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Comparative study of three techniques for the computation 
of the macroscopic tangent moduli by periodic homogenization 
scheme

J. C. Zhu1 · M. Ben Bettaieb1,2 · F. Abed‑Meraim1,2

Abstract
In numerical strategies developed for determining the effective macroscopic properties of heterogeneous media, the efficient 
and robust computation of macroscopic tangent moduli represents an essential step to achieve. Indeed, these tangent moduli 
are usually required in several numerical applications, such as the FE2 method and the prediction of the onset of material 
and structural instabilities in heterogeneous media by loss of ellipticity approaches. This paper presents a comparative study 
of three numerical techniques for the computation of such tangent moduli in the context of periodic homogenization: the 
perturbation technique, the condensation technique and the fluctuation technique. The practical implementations of these 
techniques within ABAQUS/Standard finite element (FE) code are especially underlined. These implementations are based 
on the development of a set of Python scripts, which are connected to the finite element computations to handle the computa‑
tion of the tangent moduli. The extension of these techniques to mechanical problems exhibiting symmetry properties is also 
detailed in this contribution. The reliability, accuracy and ease of implementation of these techniques are evaluated through 
some typical numerical examples. It is shown from this numerical and technical study that the condensation method reveals 
to be the most reliable and efficient. Also, this paper provides valuable reference guidelines to ABAQUS/Standard users for 
the determination of the homogenized tangent moduli of linear or nonlinear heterogeneous materials, such as composites, 
polycrystalline aggregates and porous solids.

Keywords  Heterogeneous media · Finite strain · Periodic homogenization · Unit cell · Homogenized tangent moduli

1  Introduction

The main objective of micromechanical multiscale 
approaches is to determine the effective (also called homog‑
enized, overall or macroscopic) mechanical properties of 
heterogeneous media under some specific boundary condi‑
tions. In this context, Hashin and Shtrikman [1] and Hill [2] 
have analytically estimated the overall properties of rein‑
forced composites made of linear elastic phases. As various 
nonlinear composites (composites containing at least one 

nonlinear phase) have attracted special interest for both 
academic and industrial communities, the earlier pioneer‑
ing works have subsequently been extended to determine 
their effective properties. For instance, Ponte Castaneda and 
Willis [3] have studied the mechanical behavior of nonlin‑
ear viscous composites. Suquet [4] has derived several ana‑
lytical averaging relations for perfectly plastic composites. 
Teply and Dvorak [5] have investigated the overall behav‑
ior of elastoplastic composites. A comprehensive review of 
analytical approaches, developed to estimate homogenized 
properties of heterogeneous composite materials, has been 
provided in several contributions (see, e.g., [6–10]). Despite 
their wide use, analytical approaches are unable to give 
accurate effective properties for complex microstructures 
(random morphology and spatial distribution of constitu‑
tive phases…) exhibiting strong geometric and material non‑
linearities. To overcome these limitations, some numerical 
approaches have recently been developed, as alternative to 
analytical ones. In this regard, one may quote at least two 
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types of commonly used approaches: those based on fast 
Fourier transforms (FFT), and those based on the finite ele‑
ment method (FEM). As to the FFT methods, Moulinec and 
his coauthors have proposed in [11–14] a variety of mul‑
tiscale schemes and compared their convergence rates for 
computing overall properties of both linear and nonlinear 
composites. From these investigations, it has been shown 
that the contrast between the mechanical properties in the 
phases significantly affects the convergence rate of the FFT-
based computations. Michel et al. [15] have demonstrated 
that FEM-based approaches converge more easily for com‑
posites with periodic microstructure and made of phases 
with infinite stiffness contrast (such as rigid inclusions or 
voids). Consequently, FEM-based approaches received 
more attention when dealing with more general heterogene‑
ous materials, such as composites, polycrystalline aggre‑
gates and porous media. In this perspective, Miehe [16] 
has developed a strain-driven homogenization approach 
for inelastic microstructures and composites based on an 
incremental variational formulation. This formulation can 
be used to compute the macroscopic response of elastovis‑
coplastic media under the three well-known boundary con‑
ditions: (i) linear deformation (LD), (ii) uniform traction 
(UT), and (iii) periodic boundary conditions (PBC). A small 
strain formulation has been employed in [16] to establish 
the multiscale relations as well as the constitutive equations 
of the different phases. The multiscale schemes presented 
in [16] have been extended in Miehe [17] to finite strain 
problems, where the Lagrange multiplier method has been 
employed to enforce the above boundary conditions on the 
microstructure. This extension has been achieved by generat‑
ing a family of algorithms that allow deriving homogenized 
stress and tangent moduli for composites and polycrystalline 
aggregates. In the present contribution, attention is focused 
on the modeling of the mechanical behavior of heterogene‑
ous media exhibiting a periodic or quasi-periodic distribu‑
tion of heterogeneities (such as composite materials, voided 
media, or polycrystalline aggregates). Considering this 
spatial periodicity, the periodic homogenization approach 
turns out to be the more suitable scheme to ensure the tran‑
sition between microscopic and macroscopic levels. The 
studied media are assumed to undergo large deformation. 
Consequently, a total Lagrangian formulation is adopted to 
formulate the governing equations of the periodic homog‑
enization approach, where the deformation gradient and the 
first Piola–Kirchhoff stress tensor are selected as appropri‑
ate strain and stress measures, respectively. As first step for 
the application of the periodic homogenization approach, a 
unit cell assumed to be representative of the heterogeneous 
medium should be selected. Several studies, mainly based 
on some statistical techniques, have been carried out in the 
literature to evaluate the minimum size of the unit cell to 
ensure its representativeness of the heterogeneous medium. 

This step is not the object of the current contribution and 
the interested readers may refer to reference [18]. Once the 
unit cell is defined, the equations governing the periodic 
homogenization problem (namely, localization and homog‑
enization relations, microscopic equilibrium equations, 
periodic boundary conditions) are solved by the finite ele‑
ment method. To this end, several academic finite element 
codes, such as Lagamine [19] or Zébulon [20], have been 
extended by implementing some built-in tools and routines 
to automatically achieve the application of the macroscopic 
loading and periodic boundary conditions and the com‑
putation of the macroscopic response. Analogous to most 
popular commercial finite element codes, such as ABAQUS/
Standard, several plugin tools have been developed to eas‑
ily apply the periodic boundary conditions as well as the 
macroscopic loading (which can be strain-driven or stress-
driven) and to compute the macroscopic response. Among 
these tools, one may quote the toolbox Homtools developed 
by Lejeunes and Bourgeois [21], the EasyPBC tool proposed 
in [22] or the Python codes developed in [23]. Unfortunately, 
the above-mentioned tools are unable to achieve the auto‑
matic computation of the macroscopic tangent moduli. On 
the other hand, particular attention has been paid, in some 
contributions, to the efficient and accurate computation of 
these moduli for some engineering numerical applications 
using multiscale schemes. Indeed, the macroscopic tangent 
modulus is required for the prediction of the mechanical 
behavior of polycrystalline structures by the FE2 method 
[24–29]. It is also needed for the prediction of the onset of 
macroscopic material and structural instabilities by loss of 
ellipticity approaches [30–33]. In the literature, at least three 
FEM-based techniques have been developed to determine 
the macroscopic tangent modulus from the periodic homog‑
enization computations:

• The perturbation technique (PT): this technique allows
reducing the computation of the macroscopic tangent
modulus to multiple macroscopic stress computations
[23, 34]. By perturbing the macroscopic deformation
gradient, the macroscopic tangent modulus is efficiently
constructed by a forward difference of the macroscopic
first Piola–Kirchhoff stress. To obtain the approximation
of the ith column of the macroscopic tangent modulus,
a small perturbation of the ith component of the mac‑
roscopic deformation gradient is needed (for 3D finite
strain, where i ranges between 1 and 9). The ith column
of the macroscopic tangent modulus is equal to the for‑
ward difference between the perturbed and unperturbed
macroscopic stress divided by the corresponding pertur‑
bation of the macroscopic deformation gradient. This
method, widely adopted to numerically evaluate the
tangent modulus for several phenomenological models
[35], has recently been coupled with the periodic homog‑



enization scheme in some investigations [23, 34]. This 
technique has the merit of being conceptually easy to 
understand, but generally requires a great deal of CPU 
time, as the finite element computation should be per‑
formed ten times for each increment (one time to com‑
pute the macroscopic unperturbed stress and nine times 
to construct the macroscopic tangent modulus).

• The condensation technique (CT): within this technique,
the macroscopic tangent modulus is obtained by a con‑
densation procedure of the global stiffness matrix. This
method has initially been introduced for a small strain
formulation [36], and subsequently extended to finite
strain framework [17]. The practical application of this
technique is based on the construction of a family of link-
topology matrices to automatically represent the overall
properties of discretized microstructures. The updated
global stiffness matrix as well as the initial coordinates
of the nodes on the boundary of the unit cell are required
to compute the macroscopic tangent modulus by the con‑
densation method.

• The fluctuation technique (FT): in this technique, the
deformation gradient of each node of the FE discretiza‑
tion is additively decomposed into two parts: a homo‑
geneous part associated with the macroscopic loading,
and a nonhomogeneous part resulting from the periodic
fluctuation contribution. As a result of this decomposi‑
tion, the macroscopic tangent modulus can be written as
the sum of the volume average of tangent moduli over
the unit cell, and a fluctuation part, which depends on the
global stiffness matrix and on a fluctuation matrix. The
volume average of microscopic tangent moduli yields
the well-known Taylor-type upper bound. The numeri‑
cal procedures of this method at small strain and finite
strain have been presented in [37, 38], respectively.

As ABAQUS/Standard is used to perform the finite ele‑
ment computations, the above-presented three techniques 
have been implemented in a set of Python scripts. The 
choice of the Python language is motivated by the fact that 
ABAQUS/Standard has a built-in Python API (application 
programming interface) that offers a number of benefits in 
extracting data from an ABAQUS database. Furthermore, 
some popular numerical packages, such as the NumPy and 
SciPy libraries, are used in developing the Python scripts. 
These libraries contain a powerful N-dimensional array 
object and useful linear algebra methods, thus enabling effi‑
cient matrix computations (reduced computation time and 
memory space). These python scripts are interpreted as post-
processing of the finite element analysis. The toolbox Hom-
tools [21] is used to automatically determine and generate 
the required boundary node sets, constraint equations, peri‑
odic boundary conditions, and post-processing calculations 
in order to compute the macroscopic response. Technical 

details, related to the connection between the ABAQUS/
Standard FE code environment and the developed Python 
codes, will be provided in this investigation. All of the devel‑
oped techniques can be applied for any loading path and at 
each finite element increment. The CPU time required to 
perform these analyses is mainly dependent on the num‑
ber of time increments, at which the macroscopic tangent 
modulus is computed, and on the number of the degrees of 
freedom (DOFs) of the finite element mesh. These analyses 
could induce a very high computation cost (computation 
time and memory space) if we intend to compute the mac‑
roscopic tangent modulus at each finite element increment. 
To reduce the computation cost involved in such analyses, 
without losing the accuracy of the finite element solution, we 
have offered the possibility of computing the macroscopic 
tangent modulus for each n finite element increments (com‑
putation at the end of the nth, 2nth, 3nth finite element incre‑
ment…). A comparative study between the above-discussed 
three techniques will be given in the section corresponding 
to the numerical results. Thus, this paper gives valuable 
reference guidelines to ABAQUS/Standard users for the 
determination of the homogenized tangent moduli. On the 
basis of this study, it is demonstrated that the condensation 
technique reveals to be the most efficient method (easy to 
implement, requires less CPU time and disk space). The 
computation of the tangent moduli corresponding to micro‑
structures exhibiting symmetry properties is also detailed in 
the current contribution. Note that such extension to sym‑
metric problems allows considerably improving the compu‑
tational performance.

The remainder of the paper is organized as follows:

• Sect.  2 provides some technical details about the
stress rates and associated tangent moduli adopted in
ABAQUS/Standard FE code (built-in model or user-
defined model) to formulate and solve the weak form of
the virtual work principle. These details are essential for
the understanding of the subsequent sections.

• The formulation of the periodic homogenization problem
at finite strain, and the practical aspects related to the
solution of this problem are discussed in Sect. 3.

• The numerical aspects and the operational details related
to the implementation of the three techniques for the
computation of the tangent modulus (namely, the per‑
turbation technique, the condensation technique, and the
fluctuation technique) are detailed in Sect. 4.

• Sect. 5 is dedicated to the adaptation of the perturbation
and condensation techniques to the case of microstruc‑
tures displaying symmetry properties.

• In Sect. 6, the implementation of the three techniques
is validated by comparing their results with those pub‑
lished in [37]. The performances of these techniques are



reported, discussed and compared through some numeri‑
cal examples.

1.1 � Conventions, notations and abbreviations

The following conventions and notations are used 
throughout:

• Microscale (resp. macroscale) variables are denoted by
lowercase (resp. capital) letters.

• Vectors and tensors are indicated by bold letters or sym‑
bols. However, scalar parameters and variables are des‑
ignated by thin and italic letters or symbols.

•  ∙̇	� time derivative of ∙.
•  ∙T	� transpose of ∙.
• ∙−1	� inverse of ∙.
• det (∙)	� determinant of ∙.
• v∙ 	�vector representation of the second-order tensor 

∙ . ( v∙ ∶=
[
∙11 ∙22 ∙33 ∙12 ∙23 ∙13 ∙21 ∙32 ∙31

]T).
• m∙ 	�matrix representation of the fourth-order tensor 

∙ (defined similarly to the vector representation).
•  ∙ ⋅∙	� simple contraction or contraction on one index 

(inner product).
• ∙ ∶ ∙ 	�double contraction or contraction on two indices 

(inner product).
•  ∙ ⊗ ∙	� tensor product (external product).
• �ij 	�Kronecker delta.
• I2 	�second-order identity tensor.
• D 	�iteration of field ∙ (within an incremental finite 

element computation).
• Δ∙ 	�small perturbation used for the differentiation of 

field ∙.
• PT	� perturbation technique.
• CT	� condensation technique.
• FT	� fluctuation technique.
• FUC	� full unit cell (without or before application of

symmetry restrictions).
• RUC​	� reduced unit cell (after application of symmetry

restrictions).
• UEL	� user element subroutine.
• UMAT	� user material subroutine.
• DOFs	� degrees of freedom.

2 � Details on the finite element formulation 
in ABAQUS/Standard

The majority of commercial finite element codes (such as 
ABAQUS, ANSYS, NASTRAN, LS-DYNA…) allow the 
accurate computation of the mechanical response of solids 
and structures exhibiting strong material and geometric non‑
linearities (elastoplastic behavior, finite strain, finite rota‑
tion, contact…). Within the finite strain framework, there 

are several work-conjugate strain/stress measures classi‑
cally used to formulate the virtual work principle, which 
is the basis of the finite element method. For instance, the 
ABAQUS/Standard built-in formulation1 is based on the Jau‑
mann rate of the Kirchhoff stress tensor, while NASTRAN 
is based on the Truesdell rate of the Cauchy stress tensor. 
The finite element simulation results must be independent 
of the choice of these strain/stress measures and the associ‑
ated virtual work form. Hence, to ensure the accuracy and 
correctness of the finite element results, the specific stress 
rate and associated tangent modulus (relating the stress rate 
to the associated strain rate) should be properly chosen. The 
current section provides a brief overview of the relations 
between the different stress rates as well as the associated 
tangent moduli commonly used in ABAQUS/Standard code.

Starting with the formulation of the virtual work princi‑
ple, the equilibrium equation is expressed in a rate form as 
follows:

where: �̇ is the rate of the first Piola–Kirchhoff stress and 
div�0 (�̇) its divergence with respect to the reference coordi‑
nate system �0 . �̇0 is the body force rate per unit volume in 
the reference configuration.

Multiplying Eq. (1) by a virtual velocity field �� and inte‑
grating over the volume of the reference configuration V0 
yields:

Employing the chain rule and Gauss theorem, Eq. (2) can 
be reformulated as follows:

where S0 and �̇0 denote the boundary surface of the reference 
configuration and the nominal traction rate prescribed on S0 , 
respectively. Vector �̇0 is equal to �̇ ⋅ �⃗0 , where �⃗0 is the outer 
normal to the boundary S0.

The virtual work principle defined by Eq. (3) can be 
equivalently expressed in terms of the Kirchhoff stress �
(= � ⋅ �T , where � denotes the deformation gradient) and its 
objective derivatives �̃(m) as follows [39]:

(1)div�0 (�̇) + �̇0 = �,

(2)∫
V0

𝛿� ⋅
[
div�0 (�̇) + �̇0

]
dV0 = 0.

(3)∫
V0

[
𝜕 𝛿�

𝜕 �0
∶�̇

]
dV0 = ∫

S0

𝛿� ⋅ �̇0dS0 + ∫
V0

𝛿� ⋅ �̇0dV0,

1  It is referred to ABAQUS/Standard formulation without user sub‑
routines for nonlinear incremental analysis in this paper. ABAQUS/
Explicit adopts different fundamental solving technique, as well as 
the theoretical formulation.



where � is the velocity gradient, defined as � �∕� � , and �� 
its virtual counterpart. � is the strain rate, defined as the 
symmetric part of � , and �� its virtual counterpart. m is a 
parameter that defines the different objective rates of the 
Kirchhoff stress. It is equal to 0, 1, and 2 for the Jaumann, 
Biot, and Truesdell rates, respectively.

In ABAQUS/Standard built-in modeling, the Jaumann 
rate is employed. Hence, Eq. (4) is used with m = 0:

On the other hand, the Jaumann rate of the Kirchhoff 
stress �̃(0) is related to the strain rate � as follows:

where the tangent modulus �(0) is expressed in terms of 
the Jacobian matrix ������ (using the terminology of 
ABAQUS/Standard FE code) and j (= det(� )) as follows:

Utilizing finite element discretization, the velocity field � 
and the strain rate � can be obtained from the nodal displace‑
ment rate vector �̇ by the interpolation rule:

with � being the shape function vector, and � its derivative 
with respect to �.

The substitution of Eqs. (6) and (8) into the different com‑
ponents of Eq. (5) leads to:

where �M is the part of the global stiffness matrix associated 
with the mechanical behavior. �GNL is the part of the global 
stiffness matrix resulting from the geometric nonlinearities. 
�̇ is the residual vector.

Then, Eq. (5) can be written in the following discretized 
matrix form:

(4)

∫
V0

[
𝛿� ∶ �̃(m) − (2 − m)� ∶ (𝛿� ⋅ �) + � ∶ (𝛿�T ⋅ �)

]
dV0

= ∫
S0

𝛿� ⋅ �̇0dS0 + ∫
V0

𝛿� ⋅ �̇0dV0,

(5)

∫
V0

[
𝛿� ∶ �̃(0) − 2 � ∶ (� ⋅ 𝛿�) + � ∶ (�T ⋅ 𝛿�)

]
dV0

= ∫
S0

𝛿� ⋅ �̇0dS0 + ∫
V0

𝛿� ⋅ �̇0dV0.

(6)�̃(0) = �(0) ∶ �,

(7)�(0) = j������.

(8)� = � ⋅ �̇; � =
1

2

(
� + �T

)
⋅ �̇ ,

(9)
⎧⎪⎨⎪⎩

∫
V0

�
𝛿� ∶ �̃(0)

�
dV0 = ∫

V0

�
𝛿� ∶ �(0) ∶ �

�
dV0 = 𝛿�̇T ⋅

�∫
V0
�T ⋅ m�(0) ⋅ �dV0

�
⋅ �̇ = 𝛿�̇T ⋅�M ⋅ �̇;

∫
V0

�
−2� ∶ (� ⋅ 𝛿�) + � ∶

�
�T ⋅ 𝛿�

��
dV0 = 𝛿�̇T ⋅�GNL ⋅ �̇;∫

S0
�̇0 ⋅ 𝛿�dS0 + ∫

V0
�̇0 ⋅ 𝛿�dV0 = 𝛿�̇T ⋅ �̇,

Equation (10) is strongly nonlinear, as stiffness matrix �
(=

[
�M +�GNL

]
 ) and vector �̇ depend on the nodal displace‑

ment rate vector �̇ . Consequently, this equation is classically 
solved by an iterative scheme, such as the Newton–Raphson 
method.

For ABAQUS/Standard FE code, when the mechanical 
behavior is inelastic (elastoplastic, elastoviscoplastic…) and 
built-in material subroutines are used to model this behavior 
(i.e., without user material subroutine UMAT), Eq. (9)1 is 
rearranged as follows:

where �e and �p are the elastic and plastic parts of the strain 
rate, and �e is the elasticity modulus, which contributes to 
the elastic stiffness �E . With this rearrangement, the global 
nonlinear equation system (10) is reformulated as follows:

Hence, when the ABAQUS/Standard built-in mechanical 
modeling is used, the global stiffness matrix is only con‑
structed on the basis of the elastic contribution. However, 
when user material subroutines UMAT are used, the stiffness 
matrix is constructed on the basis of the ������ tangent 
modulus, which obviously considers the effect of both elastic 
and inelastic behavior.

On the other hand, the rate of the first Piola–Kirchhoff 
stress �̇ is related to the rate of the deformation gradient �̇ 
by the tangent modulus �(PK1):

The substitution of Eq. (13) into Eq. (3) leads to the fol‑
lowing expression of the virtual work principle:

(10)
[
�M +�GNL

]
⋅ �̇ = � ⋅ �̇ = �̇.

(11)

∫
V0

[
𝛿� ∶ �̃(0)

]
dV0 = ∫

V0

[
𝛿� ∶ �e ∶ �e

]
dV0

= ∫
V0

[
𝛿� ∶ �e ∶ (� − �p)

]
dV0

= 𝛿�̇T ⋅

([
∫
V0

[
�T

⋅
m�e ⋅ �

]
dV0

]
⋅ �̇ − ∫

V0

[
�T

⋅
m�e ⋅ v�p

]
dV0

)

= 𝛿�̇T ⋅
(
�E ⋅ �̇ − �̇p

)
,

(12)
[
�E +�GNL

]
⋅ �̇ = �̇ + �̇p.

(13)�̇ = �(PK1) ∶ �̇ .

(14)
∫
V0

[
𝛿�̇∶�(PK1)∶�̇

]
dV0 = ∫

S0

𝛿� ⋅ �̇0dS0 + ∫
V0

𝛿� ⋅ �̇0dV0.



Equation (14) can be considered as the total Lagrangian 
formulation of the virtual work principle. Forms (5) and (14) 
are strictly equivalent as long as the relationship between �(0) 
and �(PK1) is properly defined. To define this relationship, let 
us introduce tangent moduli �(2) and �(PK2) relating the Trues‑
dell derivative of the Kirchhoff stress �̃(2) ( m = 2 ) to the 
strain rate � , on the one hand, and the second Piola–Kirch‑
hoff stress rate �̇ to the Green strain rate �̇ , on the other hand:

As demonstrated in [39], �(0) is linked to �(2) through the 
following indicial form:

where �ij is the Kronecker delta.
Meanwhile, �(2) and �(PK1) are related to �(PK2) by the fol‑

lowing indicial forms [39]:

Equation (16) together with Eq. (17) define the rela‑
tions between the different tangent modulus forms (namely, 
�(0) , �(2) , �(PK1) and �(PK2) ). If these relations are not strictly 
respected, the two forms of the virtual work principle (i.e., 
Eqs. (5) and (14)) become different, and this difference may 
lead to some work-conjugacy issues (convergence problems, 
errors associated with lack of energy conservation…).

3 � Periodic homogenization problem

The periodic homogenization technique is used to ensure 
the transition between microscopic and macroscopic 
scales. Without loss of generality, we assume that the ini‑
tial configuration of the unit cell V0 occupies the domain [
−� 0∕2, � 0∕2

]
×
[
−� 0∕2, � 0∕2

]
×
[
−� 0∕2, � 0∕2

]
 .  The 

studied unit cell is assumed to undergo finite strain and total 
Lagrangian formulation is used to formulate the periodic 
homogenization relations. Consequently, the deformation 
gradient and the first Piola–Kirchhoff stress tensor are used 
as appropriate work-conjugate strain and stress measures. 
For the sake of clarity, microscopic (resp. macroscopic) 
quantities will be denoted by small (resp. capital) charac‑
ters and symbols.

The main equations governing the periodic homogeniza‑
tion scheme are outlined hereafter:

• The microscopic deformation gradient �  is additively
decomposed into its macroscopic counterpart � and a
periodic fluctuation gradient �per:

(15)�̃(2) = �(2) ∶ � ; �̇ = �(PK2) ∶ �̇.

(16)
∀i, j, k, l = 1, 2, 3 ∶ c

(0)

ijkl
= c

(2)

ijkl
+

1

2

(
�ik�jl + �jk�il + �il�jk + �jl�ik

)
,

(17)∀i, j, k, l = 1, 2, 3 ∶ c
(2)

ijkl
= fimfjnfkpflqc

(PK2)
mnpq

; c
(PK1)

inkq
= c(PK2)

mnpq
fimfkp + snq�ik.

The current position � of a material point can be deter‑
mined by spatial integration of Eq. (18):

where �0 is the initial position of the material point, and �per 
is a periodic displacement over the initial configuration of 
the unit cell. The expression of the nodal velocity � can be 
easily derived from Eq. (19):

• The averaging relations linking the microscopic deforma‑
tion gradient � and the microscopic first Piola–Kirchhoff 
stress tensor � to their macroscopic counterparts � and �:

with ||V0
|| being the initial volume of the unit cell, which

is equal here to 
(
� 0

)3.

Equation (21) can be equivalently expressed in the fol‑
lowing rate form:

• The microscopic static equilibrium equation in the
absence of body forces:

• The constitutive relation describing the microscopic
mechanical behavior can be summarized by the follow‑
ing generic form:

Compared to classic finite element problems, the peri‑
odic homogenization problem defined by Eqs. (18)–(24) pre‑
sents two particular specificities: the nature of the loading to 
which the unit cell is subjected, and the boundary conditions 
applied on the outer surfaces of the unit cell. These practi‑
cal aspects will be clarified in the following developments. 
As a starting point for these developments, the virtual work 

(18)� = � + �per.

(19)� = � ⋅ �0 + �per,

(20)� = �̇ ⋅ �0 + �̇per ∶= �̇ ⋅ �0 + �per.

(21)� =
1

||V0
|| ∫V0

� dV0 ; � =
1

||V0
|| ∫V0

� dV0,

(22)�̇ =
1

||V0
|| ∫V0

�̇ dV0 ; �̇ =
1

||V0
|| ∫V0

�̇ dV0,

(23)div𝐱0 (𝐩̇) = 𝟎.

(24)�̇ = �(PK1) ∶ �̇ .



principle given in Eq. (3) is reduced to the following form 
in the absence of body forces:

Considering the decomposition in Eq. (20) and Eq. (22), 
the left-hand side of Eq. (25) can be written as follows:

Considering the anti-periodicity of tensor 𝛿�per ⊗ �⃗0 and 
the periodicity of �̇T , one can easily show that:

Together with Eq. (27), Eq. (26) is reduced to the 
Hill–Mandel condition [40]:

As shown in [34, 41, 42] for the classical periodic homog‑
enization technique within a total Lagrangian formulation, 
Eq. (26) enables to treat the macroscopic deformation gradi‑
ent rate �̇ as macroscopic DOFs associated with the nodal 
forces ||V0

|| �̇ . In practice, the application of macroscopic 
loading in combination with periodic boundary conditions 
within ABAQUS is ensured by the use of the reference point 
technique [21]. We detail in the following developments how 
the reference point technique manages the macroscopic load‑
ing and the periodic boundary conditions in only one space 
direction (direction 1). The extension to the other directions 
can be done in a similar way.

If we consider two nodes M− and M+ belonging to faces 
B−
1
 and B+

1
 and having identical coordinates in 2 and 3 direc‑

tions (Fig. 1), the position of these two nodes can be deter‑
mined from Eq. (19):

The periodic boundary conditions require that �per
M− = �

per

M+ . 
Consequently, Eq. (29)1 and Eq. (29)2 can be combined to 
obtain:

On the other hand, the difference �M+ − �M− is defined 
as follows:

(25)∫
V0

[
𝜕 𝛿�

𝜕 �0
∶�̇

]
dV0 = ∫

S0

𝛿� ⋅ �̇0dS0.

(26)
∫
V0

(
𝜕 𝛿�

𝜕 �0
∶�̇

)
dV0 =∫

V0

((
𝛿�̇ +

𝜕 𝛿�per

𝜕 �0

)
∶�̇

)
dV0

= ∫
V0

(
𝛿�̇∶�̇

)
dV0 + ∫

S0

((
𝛿�per ⊗ �⃗0

)
∶�̇

)
dS0.

(27)∫
S0

((
𝛿�per ⊗ �⃗0

)
∶�̇

)
dS0 = 0.

(28)∫
V0

(
𝜕 𝛿�

𝜕 �0
∶�̇

)
dV0 =

||V0
|| 𝛿�̇∶�̇.

(29)�M− = � ⋅ �0M− + �
per

M− ; �M+ = � ⋅ �0M+ + �
per

M+ .

(30)�M+ − �M− = � ⋅
(
�0M+ − �0M−

)
.

where �M+ and �M− are the displacements of nodes M+ and 
M− , respectively. Considering the initial coordinates of 
nodes M+ and M− , the substitution of Eq. (31) into Eq. (30) 
leads to the following relation between displacements �M+ 
and �M−:

Practically, the periodic boundary conditions on the 
opposite faces B−

1
 and B+

1
 and the macroscopic loading � , 

summarized by Eq. (32), are applied by using the multi-
point constraints (MPC) option of ABAQUS for each node
pair 

(
M−, M+

)
 . The set of python scripts Homtools ena‑

bles to automatically identify all the node pairs of faces B−
1
 

and B+
1
 and to apply the MPC between the nodes from the 

same node pair. To easily manage the application of the 
macroscopic loading and, more interestingly, to automa‑
tize the determination of the macroscopic mechanical 
response, a reference point (using the ABAQUS terminol‑
ogy), designated RP1 , is created. The macroscopic loading 
is applied by imposing the following displacement on RP1 : (
U1 =

(
F11−1

)
� 0;U2= 0;U3= 0

)
 . This reference point is 

connected with each node pair to apply the MPC represented 
by Eq. (32). The reaction forces induced by the displacement 
applied on RP1 are equal to the components 11 , 12 and 13 of 
the macroscopic Piola–Kirchhoff stress tensor � multiplied 
by the initial volume of the unit cell ||V0

|| [21]. Quite similar 
developments can be performed for the application of the 
periodic boundary conditions on the other faces.

(31)�M+ − �M− =
(
�M+ − �M−

)
+
(
�0M+ − �0M−

)
,

(32)

�M+ − �M− =
�
� − �2

�
⋅
�
�0M+ − �0M−

�
=
�
� − �2

�
⋅

⎡⎢⎢⎢⎣

� 0

0

0

⎤⎥⎥⎥⎦
.

( ) 1node pair ,  managed by – +M M RP

1B
+

2B
+

3B
+

1e

2e

3e

Fig. 1   Illustration of the periodic boundary conditions between nodes 
M

− and M+



4 � Computation of the macroscopic tangent 
modulus

The practical aspects related to the solution of the periodic 
homogenization problem by the finite element method have 
been detailed in Sect. 3. This solution is conducted by using 
the Homtools capable of handling the application of the 
periodic boundary conditions and the macroscopic loading 
as well as the determination of the macroscopic response. 
To achieve this technical effort, we have developed a set 
of python scripts to automatically determine the numerical 
evolution of the macroscopic tangent modulus by using three 
FEM-based techniques. This is the main objective of the 
present section, where the theoretical concepts behind the 
three techniques are briefly revisited and the practical imple‑
mentations of these techniques within ABAQUS/Standard 
FE code are extensively discussed.

4.1 � Perturbation technique

4.1.1 � Numerical concept

The macroscopic tangent modulus, denoted �(PK1) , links 
the rate of the macroscopic deformation gradient �̇ to the 
rate of the macroscopic first Piola–Kirchhoff stress tensor 

�̇ . Hence, �(PK1) can be obtained by the differentiation of 
the first Piola–Kirchhoff stress tensor with respect to the 
deformation gradient:

where Δ∙ is a very small perturbation applied to field ∙.
Following the perturbation technique, each column of 

�(PK1) is numerically constructed by perturbing the compo‑
nents of the macroscopic deformation gradient � and using 
the associated perturbed response as follows:

where �⃗k and �⃗l are respectively the kth and lth unit vec‑
tor, and � is the perturbation magnitude (which typically 
ranges between 10−6 and 10−8 ). For illustration, the matrix 
form of Eq. (34) corresponding to the perturbation tensor 
Δ�

(𝛼)

11
= 𝛼 �⃗1 ⊗ �⃗1 can be written as:

(33)�̇ = �(PK1) ∶ �̇ ⇔ Δ�≈�(PK1) ∶ Δ�,

(34)

∀i, j, k, l = 1, 2, 3 ∶ C
(PK1)

ijkl
≈

ΔP
(𝛼)

ij

ΔF
(𝛼)

kl

≈
Pij(�

(𝛼)

kl
) − Pij(�)

𝛼

with �
(𝛼)

kl
= � + Δ�

(𝛼)

kl
= � + 𝛼 �⃗k ⊗ �⃗l,

(35)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
(PK1)

1111
C
(PK1)

1122
C
(PK1)

1133
C
(PK1)

1112
C
(PK1)

1123
C
(PK1)

1113
C
(PK1)

1121
C
(PK1)

1132
C
(PK1)

1131

C
(PK1)

2211
C
(PK1)

2222
C
(PK1)

2233
C
(PK1)

2212
C
(PK1)

2223
C
(PK1)

2213
C
(PK1)

2221
C
(PK1)

2232
C
(PK1)

2232

C
(PK1)

3311
C
(PK1)

3322
C
(PK1)

3333
C
(PK1)

3312
C
(PK1)

3323
C
(PK1)

3313
C
(PK1)

3321
C
(PK1)

3332
C
(PK1)

3331

C
(PK1)

1211
C
(PK1)

1222
C
(PK1)

1233
C
(PK1)

1212
C
(PK1)

1223
C
(PK1)

1213
C
(PK1)

1221
C
(PK1)

1232
C
(PK1)

1231

C
(PK1)

2311
C
(PK1)

2322
C
(PK1)

2333
C
(PK1)

2312
C
(PK1)

2323
C
(PK1)

2313
C
(PK1)

2321
C
(PK1)

2332
C
(PK1)

2331

C
(PK1)

1311
C
(PK1)

1322
C
(PK1)

1333
C
(PK1)

1312
C
(PK1)

1323
C
(PK1)

1313
C
(PK1)

1321
C
(PK1)

1332
C
(PK1)

1331

C
(PK1)

2111
C
(PK1)

2122
C
(PK1)

2133
C
(PK1)

2112
C
(PK1)

2123
C
(PK1)

2113
C
(PK1)

2121
C
(PK1)

2132
C
(PK1)

2131

C
(PK1)

3211
C
(PK1)

3222
C
(PK1)

3233
C
(PK1)

3212
C
(PK1)

3223
C
(PK1)

3213
C
(PK1)

3221
C
(PK1)

3232
C
(PK1)

3231

C
(PK1)

3111
C
(PK1)

3122
C
(PK1)

3133
C
(PK1)

3112
C
(PK1)

3123
C
(PK1)

3113
C
(PK1)

3121
C
(PK1)

3132
C
(PK1)

3131

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

0

0

0

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔP
(�)

11

ΔP
(�)

22

ΔP
(�)

33

ΔP
(�)

12

ΔP
(�)

23

ΔP
(�)

13

ΔP
(�)

21

ΔP
(�)

32

ΔP
(�)

31

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.



Thus, the first column of modulus �(PK1) is computed as:

The eight other columns are obtained in the same way as 
for the first column.

4.1.2 � Practical implementation

To determine the macroscopic tangent modulus �(PK1) by the 
perturbation technique, ten FE computation steps are per‑
formed: one general computation step to compute the unper‑
turbed tensor �(�) , followed by nine perturbation steps to 
compute the perturbed tensors �

(
�
(�)

kl

)
 for k, l= 1, 2, 3 . The 

perturbation steps are achieved using the ABAQUS/Standard 
restart technique. In the general computation step, it is 

(36)∀i, j = 1, 2, 3 ∶ CPK1
ij11

≈
Pij(�

(�)

11
) − Pij(�)

�
.

needed to specify the requested restart files in the input file. 
An analysis can be restarted only if the restart request is 
made for it. In ABAQUS/Standard, these files include the 
restart (.res), analysis database (.mdl and.stt), part (.prt), 
output database (.odb), and substructure database (.sim) 
files. Accordingly, based on these restart data at each spe‑
cific restart time, the nine perturbation steps will restart the 
analysis with the perturbed macroscopic deformation gradi‑
ent. It is worth noting that the general computation step can 
be linear or nonlinear, modeled via either built-in material 
model or user-defined material subroutine (UMAT). As to 
the perturbation computation steps, they are performed using 
the linear static perturbation analysis of ABAQUS/Standard. 
The algorithmic steps of the perturbation technique are illus‑
trated in Fig. 2.



4.2 � Condensation technique

4.2.1 � Numerical concept

This technique is based on a condensation procedure of the 
global stiffness matrix � introduced in Eq. (10). As previously 
explained in Sect. 2, when the ABAQUS/Standard built-in 
material models are used to describe the microscopic behav‑
ior, the material part �M of the stiffness matrix is constructed 
on the basis of the elastic tangent modulus. In this case, the 
condensation technique only gives the elastic macroscopic 
tangent modulus whether the mechanical behavior is elastic 
or inelastic. To avoid this problem, a UMAT should be used to 
implement the constitutive equations at the microscopic scale.

To apply the condensation technique, the nodes of the 
unit cell mesh shall be partitioned into two sets: set � and set 
�  composed by the nodes in the interior and on the boundary 
of the unit cell, respectively. Let N� and N� denote the num‑
ber of nodes of sets � and �  , respectively. Following this 
partition, let us introduce the three link-topology matrices 
�q ∈ R

9 ×R
3 , ℚq ∈ R

9 ×R
3 and ℍq ∈ R

3 ×R
3N� defined 

in the subsequent developments. The use of these matrices 
enables to simplify the algorithmic treatment and implemen‑
tation of the condensation technique.

The topology matrix �q , associated with node q that 
belongs to the boundary of the unit cell, consists of the com‑
ponents xq 01 , xq 02 and xq 03 of the initial coordinate vector 
�q 0 of node q as follows:

(37)∀q = 1,… ,N� ∶ �q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xq 01 0 0

0 xq 02 0

0 0 xq 03
xq 02 0 0

0 xq 03 0

xq 03 0 0

0 xq 01 0

0 0 xq 02
0 0 xq 01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix �q is introduced in order to rewrite Eq. (30) 
in a matrix form that is more suitable for algorithmic 
implementation:

with Np being the total number of node pairs, and v� the 
vector representation of the deformation gradient tensor �.

As to matrix ℍq , it is built to link the current coordinate 
vector of the nodes on the boundary of the unit cell �b to 
the current coordinate vector �q = �q+ − �q− of node pair q:

The components of matrix ℍq take one of the following 
values: 0, − 1 or 1.

Using matrices ℍq and ℚq , Eq. (38) can be re-expressed 
in a more compact form:

Thus, all the periodic constraints of the unit cell can be 
assembled in the global notation:

where global matrices ℍ and ℚ are constructed by concat‑
enation of their nodal counterparts ℍq and ℚq ( 1 ≤ q ≤ Np):

On the other hand, following the partition of the whole 
node set into subsets � and �  , Eq. (10) can be restated in 
the following form (after permutation of lines and columns 

(38)
∀ q = 1,… ,Np ∶ �q+ − �q− =

(
𝔻

T
q+

− 𝔻
T
q−

)
⋅
v� ∶= ℚ

T
q
⋅
v�,

(39)∀ q = 1,… ,Np ∶ �q = ℍq ⋅ �b.

(40)∀ q = 1,… ,Np ∶ ℍq ⋅ �b = ℚ
T
q
⋅
v�.

(41)ℍ ⋅ �b = ℚ
T
⋅
v�,

(42)ℍ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

ℍ1

⋮

ℍq

⋮

ℍNp

⎤⎥⎥⎥⎥⎥⎥⎦

; ℚ
T ∶=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ℚ
T
1

⋮

ℚ
T
q

⋮

ℚ
T
Np

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 2   Basic algorithmic steps 
for the perturbation technique



of matrix � and the corresponding components of vectors 
�̇ and �̇):

As a consequence of the microscopic equilibrium equa‑
tion (23), the internal force vector �̇𝛬 is equal to � at the con‑
vergence of the FE computations. Hence, Eq. (43) becomes:

The elimination of �̇𝛬 from Eq. (44) allows deriving the 
condensed (or reduced) stiffness matrix �̃𝛤𝛤  relating the 
boundary displacement rate �̇𝛤  to �̇𝛤:

At the convergence of incremental analysis, the matrix 
form of the macroscopic tangent modulus m�(PK1) is com‑
puted in terms of the condensed stiffness matrix �̃𝛤𝛤 , matri‑
ces ℍ and ℚ as follows [17, 43]:

Considering expression (45) of �̃𝛤𝛤  , the matrix form of 
the macroscopic tangent modulus m�(PK1) can be expressed 
as:

For the sake of brevity, only the final result of the conden‑
sation technique is given in Eq. (47). The interested read‑
ers may refer to references [17] and [43] for further details 
on how Eq. (47) is obtained. Analogous developments will 
be carried out in Sect. 5 to determine the macroscopic tan‑
gent modulus �(PK1) by the condensation method for the 

(43)
[
�𝛬𝛬 �𝛬𝛤

�𝛤𝛬 �𝛤𝛤

]
⋅

{
�̇𝛬

�̇𝛤

}
=

{
�̇𝛬

�̇𝛤

}
.

(44)
[
�𝛬𝛬 �𝛬𝛤

�𝛤𝛬 �𝛤𝛤

]
⋅

{
�̇𝛬

�̇𝛤

}
=

{
�

�̇𝛤

}
.

(45)
�̃𝛤𝛤 ⋅ �̇𝛤 = �̇𝛤 with �̃𝛤𝛤 = �𝛤𝛤 −�𝛤𝛬 ⋅�−1

𝛬𝛬
⋅�𝛬𝛤 .

(46)
m�(PK1) =

1
||V0

||
ℚ ⋅

[
ℍ ⋅ �̃−1

𝛤𝛤
⋅ ℍ

T
]−1

⋅ℚ
T .

(47)

m�(PK1) =
1

||V0
||
ℚ ⋅

[
ℍ ⋅

(
��� −��� ⋅�−1

��
⋅���

)−1
⋅ ℍ

T
]−1

⋅ℚ
T .

particular case of symmetric problems (which is the main 
theoretical novelty of the present contribution).

4.2.2 � Practical implementation

As presented in Sect. 4.2.1, the macroscopic tangent modu‑
lus �(PK1) is obtained by a condensation procedure of the 
global stiffness matrix � , which is assembled from the 
elementary stiffness matrices �el . The requested option to 
output the elementary stiffness matrices is ‘*Element Matrix 
Output’, which needs to be added in the input file. To illus‑
trate the operational aspects, a brief example of an input 
file is provided in Appendix A. After achieving the finite 
element computation, the elementary stiffness matrices 
will be stored in an external file with ‘.mtx’ extension (e.g. 
‘myMatrix.mtx’ as in the example of Appendix A). This 
file is the input of the Python codes developed to assemble 
and handle the global stiffness matrix � . Recalling that all 
the nodes of the unit cell mesh are grouped into two sets � 
and �  ; hence, a node q belongs to set �  if at least one of the 
following conditions holds:

otherwise, it belongs to set �.
In order to construct topology matrices ℚ and ℍ , the set 

of node pairs as well as the corresponding initial coordinates 
need to be identified. As illustrated in Fig. 3, nodes i and j 
make up a node pair in the Z-direction.

To identify all the node pairs in node set �  , the following 
algorithm is developed and implemented into the Python 
code.

Nodes i and j represent a node pair in X-direction, if:
xi 01 − xj 01 = ±� 0 and xi 02 = xj 02 and xi 03 = xj 03.
Nodes i and j represent a node pair in Y-direction, if:
xi 02 − xj 02 = ±� 0 and xi 01 = xj 01 and xi 03 = xj 03.
Nodes i and j represent a node pair in Z-direction, if:
xi 03 − xj 03 = ±� 0 and xi 01 = xj 01 and xi 02 = xj 02.
The components of matrix ℍ ∈ R

3Np ×R
3N� take one 

of three possible values: 0, − 1 or 1. These components can 
be determined as follows, once all the node pairs detected:

If Nodes i and j form a node pair (with i < j ), the distribu‑
tion of values 1 and − 1 in ℍ can be summarized as:

The other components of matrix ℍ , not defined by Eq. 
(49), are set to 0.

Matrix � ∈ R
9 ×R

3N�  is assembled from matrices 
�q ∈ R

9 ×R
3 , defined in Eq. (37), as follows:

(48)

x
q 01 = −� 0∕2 or � 0∕2; x

q 02 = −� 0∕2 or � 0∕2;

x
q 03 = −� 0∕2 or � 0∕2 ,

(49)

ℍ3i−2,3i−2 = 1; ℍ3i−2,3j−2 = −1,

ℍ3i−1,3i−1 = 1; ℍ3i−1,3j−1 = −1,

ℍ3i,3i = 1; ℍ3i,3j = −1.

Fig. 3   Node pairs in Z-direction



Once matrix � constructed, matrix ℚ can be determined 
by the following matrix multiplication:

With the labels of nodes belonging to sets � and �  , one 
can easily extract the four submatrices ��� , ���  , ��� 
and ���  from the global matrix � , as stated in Eq. (43). 
Thus far, all the ingredients needed to compute �(PK1) are 
prepared.

(50)

(51)ℚ = 𝔻 ⋅ ℍ
T .

4.3 � Fluctuation technique

4.3.1 � Numerical concept

Considering Eqs. (26) and (27), the following condition 
should be fulfilled at the convergence of the finite element 
iterations:

The linearization of Eq. (52), classically used in finite 
element computations, takes the form:

where D∙ is the iteration of field ∙ (in the finite element 
sense). Higher-order terms are neglected in the linearized 
form given by Eq. (53).

The linearized form (53) requires that G → 0 and DG → 0 
at the convergence of the finite element computation. Hence, 
the following iterative form can be derived from Eq. (52):

(52)G ∶= ∫
V0

[
𝜕 𝛿�per

𝜕 �0
∶�̇

]
dV0 = 0.

(53)G +DG = 0,



After finite element discretization, the periodic velocity 
�per can be obtained from the interpolation rule (similar to 
the one used in Eq. (8)):

The substitution of Eq. (55) into Eq. (54) leads to the fol‑
lowing linear algebraic system:

where the global stiffness matrix � and a fluctuation 
matrix �̂ are defined as:

where 
⋃n

el=1
 denotes the finite element assembly operator

when the unit cell is discretized by n finite elements el. It 
is worth noting that the global stiffness matrix � defined 
by Eq. (57)1 is exactly the same as the one introduced in
Eq. (10) and equal to 

[
�M +�GNL

]
 (as long as the relations

between the microscopic tangent moduli �(0) , �(2) , �(PK1) and 
�(PK2) are correctly defined).

Vector D�̇per can be obtained by solving Eq. (56):

and then iteration D
(
v �̇per

)
 can be obtained from Eq. (58) by:

On the other hand, we have the following relation:

The combination of Eqs. (59) and (60) yields:

As iteration D
(
v�̇
)
 is homogeneous over the volume V0 of

the unit cell, Eq. (61) can be reformulated as:

(54)

DG = ∫
V0

[
𝜕 𝛿�per

𝜕 �0
∶�(PK1)∶

(
D�̇ +D

𝜕 �per

𝜕 �0

)]
dV0 = 0.

(55)�per = � ⋅ �̇per.

(56)� ⋅D�̇per = −�̂ ⋅D
(
v�̇
)
,

(57)

� =

n⋃
el=1

∫
V
el
0

�T
⋅
m�(PK1) ⋅ �dVel

0
; �̂ =

n⋃
el=1

∫
V
el
0

�T
⋅
m�(PK1)dVel

0
,

(58)D�̇per = −�−1
⋅ �̂ ⋅D

(
v�̇
)
,

(59)D
(
v �̇per

)
= � ⋅D�̇per = −� ⋅�−1

⋅ �̂ ⋅D
(
v�̇
)
.

(60)

D
(
v�̇
)
=

1

||V0
|| ∫V0

D(v�̇) dV0

=
1

||V0
|| ∫V0

m�(PK1) ⋅
(
D
(
v�̇
)
+D

(
v �̇
per

))
dV0.

(61)

D
(
v�̇
)
=

1

||V0
|| ∫V0

D(v�̇) dV0

=
1

||V0
|| ∫V0

m�(PK1) ⋅
((

v�̇
)
− � ⋅�−1

⋅ �̂ ⋅
(
v�̇
))

dV0.

By comparing Eqs. (33) and (62), one can easily deduce 
that:

4.3.2 � Practical implementation

As stated by Eq. (63), the macroscopic tangent modulus 
�(PK1) consists of two main parts: the volume average of the 
microscopic moduli �(PK1) and a fluctuation part dependent 
on the global stiffness matrix � and on a global fluctuation 
matrix �̂ . Global matrices � and �̂ are obtained from their 
elementary counterparts �el and �̂el by the assembly rules 
given by Eq. (57). Elementary matrices �el and �̂el are 
dependent on �(PK1) . Hence, to ensure the accurate computa‑
tion of the macroscopic tangent modulus �(PK1) , the micro‑
scopic tangent moduli �(PK1) should be correctly defined and 
implemented. Furthermore, to determine the different ingre‑
dients required for the computation of �(PK1) by the fluctua‑
tion technique, a user element (UEL) subroutine needs to be 
used. To achieve this task, we have used the UEL developed 
in [44], after some modifications and additions. Indeed, the 
virtual work principle has been slightly modified to consider 
the Jaumann derivative of the Kirchhoff stress instead of the 
Truesdell derivative used in the initial version. After these 
modifications, the elementary stiffness matrix �el has been 
correctly computed in the UEL by adding the contribution 
of the geometric nonlinearities �GNL el (see Eq. (9)2) to the 
contribution due to material behavior �M el (see Eq. (9)1). 
As to �(PK1) , which is associated with each integration point, 
it is determined from the Jacobian matrix ������ (an out‑
put of the corresponding UMAT) by using Eqs. (7), (16) and 
(17). Once �(PK1) are determined for all the integration points 
of the element, the elementary contribution to the volume
average of the microscopic moduli ∫

V
el
0

�(PK1)dVel
0

 can be
determined by an easy integration operation, and the ele‑
mentary stiffness matrix �el and fluctuation matrix �̂el can 
be computed by the following relations:

The different elementary contributions should be output‑
ted and stored in separate files.

(62)

D
(
v�̇
)
=

1

||V0
|| ∫V0

D(v�̇) dV0

=
1

||V0
||

(
∫
V0

m�(PK1)dV0 − �̂T
⋅�−1

⋅ �̂

)
⋅D

(
v�̇
)
.

(63)m�(PK1) =
1

||V0
||

(
∫
V0

m�(PK1)dV0 − �̂T
⋅�−1

⋅ �̂

)
.

(64)

�el = ∫
V
el
0

�T
⋅
m�(PK1) ⋅ � dVel

0
; �̂el = ∫

V
el
0

�T
⋅
m�(PK1)dVel

0
.



distribution of the different phases is symmetric (see Fig. 4) 
and the behavior of each phase exhibits material symme‑
tries (isotropic or orthotropic). Without loss of generality, 
we consider a 3D unit cell occupying the initial domain 
V0 =

[
−� 0∕2, � 0∕2

]
×
[
−� 0∕2, � 0∕2

]
×
[
−� 0∕2, � 0∕2

]
  . 

This unit cell is assumed to be symmetric about three 
planes of symmetry ( x01 = 0 , x02 = 0 and x03 = 0 ), 
as displayed in Fig.  4. In this case, the study of one 
eighth of the unit cell, occupying the initial domain 

Fig. 4   RUC occupy‑
ing the initial domain 
V
r 0 =

[
0, � 0∕2

]
×
[
0, � 0∕2

]
×
[
0, � 0∕2

]
 and its correspond‑

ing FUC assumed to be sym‑
metric about three planes of 
symmetry ( x01 = 0 , x02 = 0 and 
x03 = 0)

Symmetry plane x01=0

Symmetry plane x02=0

Symmetry plane x03=0

5 � Extension to symmetric microstructures

In some applications, the studied heterogeneous media are 
made of unit cells exhibiting symmetry properties (com‑
posite materials, porous media…). Hence, it is essential 
to examine whether these symmetry properties can be 
efficiently exploited to speed up the computation of the 
overall properties of heterogeneous media. A heteroge‑
neous unit cell has symmetry properties if the geometric 



Vr 0 =
[
0, � 0∕2

]
×
[
0, � 0∕2

]
×
[
0, � 0∕2

]
 , is sufficient to 

determine the mechanical response of the full unit cell 
only if the boundary conditions on the planes of symme‑
try ( x01 = 0 , x02 = 0 and x03 = 0 ) and on the outer surfaces 
( x01 = �0∕2 , x02 = �0∕2 and x03 = �0∕2 ) are correctly 
defined. Otherwise, the results of such analyses could mis‑
lead. The use of one eighth of the unit cell (shortly called 
RUC, as reduced unit cell), instead of the full one (denoted 
as FUC), allows dividing the number of mesh elements by 
8 (for the same computation accuracy), thus considerably 
reducing the CPU time required for the computation of the 
macroscopic tangent modulus. The current section is focused 
on the theoretical extension of the perturbation and con‑
densation techniques for the determination of the overall 
moduli of RUCs. This extension is valid only if the studied 
RUCs are subjected to simple loading histories (linear and 
basic strain paths, such as diagonal strain paths or simple 
shear loadings). For more general loading histories, the use 
of the RUC model leads to some inaccuracies in the predic‑
tion of the shear components of the tangent modulus �(PK1) . 
The practical aspects related to the implementation of these 
extended techniques in the particular case of RUCs are quite 
similar to those developed for the general case (Sects. 4.1.2, 
4.2.2). These practical aspects are omitted for the sake of 
brevity.

5.1 � Perturbation technique

The suitable boundary conditions to be applied on the RUC 
to ensure the same mechanical response as that of the whole 
unit cell have been initially established by Léné [45] for 
media undergoing small strain. The developments achieved 
by Léné [45] are extended in the present contribution to 
the finite strain framework, and these extensions are used 
to construct the overall tangent modulus by the perturbation 
technique. The prescribed boundary conditions, under the 
perturbed steps, are dependent on the applied perturbation. 
The details are given in Table 1 (with � being the magnitude 
of the perturbation introduced in Sect. 4.1.1). As shown in 
this table, the boundary conditions applied on the different 
DOFs are categorized into two main families:

• DOFs subjected to a small linear displacement increment
Δui =

(
Δ�

(�)

kl
⋅ �0

)
i
 (where �0 is the initial position of the

associated node and
(
Δ�

(�)

kl
⋅ �0

)
i
 is the ith component of 

vector Δ�(�)

kl
⋅ �0);

• DOFs free from any displacement constraint ( Δui free).
In this case, the associated reaction force is obviously
equal to zero.

To better explain these boundary conditions, let us detail 
them for the perturbation Δ�(�)

11
:

• On face x01 = 0 : Δu1 =
(
Δ�

(�)

11
⋅ �0

)
1
= 0 , while the 

other DOFs are free.
• On face x01 = �0∕2 : Δu1 =

(
Δ�

(�)

11
⋅ �0

)
1
= ��0∕2 , while 

the other DOFs are free.
• On faces x02 = 0 and �0∕2 : Δu2 =

(
Δ�

(�)

11
⋅ �0

)
2
= 0 , 

while the other DOFs are free.
• On faces x03 = 0 and �0∕2 : Δu3 =

(
Δ�

(�)

11
⋅ �0

)
3
= 0 , 

while the other DOFs are free.

The perturbed stress tensors �
(
�
(�)

kl

)
 , corresponding to 

the various perturbations Δ�(�)

kl
 and required to construct the 

macroscopic tangent modulus �(PK1) column by column, are 
derived from the reaction forces applied on the boundary of 
the reduced unit cell Sr 0:

To define the different perturbation steps, the nine restart 
‘.inp’ files described in Step 2 of Box 1 need to be modified 
to integrate the difference in the boundary conditions from 
one perturbation step to another.

5.2 � Condensation technique

The development of a condensation technique pertaining to 
unit cells exhibiting symmetry properties is presented here‑
after. This development follows the general idea behind the 
same technique for full unit cells (without symmetry proper‑
ties), summarized in Sect. 4.2.1, with some main adaptations 
that are essential to account for the particularities of RUCs. 
The perturbation technique presented in Sect. 5.1 is of great 
use to ensure the theoretical extension of the condensa‑
tion technique. Unlike the original condensation technique, 
where the different columns of the overall tangent modulus 
m�(PK1) are simultaneously determined in a single matrix 
operation, the columns of the tangent modulus correspond‑
ing to the RUC are computed separately, through successive 
iterations. Indeed, the starting point of the original conden‑
sation technique consists in the partition of nodes into two 
different sets � and �  . The composition of these node sets 
is independent of the boundary conditions applied on the 
unit cell. Then, the same sets can be used to compute all the 
columns of m�(PK1) . For the extended condensation tech‑
nique, the partition of DOF sets depends on the boundary 
conditions, as shown in Table 1. Therefore, it is not possible 
to simultaneously construct all the columns of m�(PK1) by 
using the same DOF partition, and thus the computation of 

(65)

�
(
�
(𝛼)

kl

)
=

1
||Vr 0

|| ∫Vr 0

�
(
�
(𝛼)

kl

)
dVr 0 =

1
||Vr 0

|| ∫Sr 0

�0

(
�
(𝛼)

kl

)
⊗ �0 dSr 0.



the columns of m�(PK1) in successive iterations (one iteration 
for each column) is unavoidable.

In what follows, we detail how a column of m�(PK1) can 
be determined, and the same algorithm could be used to 
compute the other columns.

As a starting point of this algorithm, the DOFs of the 
nodes of the RUC mesh should be partitioned into two sets:

• Set �  : the set of DOFs on which the reaction forces are
zero. This set includes the DOFs of all the nodes in the
interior of the RUC as well as the DOFs of the nodes
on the boundary, which are free from any displacement

constraint (see Table 2 for illustration). Then, set �  is 
defined by the following equation at convergence:

where 𝐫̇� is the residual rate vector corresponding to 
DOFs in set � .

• Set � : the set of DOFs on the boundary of the RUC that
are subjected to a linear displacement. Consequently, the
vector of displacement rates corresponding to DOFs in
� , denoted �̇𝛺 , is related to the rate of the macroscopic
deformation gradient �̇ by the following matrix form
(more suitable for algorithmic treatment):

(66)𝐫̇� = 𝟎,

Table 1   Boundary conditions applied on the RUC​



where the topology matrix � is constructed in the same 
manner as matrix �q introduced in Eq. (37), but with 
DOFs in set �.

The residual rate vector corresponding to DOFs in set 
� , denoted �̇𝛺 , can be related to the vector form v�̇ of the 
macroscopic first Piola–Kirchhoff stress rate tensor (see Eq. 
(65) to understand this vector form):

(67)�̇𝛺 − �
T
⋅
v�̇ = �, Considering this partition rule, the matrix form of the 

equilibrium equation associated with the RUC can be written 
in the following form (very similar to Eq. (43)):

The linearization of Eqs. (66), (67) and (68), required for 
finite element iterations, yields:

Using Eq. (69), equation system (70) can be further 
elaborated:

Equation (71)1 allows us to express D�̇Ψ as:

At the equilibrium state, we have �̇𝛹 = � . Therefore, Eq. 
(72) can be reduced to the following form:

(69)
[
�𝛹𝛹 �𝛹𝛺

�𝛺𝛹 �𝛺𝛺

]
.

[
�̇𝛹
�̇𝛺

]
=

[
�̇𝛹
�̇𝛺

]
.

(70)

⎧⎪⎨⎪⎩

�̇𝛹 +D�̇𝛹 = � ;

�̇𝛺 − �T ⋅ v�̇ +D�̇𝛺 − �T ⋅D
�
v�̇
�
= � ;

v�̇ −
1

�Vr 0�� ⋅ �̇𝛺 +D
�
v�̇
�
−

1

�Vr 0�� ⋅D�̇𝛺 = �.

(71)
⎧⎪⎨⎪⎩

�̇𝛹 +�𝛹𝛹 ⋅D�̇𝛹 +�𝛹𝛺 ⋅D�̇𝛺 = � ;

�̇𝛺 − �T ⋅ v�̇+D�̇𝛺 − �T ⋅D
�
v�̇
�
= � ;

v�̇ −
1

�Vr 0�� ⋅ �̇𝛺 +D
�
v�̇
�
−

1

�Vr 0�� ⋅
�
�𝛺𝛹 ⋅D�̇𝛹 +�𝛺𝛺⋅D�̇𝛺

�
= �.

(72)D�̇𝛹 = −�−1
𝛹𝛹

⋅
(
�̇𝛹 +�𝛹𝛺 ⋅D�̇𝛺

)
.

Table 2   Composition of sets � , � required for the computation of the first and fourth columns of m�(PK1)

The partition into sets � and � is illustrated in Table 2 for 
the construction of the first and fourth columns of m�(PK1).

(68)
v�̇ −

1
||Vr 0

||
� ⋅ �̇𝛺 = �.



Insertion of Eq. (73) into Eqs. (71)2,3 leads to the reduced 
equation system:

Together with equation system (70), the equilibrium state 
of (74) requires:

The elimination of D�̇𝛺 in (75) allows us to obtain:

The expression of the matrix form m�(PK1) of the overall 
tangent modulus can be easily identified from Eq. (76):

6 � Numerical results

6.1 � Basic validations of the three techniques

To validate the implementation of the three techniques 
(namely, CT, FT, and PT), the numerical predictions 
obtained by these techniques are compared with those given 
by Miehe et al. [37]. Consistently, two plane composite 
microstructures are considered (width/length = 1/1). Each 
microstructure is made of a soft matrix reinforced by a stiff 
inclusion. The behavior of each phase is assumed to be iso‑
tropic linear elastic with the following elasticity parameters:

• Matrix: Em = 2081.06 MPa; �m = 0.3007.

• Inclusion: Ei = 10 Em; �i = �m.

For the first microstructure, the inclusion is a layer cen‑
tered in the middle of the composite and occupying 1/3 of 
the total volume (Fig. 5). As to the second microstructure, 
the associated inclusion is a centered cylindrical fiber and 
its volume fraction is equal to 12.56% (Fig. 6).

To compute the macroscopic tangent moduli by the dif‑
ferent techniques, a plane strain loading has been applied 
on the two analyzed microstructures (the same as the one 
defined in [37]). This macroscopic loading is defined by the 
following deformation history:

(73)D�̇𝛹 = −�−1
𝛹𝛹

⋅�𝛹𝛺 ⋅D�̇𝛺.

(74)
{

�̇𝛺 − �T ⋅ v�̇ +D�̇𝛺 − �T ⋅D
(
v�̇
)
= � ;

v�̇ −
1

|Vr 0|� ⋅ �̇𝛺 +D
(
v�̇
)
−

1

|Vr 0|� ⋅
(
�𝛺𝛺 −�𝛺𝛹 ⋅�−1

𝛹𝛹
⋅�𝛹𝛺

)
⋅D�̇𝛺 = �.

(75)

{
D�̇𝛺 − �T ⋅D

(
v�̇
)
= � ;

D
(
v�̇
)
−

1

|Vr 0|� ⋅
(
�𝛺𝛺 −�𝛺𝛹 ⋅�−1

𝛹𝛹
⋅�𝛹𝛺

)
⋅D�̇𝛺 = �.

(76)

D
(
v�̇
)
−

1
||Vr 0

||
� ⋅

(
�𝛺𝛺 −�𝛺𝛹 ⋅�−1

𝛹𝛹
⋅�𝛹𝛺

)
⋅ �

T
⋅D

(
v�̇
)
= �.

(77)
m�(PK1) =

1
||Vr 0

||
� ⋅

(
��� −��� ⋅�−1

��
⋅���

)
⋅ �

T .

(78)

Initial state: �(0) =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦
→ final state: �

�
tf
�
=

⎡
⎢⎢⎣

1.03 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦
,

with tf  corresponding to the end of the loading history, and 
the deformation gradient � being assumed to evolve linearly 
between �(0) and �(tf ).

In this case, we report and compare the in-plane compo‑
nents of the macroscopic moduli �(PK1) stored in matrix �̃:

The difference between the results from [37] and our pre‑
dictions obtained by the three techniques is quantified by a 
scalar indicator m defined as:

where �̃Ref  and �̃ denote the overall modulus determined in 
reference [37] and that computed by our predictions at the 
end of the loading history, respectively.

6.1.1 � Microstructure with centered layer

To investigate the effect of mesh discretization on the pre‑
diction of the tangent modulus, this microstructure is dis‑
cretized by two different meshes: Mesh 1 made of 36 finite 
elements, as displayed in Fig. 5a, and Mesh 2 composed of 
144 finite elements, as shown in Fig. 5b.

The components of �̃ obtained by the different techniques 
(namely, CT, FT, and PT) with the two meshes (Mesh 1 and 
Mesh 2) are reported in Table 3. For the three techniques, the 
predictions are almost insensitive to the mesh density, thus 
confirming the earlier observations made in reference [37]. 
Moreover, the three techniques provide the same results with 
indicator m very close to 1, thus implying that our predic‑
tions are very close to those given in [37].

6.1.2 � Microstructure with centered cylindrical fiber

In this case, the unit cell is discretized by 700 elements 
(Fig. 6).

(79)�̃ =

⎡
⎢⎢⎢⎢⎢⎣

C
(PK1)

1111
C
(PK1)

1122
0

C
(PK1)

2211
C
(PK1)

2222
0

0 0 C
(PK1)

1212

⎤
⎥⎥⎥⎥⎥⎦

.

(80)

m = ‖‖�̃‖‖∕‖‖‖�̃
Ref‖‖‖ =

(
3∑
i=1

3∑
j=1

(
C̃ij

)2
)1∕2

∕

(
3∑
i=1

3∑
j=1

(
C̃
Ref

ij

)2

)1∕2

,



As reported in Table 4, the results obtained by CT, FT, 
and PT are almost identical and very close to the reference 
values. These results provide additional validation of our 
implementations.

6.2 � More advanced validations of the three 
techniques

In the previous section, some basic validations of the three 
techniques have been conducted by comparing our predic‑
tions with the results presented in [37]. It appears from 
this preliminary study that all of the three techniques accu‑
rately predict the macroscopic tangent modulus. Thus, the 

accuracy and reliability of the implementation of the three 
techniques are partially validated. In this section, attention 
is focused on evaluating the computational performances 
of the three techniques, by considering two microstructure 
examples:

• Microstructure with cubic inclusion: the geometry is
characterized by a cube containing a stiff cubic inclusion
in the center, which occupies 20% of the total volume
(Fig. 7a). This microstructure is discretized by 1000 finite
elements.

• Microstructure with elliptical cylindrical fiber: the geom‑
etry is characterized by a cube containing a stiff elliptical
cylindrical fiber in the center, which occupies 12.6% of
the total volume (Fig. 7b). The fiber is aligned in the
Z-direction and its cross section is an ellipse with aspect
ratio (long axis/short axis) equal to 2. This microstruc‑
ture is discretized by 2176 finite elements.

For the two cases, the mechanical behavior of the matrix
and the inclusion are assumed to be elastoplastic and linear 
elastic, respectively:

• The matrix elasticity and hardening parameters are:

• The inclusion elasticity parameters are:

The two microstructures are subjected to the following 
deformation history:

E
m
= 210 GPa ; �

m
= 0.3 ;

isotropic hardening law: �
y
= 362.99

(
0.008 + �p

eq

)0.184

.

Ei = 10 Em ; �i = �m.

(81)

Initial state: �(0) =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦
→ final state:

�
�
t
f

�
=

⎡⎢⎢⎣

1.2 0 0

0 0.91287 0

0 0 0.91287

⎤⎥⎥⎦
,

Fig. 5   The finite element discretization of microstructure with cen‑
tered layer: a Mesh 1; b Mesh 2

Fig. 6   The finite element discretization of microstructure with cen‑
tered cylindrical fiber

Table 3   Components of matrix 
�̃ for the two meshes of the 
microstructure with centered 
layer

Reference [37] CT FT PT

Mesh 1 Mesh 2 Mesh 1 Mesh 2 Mesh 1 Mesh 2 Mesh 1 Mesh 2

C̃11
78,682.6 78,682.6 78,564.6 78,564.4 78,564.6 78,564.4 78,564.5 78,564.5

C̃22
4204.0 4204.0 4189.5 4189.5 4189.5 4189.5 4189.5 4189.5

C̃12
1815.9 1815.9 1801.5 1801.5 1801.5 1801.5 1801.5 1801.5

C̃33
1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0

m 1.000 1.000 0.998 0.998 0.998 0.998 0.998 0.998



with tf  corresponding to the end of the loading history, and 
the deformation gradient � being assumed to evolve linearly 
between �(0) and �(tf ).

During the general finite element computations, the exter‑
nal files required to compute the overall tangent moduli are 
automatically created and filled. Based on these external 
files, the developed Python scripts are executed. For CT, 
the required external file is the ‘.mtx’ file, which contains 
the elementary stiffness matrices �el at each n converged 
increments (with n being the record frequency, as shown 
in Appendix A). For FT, besides this ‘.mtx’ file, two other 
‘.txt’ files are required, which contain the micro tangent 
moduli �(PK1) for all the integration points and the elemen‑
tary fluctuation matrices �̂el . For PT, the external files are 
the database needed to conduct the restart analysis. This 
data includes the ‘.res’, ‘.mdl’ and ‘.stt’, ‘.prt’, ‘.odb’ files, 
as well as the ‘.sim’ files. Some practical aspects related to 
the execution of the Python scripts can be found in Sect. 4 
and in the appendices. Note that the disk space allocated for 
the generated external files, and the CPU time spent for the 
tangent modulus computations increase with the complexity 
of the studied microstructures. Therefore, the evaluation of 
the computational efficiency is twofold: the required disk 
space and CPU time. These computations were made on 
eight parallelized cores allocated in cluster computer.

6.2.1 � Microstructure with a cubic inclusion

The mechanical behavior of the two phases is assumed to 
be isotropic (for both elasticity and plasticity), and the von 
Mises yield function is used to compute the equivalent stress 
from the stress tensor. The evolution of the components 
C
(PK1)

1111
 , C(PK1)

2222
 , C(PK1)

1122
 , and C(PK1)

1212
 obtained by CT, FT, and 

PT are reported in Fig. 8. It is clear from this figure that 
the three techniques give identical results, thus providing 
additional validation of our implementation.

The overall modulus �(PK1) is evaluated at each 
Δt = 0.01 tf  (see Eq. (81)). Then, �(PK1) is computed 100 
times during the loading history. As shown in Table 5, PT 
consumes more disk space and CPU time than CT and FT. 
This result is expectable considering the fact that ten finite 
element computations are required when the PT is used, 

against only a single computation for the other techniques. 
Despite the fact that the nine finite element steps required 
to numerically construct the overall tangent modulus by the 
PT are linear (hence, relatively quick to be run), the CPU 
time consumed by the computations in this case remains 
relatively high. Even though there is no much difference 
between the CPU times consumed by CT and FT, the exter‑
nal file size required by FT is almost twice that required by 
CT. This result is also expectable considering the amount of 
data to be outputted when the FT is applied.

6.2.2 � Microstructure with elliptical cylindrical fiber

In this case, the plastic behavior of the matrix is 
assumed to be anisotropic and it is modeled by the 
Hill’48 yield function with Lankford coefficients 
r0 = 0.585 ; r45 = 0.571 ; and r90 = 0.766 . The evolutions 
of the components C(PK1)

1111
 , C(PK1)

2222
 , C(PK1)

1122
 , and C(PK1)

1212
 obtained 

by the three implemented techniques are plotted in Fig. 9. 
This figure confirms once again that the three techniques 
provide identical results.

The overall tangent modulus is evaluated at each 
Δt = 0.04 tf  (see Eq. (81)). As shown in Table 6, PT con‑
sumes much more CPU time and requires the largest disk 
space. Also, as previously shown, CT appears to be the most 
efficient in terms of CPU times and external files.

6.3 � Numerical assessment of extended formulation 
of condensation technique in symmetric 
microstructures

We have presented in Sect. 5 the extended formulations of 
CT as well as of PT for the case of symmetric microstruc‑
tures. In the same way as in the previous Sect. 6.2, the com‑
parison between the performances of extended CT and PT 
has been conducted for reduced unit cells (RUC). The results 
of such a comparison (not shown here for brevity) reveal that 
the performance difference between CT and PT is similar to 

Table 4   Components of matrix �̃ for the microstructure with centered 
cylindrical fiber

Reference [37] CT FT PT

C̃11
3413.1 3400.7 3400.7 3400.8

C̃22
3413.1 3400.8 3400.8 3400.8

C̃12
1415.1 1407.2 1407.2 1407.2

C̃33
960.1 958.8 958.8 958.9

m 1.000 0.996 0.996 0.996

Fig. 7   Two typical composites discretized by finite elements: a 
Microstructure with cubic inclusion; b microstructure with elliptical 
cylindrical fiber



the case of original formulations with full unit cells (FUC) 
(which have been reported in Tables 5 and 6). Consequently, 
attention is confined in this subsection to the performance 
analysis of the extended CT. The objective is to compare the 
performance of the extended formulation with RUC to the 
performance of the original formulation with FUC.

To assess the performance of the extension of CT to 
problems exhibiting symmetry properties (Sect. 5), let us 
consider the microstructure with elliptical cylindrical fiber. 
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Fig. 8   Evolution of the components of modulus �(PK1) obtained by CT, FT, and PT for microstructure with a cubic inclusion: a C(PK1)

1111
 ; b C(PK1)

2222
 ; 

cC(PK1)

1122
 ; d C(PK1)

1212

Table 5   Performance of the different techniques in terms of allocated 
space disk and CPU time for microstructure with cubic inclusion

CT FT PT

External files (GB) 3.979 7.654 11.087
CPU time (min) 82 85.1 111.64



The RUC is discretized by 272 elements (Fig. 10) versus 
2176 elements for FUC (Fig. 7b). The material parameters 
of both phases (matrix and inclusion) are the same as those 
provided in Sect. 6.2.

Both FUC and RUC are subjected to the following defor‑
mation history:
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Fig. 9   Evolution of the components of modulus �(PK1) obtained by CT, FT, and PT for microstructure with an elliptical cylindrical inclusion: a 
C
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 ; c C(PK1)

1122
 ; d C(PK1)

1212

Table 6   Performance of the different techniques in terms of allocated 
space disk and CPU time for microstructure with elliptical cylindrical 
fiber

CT FT PT

External files (GB) 2.064 3.977 4.48
CPU time (min) 24 26.7 40.5



which corresponds to a simple shear test.
(82)

Initial state: �(0) =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
→ final state: �

�
tf
�
=

⎡⎢⎢⎣

1. 0.2 0

0 1. 0

0 0 1.

⎤⎥⎥⎦
,

The distribution of the von Mises equivalent stress and 
the maximum principal logarithmic strain obtained for both 
unit cells (namely FUC and RUC) at the end of the loading 
are displayed in Fig. 11. As clearly shown in this figure, 
the two unit cell configurations give very close mechanical 
responses. These results prove the reliability and accuracy 
of the boundary conditions applied on the boundary of the 
RUC, as summarized in Table 1.

Figure 12 provides the evolution of components C(PK1)

1111
 , 

C
(PK1)

2222
 , C(PK1)

1122
 , and C(PK1)

1212
 as predicted by both the original 

CT with FUC and the extended CT version with RUC. The 
perfect agreement between the predictions observed in this 
figure clearly demonstrates that the extended condensation 
technique is correctly implemented and is reliable.

The overall tangent modulus is evaluated at each 
Δt = 0.04 tf  . As shown in Table  7, the use of the RUC 
instead of the FUC for the computation of the macroscopic 
tangent modulus allows dividing the size of external files by 
8 and the CPU time by 13. This means that the RUC model 
greatly improves the computational efficiency. It is worth 
noting that, for CT, the CPU time is essentially consumed 
by the process of inverting large matrices. In the present 
comparative study, the element number used for the RUC 
model is reduced by a factor of 8, compared to the FUC 
model, which leads to a strong reduction in the stiffness 

Fig. 10   RUC with elliptical cylindrical fiber

Fig. 11   Mechanical responses for both unit cells: a contour plot of the von Mises equivalent stress for the FUC; b contour plot of the von Mises 
equivalent stress for the RUC; c contour plot of the maximum principal logarithmic strain for the FUC; d contour plot of the maximum principal 
logarithmic strain for the RUC​



matrix dimension (reduction by a factor of 43.84 in the cur‑
rent model). This strong size reduction induces a significant 
decrease in the computational effort. This comparison high‑
lights the great interest of using the RUC model when the 
microstructure exhibits symmetry properties.
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Table 7   Disk space and CPU time required for the use of CT with 
FUC and RUC​

FUC RUC​

External files (GB) 2.064 0.26
CPU time (min) 24 1.8



7 � Summary and conclusions

In this paper, three numerical techniques used to compute 
the overall tangent moduli for periodic unit cells have been 
briefly presented and implemented within ABAQUS/Stand‑
ard by developing a set of Python scripts. Several conclu‑
sions can be drawn on the basis of the study conducted to 
compare the different techniques:

• The perturbation technique can be carried out by using
only the Homtools (for the application of the periodic
boundary conditions and the macroscopic loading) and
the Python scripts that we have developed. Hence, addi‑
tional subroutines or tools (such as UMAT or UEL) are
not essential for the computation of the overall tangent
moduli by this technique. The numerical predictions
reveal that PT is the most expensive both in terms of
CPU time and external file storage. The high CPU time
is attributable to the necessity to perform ten finite ele‑
ment computation steps (1 general step and 9 perturba‑
tion steps) for each computation of the tangent modulus.

• To implement and run the fluctuation technique, a user
element (UEL) subroutine needs to be used. This limits
the potential use of this method by the ABAQUS users’
community. Furthermore, even though this technique
does not consume excessive CPU time, the disk space
occupied by the external files generated by this method
remains relatively large as compared to the case of the
condensation method.

• Compared to the latter techniques, the condensation tech‑
nique seems to be easier to operate and reveals to be
timesaving. To use this technique in conjunction with
inelastic behavior, a user material (UMAT) subroutine
should be used. Moreover, this technique has been suc‑
cessfully extended to explore microstructures exhibiting
symmetry properties, and the interest of this extension
has been highlighted through some numerical predic‑
tions.

Thus, this paper provides valuable reference guidelines
to ABAQUS/Standard users for the determination of the 
homogenized tangent moduli of linear or nonlinear heteroge‑
neous materials, such as composites, polycrystalline aggre‑
gates and porous solids. The techniques and tools developed 
in this paper could be used, after some adaptations, in con‑
nection with other commercial FE software packages.

Acknowledgements  The first author is grateful to the China Scholar‑
ship Council for providing him a PhD grant during the preparation of 
this work.

Appendix A: Typical input file to output 
elementary stiffness matrices

In this example, the statements in red are required to be 
added to the input file. In this additional part, ‘Nel’ and 
‘Frequency = n’ denote the total number of elements and 
the frequency of record of the elementary stiffness matrices 
(each ‘n’ increments).

…

** ASSEMBLY

**

*Assembly, name=Assembly

…

*Elset, elset=Set-1, internal, instance=Part-1-1, Generated

1, Nel, 1

*End Assembly

…

** STEP: Step-1

**

*Step, name=Step-1, nlgeom=YES, inc=50000

…

*Element Matrix Output, Elset=Set-1, File Name=myMatrix, Frequency=n, Output File=User Defined,

Stiffness=Yes

*End Step



Appendix B: Some sections of Python scripts
B.1. The perturbation technique 

#=================================================================================== 

# A restart file with perturbation (magnitude 10-6) for component 11 of F, restart from increment 400 of step 1 

#=================================================================================== 

*Heading

*RESTART, READ, STEP=1, INC=400, END STEP
** ----------------------------------------------------------------

**

** STEP: Step-2

**

*STEP, PERTURBATION

*Static

**

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Displacement/Rotation

*Boundary

Set-1806, 1, 1, 1e-06

Set-1806, 2, 2

Set-1806, 3, 3

** Name: BC-2 Type: Displacement/Rotation

*Boundary

Set-1807, 1, 1

Set-1807, 2, 2

Set-1807, 3, 3

** Name: BC-3 Type: Displacement/Rotation

*Boundary

Set-1808, 1, 1

Set-1808, 2, 2

Set-1808, 3, 3

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step



B.2. The condensation technique

#==============================================================================

# This function is capable of computing macro moduli at increment i

#==============================================================================

def macro_tangent(labelA,i,dictionary): # labelA is an array used to store the labels of nodes in interior

initial_Ki=np.asarray(initial_Ki)

Kab=np.delete(Kaa_Kab,aaindex,axis=1)

Kba=Kab.transpose()

Kbb=np.delete(initial_Ki,aaindex,axis=0)

Kbb=np.delete(Kbb,aaindex,axis=1)

inv_KaaKab=np.linalg.solve(Kaa,Kab)

bb=np.dot(Kba,inv_KaaKab)

condense_Kbb=Kbb-bb

inv_condense_Kbb=linalg.pinvh(condense_Kbb)

effective_K_temp=np.dot(dot(P,inv_condense_Kbb),PT)

effective_K=linalg.pinvh(effective_K_temp)

#==============================================================================

# Compute C

#==============================================================================

C=(1/V)*(np.dot(dot(Q,effective_K),QT))

dictionary[i]=[C]

#==============================================================================

num_proc=15 # specify the number of processor

manager = multiprocessing.Manager()

dictionaryP=manager.dict()

#==============================================================================

# Parallel for the calculation

#==============================================================================

for ii in range (0,incnum,num_proc):

currentUpLimit=ii+num_proc

if (currentUpLimit>incnum):

currentUpLimit=incnum

processes = [multiprocessing.Process(target= macro_tangent,args=(labelA,kk,dictionaryP))

for kk in range(ii,currentUpLimit)]

[process.start() for process in processes]

[process.join() for process in processes]

#==============================================================================

# Write C into a ".txt" file

#==============================================================================

fo = open("C-con.txt", "w")

for jj in range (incnum):

L=dictionaryP[jj]

fo.write('inc=')

fo.write('%d\n'%incnum_sav[jj])

for kk in range(9):

fo.write('%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\n'\%(L[0][kk][0],L[0][kk][1],

L[0][kk][2],L[0][kk][3],L[0][kk][4],L[0][kk][5],L[0][kk][6],L[0][kk][7],L[0][kk][8]))

fo.close()



B.3. The fluctuation technique

#==============================================================================

# This function is capable of computing the softening part and macro moduli, at increment j

#==============================================================================

def softeningpart(j,dictionary):

C=np.zeros((9,9))

initial_Kj=np.asarray(initial_Kj)

initial_Lj=np.asarray(initial_Lj)

#==============================================================================

# Compute C

#==============================================================================

inv_initial_Kj=linalg.pinvh(initial_Kj)

softeningpart=np.dot(dot(initial_LjT,inv_initial_Kj),initial_Lj)

for i in range(elenum):

C=C+C_ele[i]

C=C/V-softeningpart/V

dictionary[j]=[C]

#==============================================================================

num_proc=15 # specify the number of processor

manager = multiprocessing.Manager()

dictionaryP=manager.dict()

#==============================================================================

# Parallel for the calculation

#==============================================================================

for ii in range (0,incnum,num_proc):

currentUpLimit=ii+num_proc

if (currentUpLimit>incnum):

currentUpLimit=incnum

processes = [multiprocessing.Process(target= softeningpart,args=(kk,dictionaryP)) for kk in 

range(ii,currentUpLimit)]

[process.start() for process in processes]

[process.join() for process in processes]

#==============================================================================

# Write C into a ".txt" file

#==============================================================================

fo = open("C-flu.txt", "w")

for jj in range (incnum):

L=dictionaryP[jj]

fo.write('inc=')

fo.write('%d\n'%incnum_total[jj])

for kk in range(9):

fo.write('%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\t%10.3f\n'\%(L[0][kk][0],L[0][kk][1],L[0][

kk][2],L[0][kk][3],L[0][kk][4],L[0][kk][5],L[0][kk][6],L[0][kk][7],L[0][kk][8]))

fo.close()
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