear modulus of the elastomer layer, 

anisotropy and hardening parameters of the metal layer, relative thickness of both layers). 

These tools can be advantageously used to classify different bilayer components in terms 

of ductility performance, and then to help in the design of industrial components. 
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Appendix A. Prediction of the ductility limit of the AA5042 aluminum alloy 

 

To investigate the effect of the non-associativity degree on the onset of strain localization, the 

FLDs of the AA5042 aluminum alloy predicted by the bifurcation theory are presented in this 

appendix. Compared to the AA6016 alloy, studied in Section 4, the plasticity parameters 

identified for the AA5042 alloy lead to a higher non-associativity degree, as displayed in Fig. 

A.1 (a), where the corresponding yield locus and plastic potential differ significantly. This 

larger difference induces higher values for the non-associativity angle  , as revealed by Fig. 

A.1 (b), especially for strain-path ratios   equal to   and  . The material parameters 

corresponding to the AA5042 alloy are provided in Tab. A.1 and Tab. A.2. 
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Fig. A.1. Effect of the anisotropy parameters for the AA5042 aluminum alloy on: (a) the yield and 

potential loci; (b) the non-associativity angle  . 

Tab. A.1. Anisotropy parameters corresponding to the AA5042 aluminum alloy for both plastic flow 

rules (from Hippke et al., 2017). 

 

 

  a 1 2 3 4 5 6 7 8 

Yield yf  (NAFR) 8        

Potential pf  (NAFR) 14        

AFR 8        
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Tab. A.2. Isotropic hardening parameters for the AA5042 aluminum alloy (from Hippke et al., 2017). 

A (MPa) B (MPa) m q 

375.08 107.28 17.859 1.0 

The FLDs predicted by the bifurcation theory for the metal layer made of the AA5042 

aluminum alloy are plotted in Fig. A.2 (a). This figure clearly shows the impact of the non-

associativity degree of the flow rule on the decrease of the ductility limits, especially when 

the strain-path ratio is close to    . For this strain-path range, the limit strain predicted by 

the NAFR remains excessively low. These results can be correlated with the evolution of the 

non-associativity angle   plotted in Fig. A.1 (b). To better analyze this correlation, we have 

reported in Tab. A.3 the relative deviation between the major limit strain predicted by the 

AFR, denoted 
 AFR

11 , and its counterpart predicted by the NAFR, denoted 
 NAFR

11 , for 

negative strain-path ratios. As shown in Fig. A.2 (a), the limit strains are predicted for some 

positive strain-path ratios ( and    ), when the NAFR is used to model the 

plastic flow. For the other strain-path ratios (    ), the predicted limit strains are 

unrealistically high and, hence, they are not displayed in Fig. A.2 (a). On the other hand, the 

AFR allows us to obtain realistic limit strains only for strain-paths ratios   lower than or 

equal to  . The effect of the non-associativity degree of the flow rule on the evolution of the 

localization band orientation  , as a function of the strain-path ratio  , is depicted in Fig. 

A.2 (b). This figure reveals that the localization band inclination, predicted by both flow rules, 

decreases with the strain-path ratio. 
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Fig. A.2. Effect of the non-associativity degree of the flow rule on the prediction of localized necking 

for the AA5042 metal layer predicted by the bifurcation theory: (a) FLDs; (b) evolution of the band 

orientation. 

Tab. A.3. Correlation between the non-associativity angle   and the relative deviation between 

 AFR

11  and  NAFR

11 . 

Strain-path ratio   Angle   (°)  AFR

11   NAFR

11  

    
   

AFR NAFR

11 11

AFR NAFR

11 11

2 



 

 
 

  22.40 0.135 0.018 1.530 

  12.26 0.127 0.040 1.032 

  2.93 0.118 0.069 0.521 

  1.61 0.110 0.098 0.114 

  3.18 0.103 0.102 0.009 

0.  3.64 0.093 0.078 0.180 
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