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A B S T R A C T

A generic methodology to deal with the mechanics of beams and shafts with cracks is presented. The elastic 
energy of the system under static loading is written in a comprehensive manner to remarkably reduce the 3D 
computations indispensable to the identification of the crack breathing mechanism. With a new reformulation of 
the problem, the breathing mechanism identification is distilled down to the computation of a dimensionless 
function that gives a fine and precise description of the system flexibility evolution when the crack breathes. This 
breathing function is exclusively inherent to the crack geometry and completely independent of the 3D model 
parameters which makes the approach more universal and could be applied straightforward to similar problems. 
This standard and generic methodology is completed by a detailed description of the technique of construction of 
a Cracked Beam Finite Element. Moreover, we give a nonlinear fitting formula of the identified function that all 
the process of identification could be skipped when a cracked transverse section is to be inserted in a beam-like 
model of a cracked shaft. A validation of the approach under static loading is given for a cantilever beam with 
one, then two cracked transverse sections. We also show, for a simple cracked shaft, common features of its 
vibrational behavior.   

1. Introduction

The vibration analysis of cracked rotating shafts is a problem of great
interest in many engineering fields. In fact, these expensive structures 
are omnipresent in sectors like aeronautics, aerospace, and power gen
eration where they are often operated at high thermo-mechanical stress 
levels in cracking-prone environment. With the relentless world’s de
mand for energy, turbines in power plants are becoming larger and more 
highly stressed. Thus, the risk of cracking induced catastrophic failure is 
increasing also. For these reasons, important efforts have been made 
internationally in the last three decades to produce relevant analytical, 
experimental and numerical results of cracked rotating shafts behavior 
((Kushwaha and Patel, 2020), (Dimarogonas, 1996), (Bachschmid et al., 
2009), (El Arem, 2006)). 

In exploring the mechanics of cracked rotating shafts, three aspects 
need to be distinguished and understood to develop reliable procedures 
of analysis: 

1. The first one is the determination of the crack induced local flexi
bility. In fact, a crack in a transverse section introduces a local loss of
stiffness as per the fracture mechanics theory.

2. The second one is the crack breathing mechanism: When the shaft
rotates, the crack opens or closes depending on the stress field
developed around. And the resulting additional flexibility should be
identified for all angular positions. The modeling and identification
of this breathing mechanism are crucial since it measurably affects
the vibrational behavior of the system which helps in crack
detection.

3. The third aspect is the exploration of the vibrational response of the
system to clearly identify the crack signature and suggest parameters
that could help in developing an efficient methodology for early
crack detection.

In modeling and identifying the additional flexibility due to a crack
affecting a shaft transverse section, we can mainly distinguish three 
families of models: 

1. Dimarogonas and his co-workers ((Dimarogonas, 1996), (Dimar
ogonas and Massouros, 1981), (Papadopoulos, 2008)) have initiated
the first and oldest family of models in the 1970’s. The local aspect of
cracking is taken into account by the nodal representation of the
cracked transverse section. The approach is based on linear fracture
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mechanics (LFM) principles and allows the calculation of the addi
tional flexibility due to an open crack presence (Dimarogonas and 
Papadopoulos, 1983). However, errors arise when the breathing 
mechanism of the crack is considered as discussed in (Darpe et al., 
2004) where a modification to the original method has been pre
sented. This method could not be used when the crack depth exceeds 
the transverse section radius as discussed in (Papadopoulos, 2004). 

2. The second method has been initiated at the Research and Devel
opment Department of Electricité De France (EDF) by (Andrieux and 
Varé, 2002). The cracked transverse section of the shaft is modeled 
by a lumped element whose behavior is identified based on 3D 
computations. In this case, the partial opening/closing of the crack is 
allowed. Using a similar energy formulation of the problem (El Arem 
and Maitournam, 2008), at Solid Mechanics Laboratory (LMS) of 
École Polytechnique in France, presented an elegant method to 
construct a Cracked Beam Finite Element (CBFE) to examine vibra
tional behavior of rotating shafts and overcome the problem of 
inverting the flexibility matrix when the crack is completely closed 
(additional flexibility is zero). A new family of models that we have 
called the EDF-LMS approach was born. Here, the key idea is the 
identification of an equivalent nonlinear beam − like model by 
smartly using Finite Element (FE) computations on the complete 3D 
model. With the EDF − LMS modeling procedures, it is possible to opt 
for a nodal representation of the cracked section ((Andrieux and 
Varé, 2002), (El Arem, 2006), (El Arem, 2009), (El Arem and 
Nguyen, 2012)) or to consider a beam element with a crack at mid −

span ((El Arem and Maitournam, 2008), (El Arem, 2009), (El Arem 
and Ben Zid, 2017)). With the second choice, like in this article, the 
additional energy due to the crack is distributed on the entire beam 
element around the cracked transverse section.  

3. The third method called FLEX model and described in detail in
(Bachschmid et al., 2007) has been developed by Bachschmid and his 
co-workers at Politecnico di Milano in Italy. This approach seems to be 
more accurate when compared to the LFM − based approach of 
Dimarogonas and his co-workers as reported in the book of (Bach
schmid et al., 2010). Like with the EDF − LMS approach, the main 
idea of the FLEX model is to identify an equivalent beam model from 
3D accurate finite element computations. With the FLEX model, the 
stiffness matrix of the beam element assumes a constant second 
moments of area along the element length lc which depends on the 
angular position of the crack (open/closed parts of the crack). 

1.1. Aim and plan of the article 

In this article, we continue to improve the EDF − LMS approach to 
make it a more comprehensive and generic methodology in dealing with 
beams and shafts with cracks. We already have started the generaliza
tion of the approach in a recent article ((El Arem and Ben Zid, 2017)) 
where the problem was formulated to write the total elastic energy of the 
system as a function of the applied forces instead of bending moments. 
By giving an approximate formula of the extracted additional flexibility 
due to the crack breathing, we have shown that the procedure of iden
tification could be skipped which would allow a significant effort saving 
for those who would have adopted the approach. This work represents a 
continuation and a significant step in the process of generalization of the 
methodology behind the EDF − LMS family of models. In fact, in 
addition to being able to consider a crack of any shape, the possibility of 
having a crack located at any position along the shaft axis will be given. 
We are not limited by a crack at mid − span of the shaft like in (El Arem 
and Ben Zid, 2017). This becomes possible by constructing a CBFE that 
could be assembled with other beam finite elements (cracked or not) to 
model a beam or a shaft with cracks. In (El Arem and Maitournam, 
2008), we have presented a similar work that will be improved in this 
article. In fact, the problem reformulation leads to a dimensionless 
additional flexibility due to the crack presence which is completely 

independent of the 3D model parameters: The new identified breathing 
mechanism is intrinsic to the cracked transverse section. 

In section 2, after reformulating the problem, we give a detailed 
description of the procedure of the crack breathing mechanism identi
fication. At the end of this section, we will discuss the Saint-Venant 
problem to give the minimum slenderness of the 3D model required 
for the identification procedure to be valid. 

All the steps of the CBFE construction are detailed in section 3. 
Explicit relations are established between the identified flexibility of the 
cracked transverse section and the CBFE stiffness matrix coefficients. 

The validation of the approach is given in section 4 where two cases 
are considered. In the first one, we consider a structural element with 
one single cracked transverse section. For the second example, we 
consider two cracked transverse sections affecting the same structure. 
Section 5 is devoted to the examination of the crack presence on the 
rotating shaft dynamics. 

In section 6, we briefly summarize the presented work and the ob
tained results. Afterwards, general conclusions on the approach are 
given with some perspectives to help in structures health monitoring by 
early crack detection. 

2. Breathing mechanism identification

This section is devoted to the identification of the breathing mech
anism of the crack when the structure rotates. To represent the crack 
behavior with precision, we consider the three − dimensional (3D) finite 
element model of the cracked shaft given in Fig. 1. 

The cylinder of axis (oz), radius R, length L, is containing, at mid −

span, a cracked transverse section. The structural element, clamped at 
its left end (z = 0), is subjected at z = L to an end force F = (Fξ,Fη). In 
previous works ((Andrieux and Varé, 2002), (El Arem and Maitournam, 
2008)), a couple of bending moments was applied at the free end of the 
structural element. We have reformulated the problem since in a 3D 
model applying a vector of forces is more straightforward than a couple 
of moments. 

Under the following assumptions:  

1. Static loading
2. Small displacements and small deformations,
3. Linear elastic and isotropic material,
4. Transverse cracks of any shape and in any number,
5. Unilateral contact without friction between the crack lips,
6. The crack is completely closed in the unstressed configuration.

The elastic complementary energy function could be written in a way
to distinguish the contribution of the cracked transverse section from 
that of the non − cracked parts, that is: 

W∗(F)=W∗
s (F) + w∗

c (1) 

For the slender structural element considered here, the elastic energy 

Fig. 1. The current 3D model.  



of the non − cracked parts, W∗
s (F), could be approximated by the 

equivalent elastic beam energy. We write: 
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is the quadratic moment of inertia and E the Young’s modulus of the 
material. We have shown in (El Arem, 2009) that the breathing mech
anism of the crack depends mainly on the resultant bending moments at 
the cracked transverse section of the shaft. Also, in this article, we 
wanted to remove the dependence of w∗

c on L that the identified 
breathing mechanism becomes intrinsic to the cracked transverse sec
tion as proposed by (El Arem and Ben Zid, 2017). With this in mind, the 
additional elastic energy due to the crack could be written as: 

w∗
c =w∗

c(M)=
2
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(3)  

where M = (Mξ,Mη) is the resulting couple of bending moments at the 

cracked transverse section 
(

z = L
2

)

. H(M) is a dimensionless coefficient 

depending on M that concentrates the crack breathing mechanism 
description. 

Also, it was shown in ((Andrieux and Varé, 2002), (El Arem, 2006)) 
that the breathing mechanism of the crack is independent of the bending 
moment module ||M|| and depends only on its direction. This property is 
due to the fact that, with the assumptions given above, the contact 
surfaces area depends only on the bending moment direction. Therefore, 
by choosing 

M=(cos(Φ), sin(Φ)), with Φ ∈ [0, 2π[

the additional energy due to the crack could be written as: 

w∗
c =w∗

c(M) =
2

3πER3 H(Φ) (4) 

We can notice here that by exploiting the elastic energy properties, 
the breathing mechanism characterization is reduced to the computa
tion of the function H(Φ) for Φ varying in [0, 2π[. H is a measure of the 
open parts of the crack. It is zero when the crack is completely closed. 

2.1. Identification procedure of the dimensionless flexibility H 

3D computations have been carried out to determine H for the case 
presented in Fig. 1. The structure contains a crack with a rectilinear tip 
at mid − span. Of course, the process will remain unchanged when a 
different crack shape is considered like cracks with elliptical front which 
could be more realistic in some situations (Han and Chu, 2011). 

2.2. Energy of the problem 

The clamped shaft element is subjected to F at its free end, and the 
angle Φ is varied in [0,2π[. The identification of H also requires the 
realization of similar computations on the non − cracked structure. 
Knowing the external force vector (F) and the displacement vector (u) at 
the free end, it becomes possible to quantify the total work of the 
external forces which is equal to the stored elastic energy and given by: 

1
2

F⋅u  

with this formula of Clapeyron we evaluate W∗
s and of the non − cracked 

and the cracked structures, respectively. w∗
c is obtained by: 

w∗
c(Φ)=W∗(Φ) − W∗

s (Φ) ​ , ∀Φ ∈
[
0, 2π

[
(5)  

then H is computed using: 

H(Φ)=w∗
c(Φ)

3πER3

2
​ , ∀Φ ∈

[

0, 2π
[

(6) 

All the computations presented in this article have been carried out 
on cracks with straight tip similar to Fig. 1(b). 

In Fig. 2 we show that the evolution from totally open to totally 
closed crack is smooth and regular. For cracks with a relative depth 
a
R < 1.0, the crack is fully open when Φ = 3π

2 and closes completely on an 
interval around Φ = π

2, cf. Fig. 2(a). In fact, shallow cracks may remain 
totally into the compressed part of the cracked cross section when Φ is 
around π

2 before going gradually into the taut zone and start to open. 
Consequently, the shallower the crack, the wider the interval of total 
closing around Φ = π

2 which is confirmed by the 3D computations. When 
a
R = 1, the crack opens totally only at Φ = π

2. 
For deep cracks with a

R > 1.0, Fig. 2(b) shows that we can consider 
that they close completely at Φ = π

2 where we have an absolute minimum 
of H. In fact, because of the crack, the neutral axis (axis with no longi
tudinal stresses) is not located at the geometric centroid like in the 
classical elastic beam theory. Thus, we do not have a taut half − section 
and a compressed half. Also, deep cracks open totally at Φ = 3π

2 for the 
same reason. 

In (El Arem and Ben Zid, 2017), it was noticed that deep cracks like 
described above never close completely. The difference with the current 
work is that the forces considered in (El Arem and Ben Zid, 2017) are 
applied at the cracked transverse section, and the system energy is 
computed using the corresponding displacements. We think that by 
having, like here, the applied forces far from the cracked section, the 
problem solution (displacements, stress and strain fields) are less 
disturbed by the crack presence as per the Saint − Venant theorem. 

Fig. 2. Dimensionless flexibility H.  



2.3. The induced Saint-Venant problem 

A question is always raised when it comes to identifying a beam 
model from 3D representation: From which slenderness (ratio L

D here) 
does the identified behavior become invariable ? It is a Saint-Venant 
problem as discussed in (Palamà, 1976; El Arem, 2006) and the 
answer is given in Fig. 3 where it is clear that from LD ≥ 2.0 the additional 
flexibility coefficient H becomes independent of the structure 
slenderness. 

2.4. Approximation of H 

For those who will have adopted the EDF − LMS approach, we give, 
in this section, an approximation of H for cracks with rectilinear tip and 
depths to a

R = 1.30. 
In Fig. 4 we present the maximum of additional flexibility coefficient 

for Φ ∈ [0, 2π[ (max(H)) as a function of the relative depth of the crack 
(

a
R

)
. By adopting a polynomial fitting we wrote: 
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R

)
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R

)
=
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(7) 

Also, we have found that a good fitting of the values of H would be: 
with Q a polynomial function of a

R given by: 
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R
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Coefficients ci and qi are given in Table 1. 
In Fig. 5 we can see that the nonlinear fitting of H using (8) produces 

an excellent fitting for cracks with rectilinear tip and width up to a
R =

1.30. 
Now that we have identified the additional elastic energy due to a 

crack presence in a slender structure, it becomes possible to relate the 
applied forces to the (dual) displacements for any similar cantilever 
beam with a crack at mid − span. Similar analysis has been conducted in 
(El Arem and Ben Zid, 2017) for a bi − clamped structure. However, for 
an approach to be more generic, it have to be capable of handling 
problems of beams with multiple cracks of different depths and located 
at different positions along the beam axis. To solve this problem, we 
present in the following section the technique of construction of a CBFE. 

2.5. A cracked beam finite element construction 

In this section, we will show step by step how to construct the stiff
ness matrix of an elastic beam finite element with a crack at mid − span. 
This CBFE could be later assembled with other cracked or non − cracked 
beam elements to model a complete shaft with cracks at different posi
tions and depths. Actually, there exist another method to introduce the 
local flexibility generated by a cracked transverse section to model a 
cracked structural element. It consists in the construction of a stiffness 
matrix exclusively for the cracked section by computing the inverse of 
the flexibility matrix. This technique leads to very large stiffness co
efficients in the case of a very small additional flexibility due to small 
cracks. In such situation the numerical integration of the differential 
equations in dynamics becomes very time consuming and convergence 
problems arise as outlined in (El Arem, 2006). For these reasons, we 
have chosen to construct a CBFE and this technique has been used in 
works by (Saavedra and Cuitino, 2001) and (El Arem and Maitournam, 
2008). 

The study of (El Arem, 2009) has showed that the shear effects on the 
breathing mechanism of the cracks is insignificant and will be neglected 
in this study. 

2.6. Stiffness matrix construction procedure 

The procedure of construction has already been presented by (El 
Arem and Maitournam, 2008). However, to have the current work 
self-contained and to easily highlight the new improvements of the 
EDF − LMS approach, we will go through all the steps of the CBFE 
construction procedure. 

Let establish the stiffness matrix of the CBFE of length 2Le, circular 
transverse section of radius R and quadratic moment of inertia I, cf. 
Fig. 6. 

Fig. 3. Saint Venant problem: H for varying slenderness for.aR = 1.00  

Fig. 4. Maximum of H as a function of crack depth.  

Table 1 
Coefficients of the polynomial functions Pa and.Qa

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 

ci − 2.28e-4 0.2301 − 2.2693 57.88186 − 140.4437 195.1568 − 134.2555 39.3306 
qi 0.0045 0.0847 − 0.5679 1.7771 − 3.0003 2.7866 − 1.3376 0.2592  



Let first clamp all the displacements of node A. The relation between 
the loading and displacements vectors at the end section (z = 2Le) could 
be written as: 

u= S(F)⋅F (10) 

Here S(F) represents the compliance matrix of the cantilever cracked 
element. F = {Tx2 ,Ty2 ,Mx2 ,My2}

t and u = {ux2 , uy2 , θx2 , θy2}
t denote, 

respectively, the loading and displacements vectors at the end section 
(z = 2Le). 

When using the classical elastic beam theory, internal efforts at the 
cracked section ( z = Le), are given by: 
⎧
⎪⎪⎨

⎪⎪⎩

Tx = Tx2

Ty = Ty2

Mx = Mx2 − LeTy
My = My2 + LeTx

(11) 

As mentioned in the precedent section, the breathing mechanism of 

the cracks is governed by the bending moment direction Φ = atan
(

My
Mx

)

at the cracked section. The elastic energy of the cracked element is given 
by: 

W∗(F)=W∗
s (F)+w∗

c(M)=W∗
s (F) +

2
3πER3 H(Φ)
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(12) 

The nonlinear relation between the applied forces vector and the 
resulting displacements vector at the end section (z = 2Le)are obtained 
by derivation of the function W∗ by F. Thus, by using (11), we write 

u= S(F)⋅F = S(Φ)⋅F (13)  

where  

S0 denotes the compliance matrix of a non − cracked beam element of 
length 2Le. Let call {uB/A} the relative displacement of node B with 
respect to node A. It verifies the relation 

{
Tx2 , Ty2 ,Mx2 ,My2

}t
=(S(Φ))

− 1{uB/A
}

(15) 

Using the equilibrium conditions of the element of the CBFE of Fig. 6, 
the internal forces in B can be expressed in terms of those in A as: 
⎧
⎪⎪⎨

⎪⎪⎩

Tx1 = − Tx2

Ty1 = − Ty2

Mx1 = − Mx2 + 2LeTy2

My1 = − My2 − 2LeTx2

(16)  

which, in a matrix form, gives: 
{

Tx1 , Ty1 ,Mx1 ,My1 ,Tx2 ,Ty2 ,Mx2 ,My2

}t
=Π1

{
Tx2 ,Ty2 ,Mx2 ,My2

}t (17) 

Fig. 5. Approximation of.H
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4
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Fig. 6. The cracked beam finite element.  



with ​ Π1 =
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(18)  

2.7. In addition, when writing uB/A in the form 

uB/A =
{

u1
B/A, u

2
B/A, u3

B/A, u
4
B/A

}

we obtain 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ux2 = u1
B/A + ux1 + 2Leθy1

uy2 = u2
B/A + uy1 − 2Leθx1

θx2 = u3
B/A + θx1

θy2 = u4
B/A + θy1

(19)  

which could be written in a matrix form as: 

uB/A =Π2⋅
{

ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2

}t (20)  

where ​ Π2 =

⎛

⎜
⎜
⎝

− 1 0 0 − 2Le 1 0 0 0
0 − 1 2Le 0 0 1 0 0
0 0 − 1 0 0 0 1 0
0 0 0 − 1 0 0 0 1

⎞

⎟
⎟
⎠ (21) 

Comparing with equation (18), it can be seen that: 

Π2 =Πt
1

2.8. Moreover, the CBFE stiffness matrix KFE verifies 

{
Tx1 ,Ty1 ,Mx1 ,My1 ,Tx2 , Ty2 ,Mx2 ,My2

}t
=

KFE⋅
{

ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2

}t (22) 

Substituting equation (17) into equation (22) gives 

Π1
{

Tx2 ,Ty2 ,Mx2 ,My2

}t
=KFE⋅

{
ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2

}t (23) 

Then, substituting equation (15) into equation (23), results in 

Π1 ⋅ (S(Φ))
− 1 ⋅ uB/A =KFE⋅

{
ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2

}t (24) 

Finally, using equation (20) leads to: 

KFE =Π1 ⋅ (S(Φ))
− 1⋅Πt

1 (25) 

In this relation, the stiffness matrix appears as depending on the 
applied loading represented by angle Φ. However, in a finite element 
code, it is preferable to express relation (25) as a function of the prob
lem’s unknowns, that is the nodal degrees of freedom. Also, in an 
experimental setting, we most of the time do not have access to the 
resulting stress at a given point, but we could measure accurately the 
displacements. We start by writing: 

KFE(α)=Π1⋅K(α)⋅Πt
1 (26)  

with 

(S(Φ))
− 1

=K(α)=K0 − Δk(α) (27) 

In (27), we distinguish the stiffness matrix of a non − cracked beam 
element of length 2Le, Π1K0Πt

1, from the matrix modeling the stiffness 
loss due to the crack presence Π1Δk(α)Πt

1. K0 is given by: 

K0 = S− 1
0 =

EI
2Le(1 + a)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
L2

e
0 0 −

3
Le

0
3
L2

e

3
Le

0

0
3
Le

4 + a0 −
3
Le

0 0 4 + a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(28)  

a = 12EI
4μkSL2

e 
is the shearing effects coefficient. For a Euler − Bernoulli beam 

element, a is zero. α is the angle given by α = atan
(

[θy ]

[θx ]

)

=

arctan
(

θy2 − θy1
θx2 − θx1

)

. [θx] and [θy] are the rotations discontinuities at the 

cracked section. If we consider that Φ is the primal variable of the 
problem, α is its dual. The relationship between Φ and α is an one − to −

one mapping function which is not the case when considering the nodal 
representation of the cracked transverse section. Equation (27) leads to 

Δk(α)=K0 − (S(Φ))
− 1

=
EI
2Le

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 kxx(α) kxy(α)
0 0 kyx(α) kyy(α)

⎞

⎟
⎟
⎠ (29)  

where 

Fig. 7. 3D and beam modeling of the system.  



⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

kxx(α)=kyy(α)=
4R2 H(Φ)(Φ)

2
+24RLe H(Φ)+R2 H’(Φ)

2

4R2 H(Φ)(Φ)
2
+48RLeH(Φ)+R2 H’(Φ)

2
+144L2

e

kxy(α)=− kyx(α)=−
12Le RH’(Φ)

4R2 H(Φ)(Φ)
2
+48RLeH(Φ)+R2 H’(Φ)

2
+144L2

e

(30) 

We can notice that in (30), the geometrical parameters (slenderness, 
length) of the 3D model used to identify H do not appear in the CBFE 
stiffness coefficients. This makes the difference with our previous work 
(El Arem and Maitournam, 2008) where the length of the 3D model have 
to be known a priori to evaluate the CBFE stiffness coefficients. In fact, in 
the current work, we have reformulated the problem to concentrate the 
additional flexibility in a dimensionless function H which is intrinsic to 
the crack and this makes the current approach more generic. 

3. Validation of the approach

3.1. Example 1: a cantilever beam with one crack 

In this section, 3D finite element results are compared to beam 

modeling of a cracked structure. In the identification procedure (see 
section 2) of the additional flexibility H due to the crack, we have 
considered a crack with a

R = 1 and a cylinder with L
D = 3. For each

example described below, a CBFE is built using the identified flexibility 
coefficient H and assembled with other beam elements as needed. In the 
first example, we consider a cylindrical structure of axis (oz), of diameter 
D = 0.5m, and total length Lt = 10m. The structure is clamped at its end 
z = 0 and submitted at the other to a couple of forces 

T=

(

Tξ = 106 sin(Φ)

5 ,Tη = − 106 cos(Φ)

5

)

with Φ varying from 0 to 2π. The 

structure contains a cracked transverse sections at mid − span (Fig. 7 
(a)). The beam model is composed of 4 classical beam elements 
(1, 2,4 ​ and ​ 5) assembled with a CBFE (element number 3) as shown in 
Fig. 7(b). The couple of resultant bending moments at the cracked sec
tion is M = (Mξ = 106 cos(Φ), Mη = 106 sin(Φ)). Thus, knowing the 

loading angle Φ = arctan
(

Mη
Mξ

)

we built the CBFE using equation (25). 

In Fig. 8, the displacement at the free end (z = 10m) is presented 
with a very good agreement between the 3D and beam models results. 

Fig. 8. Example 1: 3D and beam modeling comparison.  

Fig. 9. Δk terms for a crack with.aR = 1.0  



3.2. Discussion 

Before presenting the second example, let’s be back to equation (30) 
because we have expressed Δk as an explicit function of the loading 
angle Φ instead of α. With the beam model of Fig. 7(b) we have 

computed α = arctan
(

[θy ]

[θx ]

)

and found that 

α=Φ (31)  

which confirms the fact that, for a given loading direction Φ, the me
chanical system is linear but with a different stiffness coefficient for each 
Φ. 

Also, Fig. 9 shows that, when plotting kxx(α) and kxy(α), it appears 
that: 

kxy(α)= −
1
2

k’xx(α) = −
1
2

∂kxx(α)
∂α (32) 

Thus, Δk(α)can be written in the form: 

Δk(α)=
EI
2Le

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 k(α) −
1
2

k’(α)

0 0
1
2

k’(α) k(α)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(33)  

with 

k(α)= kxx(α) = kyy(α) ​ and ​ k’(α) = ∂k(α)
∂α 

Here again we have found the famous skew − symmetric form of the 
matrix describing the stiffness loss due to the crack. This form was dis
scussed in many article ((Andrieux and Varé, 2002), (El Arem, 2019a), 
(El Arem and Ben Zid, 2017)) and is intimately related to the way we 
have written the system elastic energy and its derivative that gives the 

Fig. 10. 3D and beam modeling of the system.  

Fig. 11. Example 2: 3D and beam modeling comparison.  



nonlinear relation describing the crack breathing. We can say that it is 
the signature of the EDF − LMS family of models where the breathing 
mechanism is completely described by the variation of one single 
function: k(α)or. H(Φ)

3.3. Example 2: a cantilever beam with two cracks 

We consider a cylindrical structure of axis (oz), of diameter D = 1m, 
and total length Lt = 20m. This cantilever beam contains two cracked 
transverse sections. The first one is located at z = 5m and the second at 
z = 15m. The cracks are the same: rectilinear tip with depth aR = 1.0, cf. 

Fig. 12. A rotating shaft with a crack at mid − span.  

Fig. 13. Displacements at node 3.  



Fig. 10(a). The beam model is composed of 8 classical beam elements 
(1, 2, 4,5, 6,7, 9 ​ and ​ 10) assembled with two CBFE (elements 3 and 8) 
as shown in Fig. 10(b). All the elements are of length L0 = 2m, diameter 
D = 1m. Knowing the crack geometry we have the flexibility coefficient 
already computed using the approximation formula (8). Then, using 
(30) we have computed the CBFE stiffness matrix coefficients. 

The structure is clamped at its end z = 0 and submitted at the other 
to a couple of forces T = (Tξ = 106 cos(β), Tη = 106 sin(β)) with β 
varying in [0,2π[. In this example, for each loading angle β we solve: 

f (U)= 0=K(U) ⋅ U − F=K(α3, α8) ⋅ U − F (34)  

using the iterative Newton − Raphson method. 
U is the nodal unknowns, F the nodal forces and K the stiffness 

matrix of the structure. In general, the bending moment at the cracked 

section is unknown and equation (34) is used in finite element analysis 
to solve for U. 

Thus, at each iteration, we build the CBFE stiffness matrices of ele
ments 3 and 8, K3

EF(α3) and K8
EF(α8) and assemble them with the non −

cracked elements stiffness matrices until convergence of the iterative 
algorithm. For the CBFE number i, αi is given by: 

αi = arctan
([

θy
]

[θx]

)

= arctan

(
θr

y − θl
y

θr
x − θl

x

)

, i= 3, 8 

The superscripts r and l are for the right node and the left node of the 
CBFE number i, respectively. 

In Fig. 11, the displacement at the free end (z = 20m) is presented 
with a very good agreement between the 3D and beam models results 
which completes the validation of our approach. 

Fig. 14. Phase portrait at node 3. d = 0.03  



3.4. Nonlinear dynamics of a rotating beam with a breathing crack 

Some aspects of the nonlinear behavior of a rotating shaft with a 
breathing crack are addressed in this section. Although it is not the main 
objective of this paper, we think that it is necessary to show that the 
most known effects of a crack presence on the dynamics of a rotating 
shaft could be obtained with our approach. 

Crack detection in rotating shafts by vibration measurements re
mains a challenging problem for engineers and scientists ((El Arem, 
2019b), (Spagnol et al., 2018), (Dotti et al., 2016), (Liu and Wang, 
2016), (Varney and Green, 2013)). The analysis of the vibrational 
behavior of a rotating shaft aims at providing parameters that could help 
in early crack detection. This problem has been dealt with intensively in 

recent years because of its relevance for many sectors like power gen
eration, aeronautics, aerospace and transportation ((Dimarogonas, 
1996; Bachschmid et al., 2010; El Arem, 2006)). It was shown in many 
articles (Patel and Darpe, 2008; El Arem and Nguyen, 2012; El Arem, 
2019a; AL-Shudeifat et al., 2010; Han and Chu, 2012; Han and Chu, 
2013) that the crack breathing mechanism modeling strongly influences 
the dynamics of a rotating shaft. 

In Fig. 12, we consider a rotating shaft of diameter D = 2R = 0.10m, 
distributed mass m0 = πR2ρ, with ρ = 7800kg/m3. d = 3% is the viscous 
damping. The structure is composed of 5 beam elements of length L =

0.8m and rotating at the frequency Ω about its axis. To model a cracked 
section at mid − span, a CBFE (element number 3) is assembled with 4 
non-cracked beam elements. The shaft is clamped at its both ends and 

Fig. 15. Amplitude spectra at node 3. ξ = Ω
w0

, a
R = 1.d = 0.03  



subjected to the effects of its self-weight. (Oxy) is the inertial non- 
rotating frame and (Gζη) the body-fixed rotating frame. G is the center 
of transverse section of the shaft. 

First, lets start by looking at the crack breathing during one full 
rotation of the shaft. Here, under its self-weight, the shaft is rotating at a 
very weak rotating frequency Ω and inertial effects are not considered. 
We can see on Fig. 13, that the current model gives a better represen
tation of the crack breathing phenomena when compared to the 
swithching crack model of (Gasch, 1993) or the model of (Mayes and 
Davies, 1976). When compared to 3D computations, the EDF − LMS 
model provides an excellent agreement especially when the crack starts 

to close (Ωt ∈
[

π
2,

3π
2

]

). Also, when looking at the displacement V(t), we 

can see that only the current model gives satisfactory results. Moreover, 
in the classical models the breathing mechanism depends only on the 
angular position of the crack Ωt and could be adopted only with heavy, 
horizontal axis, well damped rotating shafts where weight-governed 
oscillations are dominant. However, the new generation of turbines in 
power stations are light weight and often operated at very high fre
quencies wich makes the vibration levels effects of the same order of 
magnitude than the self-weight deflection. Also, the machine self-weight 
is not the dominant loading in vertical axis machines. Consequently, in 
the two cases mentioned above, the hypothesis of weight dominant 
situation could not be accepted. 

Now that we have carrefully examined the breathing of the crack 
with the shaft rotation, we can confidently start a brief analysis of the 
dynamical behavior of the shaft. 

Fig. 14 shows phase portraits at different rotating frequencies Ω. The 
superharmonic resonance phenomena is observed when Ω is a subdivi
sion of the first critical frequency w0 of the non-cracked structure. 
Consequently, the phase portrait and the shaft whirl orbit is composed of 

intertwined loops when 
(

ξ = Ω
w0
≈ 1

5 ,14 ,13 ,12). This phenomenon has been 

observed and described in many articles considering a switching crack 
model (Gasch, 1993; Patel and Darpe, 2008; El Arem, 2019a) or a more 
realistic description of the breathing crack as presented in (El Arem and 
Maitournam, 2008; El Arem and Nguyen, 2012). 

In the subcritical rotating frequencies zones, variation of higher- 
order harmonics components is shown in the amplitude spectra of 
Fig. 15. This noticeable variation was experimentally observed in 
(Sinou, 2009a; Guo et al., 2017; Zhou et al., 2004) as well as the whirl 
orbit changing shape during the passage through one-half and one-third 
of the first critical rotating frequency. 

Fig. 16 shows, for a supercritical rotating frequency (ξ≈ 2.0), the 
increase of both the Mean Static Total Deflection (MSTD) and the first 
two harmonics components with the crack depth. We have noticed this 
increase in previous articles (El Arem and Nguyen, 2012; El Arem, 
2019a) dealing with the numerical exploration of the nonlinear dy
namics of a cracked shaft using a simple mechanical system composed of 
two rigid bars connected with a nonlinear bending spring. Also, exper
imental investigations presented in (Sinou, 2009b) showed the increase 
of the 2× and 3× harmonics with the crack depth. 

4. Conclusions and perspectives

In this article, we dealt with the problem of modeling beams and
shafts with cracks. It is a problem with high interest especially for en
gineers and scientists in the power generation and transportation in
dustries where cracks have to be detected before a turbine failure. The 
problem is complex because the cracks breath when the shaft rotates. We 
have presented a generic methodology to deal with the mechanics of 
such complex and often expensive structures. Compared to our previous 
works, the new improvements of the EDF − LMS approach could be 
summarized in three points:  

1. The problem of identifying the breathing mechanism of the crack is
reformulated to consider a 3D cracked structure under applied forces
and not bending moments as before (Andrieux and Varé, 2002; El
Arem and Maitournam, 2007, 2008). In fact, in 3D models, applying
forces is more straightforward. Otherwise, unlike our previous work
(El Arem and Ben Zid, 2017), the forces considered in the identifi
cation process are applied away from the cracked transverse section
so that the problem solution (stresses and displacements) is not
affected by the contact conditions on the crack lips.

2. The identified dimensionless flexibility H measures the open/closed
parts of the crack. H is exclusively inherent to the crack geometry
and completely independent of the geometrical parameters of the 3D
model used to identify it.

3. Consequently, the dependence of the CBFE stiffness coefficients on
these parameters has been removed which makes a major improve
ment of our previous work (El Arem and Maitournam, 2008).

In fact, we have reformulated the problem of identifying the crack
breathing mechanism to concentrate the flexibility variation in a 
dimensionless function H which is intrinsic to the cracked transverse 
section. Moreover, we have given a nonlinear fitting formula for H that 

Fig. 16. Static deflection, 1 × Ωand 2 × Ω harmonics amplitude increase with crack depth.ξ = Ω
w0

= 2.0  



all the process of identification could be skipped when a cracked 
transverse section is to be inserted in a beam-like model of a cracked 
shaft or beam. This standard and generic methodology is completed by a 
detailed description of the technique of construction of a CBFE. A vali
dation of the approach under static loading is given for a cantilever 
beam with one, then two cracked transverse sections and an excellent 
agreement has been found when the results are compared to 3D com
putations. Also, we have explored the vibrational behavior of rotating 
shaft with a cracked transverse section at mid − span. We have found, as 
well established in the literature, that a crack presence induces higher 
harmonics in the vibratory response of the cracked shaft. Also, we have 
noticed a remarkable increase in the MSTD and the higher-harmonics 
components with the crack depth. These parameters, as discussed in 
many previous works, could help in early crack detection. 

We think that we have given a very original, standard and generic 
way to deal with the problem of cracked shafts and beams. The next step 
is to use the CBFE in exploring the nonlinear dynamics of multi-cracked 
shafts to develop reliable procedures for online cracks detection. After 
almost twenty years of continuous improvements, we think that the EDF 
− LMS approach is now sufficiently mature to find its way to be adopted 
by engineers and scientists in the analysis of cracked beams and shafts or 
followed in modeling other type of cracked structures like plates and 
shells. 
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